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DEGENERATIONS OF SCROLLS TO UNIONS OF PLANES

A. CALABRI, C. CILIBERTO, F. FLAMINI, R. MIRANDA

Abstract. In this paper we study degenerations of scrolls to union of planes, a problem
already considered by G. Zappa in [23] and [24]. We prove, using techniques different from the
ones of Zappa, a degeneration result to union of planes with the mildest possible singularities,
for linearly normal scrolls of genus g and of degree d ≥ 2g + 4 in Pd−2g+1. We also study
properties of components of the Hilbert scheme parametrizing scrolls. Finally we review
Zappa’s original approach.

Dedicated to Professor G. Zappa on his 90th birthday

1. Introduction

In this paper we deal with the problem, originally studied by Guido Zappa in [23, 24],
concerning the embedded degenerations of two-dimensional scrolls, to union of planes with
the simplest possible singularities.

In [2] and [3], we have studied the properties of the so-called Zappatic surfaces, i.e. re-
duced, connected, projective surfaces which are unions of smooth surfaces with global normal
crossings except at singular points, which are locally analytically isomorphic to the vertex of
a cone over a union of lines whose dual graph is either a chain of length n, or a fork with n−1
teeth, or a cycle of order n, and with maximal embedding dimension. These singular points
are respectively called (good) Zappatic singularities of type Rn, Sn and En (cf. Definition 2.1
below). A Zappatic surface is said to be planar if it is embedded in a projective space and
all its irreducible components are planes.

An interesting problem is to find degenerations of surfaces to Zappatic surfaces with Zap-
patic singularities as simple as possible. This problem has been partly considered in [3]; e.g.
in Corollary 8.10, it has been shown that, if X is a Zappatic surface which is the flat limit of
a smooth scroll of sectional genus g ≥ 2, then the Zappatic singularities of X cannot be too
simple, in particular X has to have some point of type Ri or Si, with i ≥ 4, or of type Ej ,
with j ≥ 6.

The main results in [23] can be stated in the following way:

Theorem 1.1. (cf. §12 in [23]) Let F be a scroll of sectional genus g, degree d ≥ 3g+2, whose
general hyperplane section is a general curve of genus g. Then F is birationally equivalent
to a scroll in Pr, for some r ≥ 3, which degenerates to a planar Zappatic surface with only
points of type R3 and S4 as Zappatic singularities.

Zappa’s arguments rely on a rather intricate analysis concerning degenerations of hyper-
plane sections of the scroll and, accordingly, of the branch curve of a general projection of
the scroll to a plane.
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We have not been able to check all the details of this very clever argument. However, we
have been able to prove a slightly more general result using some basic smoothing technique
(cf. [6]).

Our main result is the following (cf. Proposition 3.8, Constructions 4.1, 4.2, Remarks 4.20,
5.6 and Theorems 4.6, 5.4 later on):

Theorem 1.2. Let g ≥ 0 and either d ≥ 2, if g = 0, or d ≥ 5, if g = 1, or d ≥ 2g + 4, if
g ≥ 2. Then there exists a unique irreducible component Hd,g of the Hilbert scheme of scrolls
of degree d and sectional genus g in Pd−2g+1, such that the general point of Hd,g represents a
smooth scroll S which is linearly normal and moreover with H1(S,OS(1)) = 0.

Furthermore,

(i) Hd,g is generically reduced and dim(Hd,g) = (d − 2g + 2)2 + 7(g − 1),
(ii) Hd,g contains the Hilbert point of a planar Zappatic surface having only d − 2g + 2

points of type R3 and 2g − 2 points of type S4 as Zappatic singularities,
(iii) Hd,g dominates the moduli space Mg of smooth curves of genus g.

We also construct examples of scrolls S with same numerical invariants, which are not
linearly normal in Pd−2g+1, as well as examples of components of the Hilbert scheme of scrolls
with same invariants, different from Hd,g and with general moduli (cf. Examples 5.11 and
5.12).

We shortly describe the contents of the paper. In § 2 we recall standard definitions and
properties of Zappatic surfaces. In § 3 we focus on some degenerations of products of curves
to planar Zappatic surfaces and we prove some results which go back to [24]. In particular, we
consider Zappatic degerations of rational and elliptic normal scrolls and of abelian surfaces.

In § 4 we prove the greatest part of Theorem 1.2. First, we construct, with an inductive
argument, planar Zappatic surfaces which have the same numerical invariants of scrolls of
degree d and genus g in Pd−2g+1 and having only d − 2g + 2 points of type R3 and 2g − 2
points of type S4 as Zappatic singularities. Then we prove that these Zappatic surfaces can be
smoothed to smooth scrolls which fill up the component Hd,g and we compute the cohomology
of the hyperplane bundle and of the normal bundle. These computations imply that Hd,g is
generically smooth, of the right dimension and its general point represents a linearly normal
scroll.

Section 5 is devoted to study some properties of components of the Hilbert scheme of
scrolls. In particular, we show that the component Hd,g is the unique component of the
Hilbert scheme of scrolls of degree d and sectional genus g whose general point [S] is linearly
normal in Pd−2g+1 and moreover with H1(S,OS(1)) = 0. Furthermore, we give the examples
mentioned above (cf. Examples 5.11 and 5.12).

In the last section, § 6, we briefly explain Zappa’s original approach in [23]. Moreover,
we make some comments and give some improvements on some interesting results from [23]
concerning extendability of plane curves to scrolls which are not cones.

2. Notation and preliminaries

In this paper we deal with projective varieties defined over the complex field C.
Let us recall the notions of Zappatic singularities, Zappatic surfaces and their dual graphs.

We refer the reader for more details to our previous papers [2] and [3]. One word of warning:
what we call good Zappatic singularities there, here we simply call Zappatic singularities,
because no other type of Zappatic singularity will be considered in this paper.
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Definition 2.1. Let us denote by Rn [resp. Sn, En] a graph which is a chain [resp. a fork,
a cycle] with n vertices, n ≥ 3, cf. Figure 1. Let CRn

[resp. CSn
, CEn

] be a connected,
projectively normal curve of degree n in Pn [resp. in Pn, in Pn−1], which is a stick curve, i.e.
a reduced, union of lines with only double points, whose dual graph is Rn [resp. Sn, En].

• • • • • • •

•

• • • •••

•
•

•

•

• •

•

Figure 1. A chain Rn, a fork Sn with n − 1 teeth, a cycle En.

We say that a point x of a projective surface X is a point of type Rn [resp. Sn, En] if
(X, x) is locally analytically isomorphic to a pair (Y, y) where Y is the cone over a curve CRn

[resp. CSn
, CEn

], n ≥ 3, and y is the vertex of the cone (cf. Figure 2). We say that Rn-, Sn-,
En-points are Zappatic singularities.

•

V1

V2

V3

C12 C23

•

V1 V2 V3

C12 C23

V4
C24

•

V1 V2

V3
C13

C12

C23

Figure 2. Examples: a R3-point, a S4-point and an E3-point.

In this paper we will deal mainly with points of type R3 and S4. We will use the following:

Notation 2.2. If x is a point of type R3 [of type S4, resp.] of a projective surface X, we say
that the component V2 of X as in picture on the left [in the middle, resp.] in Figure 2 is the
central component of X passing through x.

Definition 2.3. A projective surface X =
⋃v

i=1 Vi is called a Zappatic surface if X is con-
nected, reduced, all its irreducible components V1, . . . , Vv are smooth and:

• the singularities in codimension one of X are at most double curves which are smooth
and irreducible along which two surfaces meet transversally;

• the further singularities of X are Zappatic singularities.

We set Cij = Vi ∩ Vj if Vi and Vj meet along a curve, we set Cij = ∅ otherwise. We set

Ci = Vi ∩ X − Vi =
⋃v

j=1 Cij . We denote by C = Sing(X) the singular locus of X, i.e. the

curve C =
⋃

1≤i<j≤v Cij .

We denote by fn [resp. rn, sn] the number of point of type En [resp. Rn, Sn] of X.

Remark 2.4. A Zappatic surface X is Cohen-Macaulay. Moreover it has global normal
crossings except at the Rn- and Sn-points, for n ≥ 3, and at the Em-points, for m ≥ 4.

We associate to a Zappatic surface X a dual graph GX as follows.

Definition 2.5. Let X =
⋃v

i=1 Vi be a Zappatic surface. The dual graph GX of X is given
by:
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• a vertex vi for each irreducible component Vi of X;
• an edge lij, joining the vertices vi and vj , for each irreducible component of the curve

Cij = Vi ∩ Vj;
• a n-face Fp for each point p of X of type En for some n ≥ 3: the n edges bounding

the face Fp are the n irreducible components of the double curve C of X concurring
at p;

• an open n-face for each point p of X of type Rn for some n ≥ 3; it is bounded by
n − 1 edges, corresponding to the n − 1 irreducible components of the double curve
of X concurring at p, and by a dashed edge, which we add in order to join the two
extremal vertices;

• a n-angle for each p of X of type Sn, spanned by the n − 1 edges that are the n − 1
irreducible components of the double curves of X concurring at p.

By abusing notation, we will denote by GX also the CW-complex associated to the dual graph
GX of X, formed by vertices, edges and n-faces.

Remark 2.6 (cf. [2]). When we deal with the dual graph of a planar Zappatic surface
X =

⋃v
i=1 Vi, we will not indicate open 3-faces with a dashed edge. Indeed, the graph itself

shows where open 3-faces are located.

Some invariants of a Zappatic surface X have been computed in [2] and in [4], namely
the Euler-Poincaré characteristic χ(OX), the ω-genus pω(X) = h0(X, ωX), where ωX is the
dualizing sheaf of X, and, when X is embedded in a projective space Pr, the sectional genus
g(X), i.e. the arithmetic genus of a general hyperplane section of X. In particular, for a
planar Zappatic surface (for the general case, see [2, 4]) one has:

Proposition 2.7. Let X =
⋃v

i=1 Vi be a planar Zappatic surface of degree v in Pr and denote
by e the degree of C = Sing(X), i.e. the number of double lines of X. Then:

g(X) = e − v + 1, (2.8)

pω(X) = h0(X, ωX) = h2(GX , C), (2.9)

χ(OX) = χ(GX) = v − e +
∑

i≥3

fi. (2.10)

In this paper, a Zappatic surface will always be considered as the central fibre of an em-
bedded degeneration, in the following sense.

Definition 2.11. Let ∆ be the spectrum of a DVR (or equivalently the complex unit disk).
A degeneration of surfaces parametrized by ∆ is a proper and flat morphism π : X → ∆ such
that each fibre Xt = π−1(t), t 6= 0 (where 0 is the closed point of ∆), is a smooth, irreducible,
projective surface. A degeneration π : X → ∆ is said to be embedded in Pr if X ⊆ ∆ × Pr

and the following diagram commutes:

X
π

⊆ ∆ × Pr

pr1

∆

The invariants of the Zappatic surface X = X0, which is the central fibre of an embedded
degeneration X → ∆, determine the invariants of the general fibre Xt, t 6= 0, as we proved in
[2, 3, 4]. Again, we recall these results only for planar Zappatic surfaces and we refer to our
previous papers for the general case.
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Theorem 2.12. Let X → ∆ be an embedded degeneration in Pr such that the central fibre
X = X0 is a planar Zappatic surface. Then, for any 0 6= t ∈ ∆:

g(Xt) = g(X), pg(Xt) = pω(X), χ(OXt
) = χ(OX). (2.13)

Moreover the self-intersection K2
Xt

of a canonical divisor of Xt is:

K2
Xt

= 9v − 10e +
∑

n≥3

2nfn + r3 + k, (2.14)

where k depends on the presence of points of type Rm and Sm, m ≥ 4:
∑

m≥4

(m − 2)(rm + sm) ≤ k ≤
∑

m≥4

(2m − 5)rm +

(

m − 1

2

)

sm.

Finally, let us recall the construction of rational normal scrolls.

Definition 2.15. Fix two positive integers a, b and set r = a+b+1. In Pr choose two disjoint
linear spaces Pa and Pb. Let Ca [resp. Cb] be a smooth, rational normal curve of degree a in
Pa [resp. of degree b in Pb] and fix an isomorphism φ : Ca → Cb. Then, the union in Pr of

all the lines p, φ(p), p ∈ Ca, is a smooth, rational, projectively normal surface which is called
scroll of type (a, b) and it is denoted by Sa,b. Such a scroll is said to be balanced if either
b = a or b = a + 1.

Another way to define a scroll is as the embedding of a Hirzebruch surface Fn, n ≥ 0,
which is the minimal ruled surface over P1 with a section of self-intersection (−n). Setting F
the ruling of Fn and C a section such that C2 = n, the linear system |C + aF | embeds Fn in
Pn+2a+1 as a scroll of type (a, a + n), cf. e.g. [14]. In particular a balanced scroll in Pr, r ≥ 3,
is the embedding either of F0 = P1 × P1 or of F1 depending on whether r is odd or even.

In the next section we will see, in particular, degenerations of rational scrolls to a planar
Zappatic surface. In the subsequent section we will deal with scrolls of higher genus.

3. Degenerations of product of curves and of rational scrolls

Zappa suggested in [24] an interesting method for degenerating products of curves, which
also gives a degeneration of rational and elliptic scrolls to planar Zappatic surfaces with only
R3-points.

Example 3.1 (Zappa). Let C ⊂ Pn−1 and C ′ ⊂ Pm−1 be smooth curves. If C and C ′ may
degenerate to stick curves, then the smooth surface

S = C × C ′ ⊂ Pn−1 × Pm−1 ⊂ Pnm−1,

embedded via the Segre map, degenerates to a Zappatic surface Y in Pnm−1 whose irreducible
components are quadrics and whose double curves are lines.

If it is possible to further, independently, degenerate each quadric of Y to the union of
two planes, then one gets a degeneration of S = C × C ′ to a planar Zappatic surface. This
certainly happens if each quadric of Y meets the other quadrics of Y along a union of at most
four lines, at most two from each ruling (see Figure 3).

Therefore S = C × C ′ can degenerate to a planar Zappatic surface if C and C ′ are ei-
ther rational or elliptic normal curves, since they degenerate to stick curves CRn

and CEn
,

respectively. We will now describe these degenerations.
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Figure 3. A quadric degenerating to the union of two planes

Example 3.2 (Rational scrolls). Let C be a smooth, rational normal curve of degree n in Pn.
Since C degenerates to a union of n lines whose dual graph is a chain, the smooth rational
normal scroll S = C × P1 ⊂ P2n+1 degenerates to a Zappatic surface Y =

⋃n
i=1 Yi such that

each Yi is a quadric, Y has no Zappatic singularity and its dual graph GY is a chain of length
n, see Figure 4.

Figure 4. Chain of n quadrics as in Example 3.2

Each quadric Yi meets Y \ Yi either along a line or along two distinct lines of the same
ruling. Thus, as we noted before, the quadric Yi degenerates, in the P3 spanned by Yi, to the
union of two planes meeting along a line li, leaving the other line(s) fixed. Therefore, in P2n+1,
the scroll S degenerates also to a planar Zappatic surface X of degree 2n. The line li can be
chosen generally enough so that X has 2n− 2 points of type R3 as Zappatic singularities, for
each i, i.e. its dual graph GX is a chain of length 2n, see Figure 5 (cf. Remark 2.6).

• • • • • • • • • • • •

Figure 5. Planar Zappatic surface of degree 2n with a chain as dual graph

Example 3.3 (Elliptic scrolls). Let C be a smooth, elliptic normal curve of degree n in Pn−1.
Since C degenerates to a union of n lines whose dual graph is a cycle, the smooth elliptic
normal scroll S = C × P1 ⊂ P2n−1 degenerates to a Zappatic surface Y =

⋃n
i=1 Yi, such that

each Yi is quadric, Y has no Zappatic singularity and its dual graph GY is a cycle of length
n, see the picture on the left in Figure 6.

Each quadric Yi meets Y \ Yi along two distinct lines ri, r
′
i of the same ruling. Hence, in

the P3 spanned by Yi, the quadric Yi degenerates to the union of two planes meeting along a
line li, leaving ri, r

′
i fixed. Choosing again a general li for each i, it follows that in P2n−1 the

scroll S degenerates to a planar Zappatic surface X of degree 2n with 2n points of type R3

as Zappatic singularities and its dual graph GX is a cycle of length 2n, see Figure 6.

Example 3.4 (Abelian surfaces). Let C ⊂ Pn−1 and C ′ ⊂ Pm−1 be smooth, elliptic normal
curves of degree respectively n and m. Then C and C ′ degenerate to the stick curves CEn

and
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•

•
••

•

•

•

•
• •

•

•

Figure 6. Cycle of n quadrics and of 2n planes as in Example 3.3

CEm
respectively, hence the abelian surface S = C × C ′ ⊂ Pnm−1 degenerates to a Zappatic

surface which is a union of mn quadrics with only E4-points as Zappatic singularities, cf. e.g.
the picture on the left in Figure 7, where the top edges have to be identified with the bottom
ones, similarly the left edges have to be identified with the right ones. Thus the top quadrics
meet the bottom quadrics and the quadrics on the left meet the quadrics on the right.

 

Figure 7. nm quadrics with E4-points and 2nm planes with E6-points

Again each quadric degenerates to the union of two planes. By doing this as depicted in
Figure 7, one gets a degeneration of a general abelian surface with a polarization of type (n, m)
to a planar Zappatic surface of degree 2nm with only E6-points as Zappatic singularities.

Other examples of degenerations, similar to the one considered above, for K3 surfaces (the
so called pillow degenerations) are considered in e.g. [8].

Remark 3.5. Going back to the general case, if either C or C ′ has genus greater than 1 and
if they degenerate to stick curves, then the surface S = C × C ′ degenerates to a union of
quadrics, as we said. Unfortunately it is not clear if it is possible to further independently
degenerate each quadric to two planes.

From now on, until the end of this section, we deal with degenerations of rational normal
scrolls only. Namely we will show that a general rational normal scroll degenerates to a planar
Zappatic surface with Zappatic singularities of type R3 only and we will see how “general”
the scroll has to be in order to admit such degenerations (e.g., in Example 3.2, the scrolls are
actually forced to have even degree).

There are several ways to construct these degenerations. We will start from the trivial
family and then we will perform two basic operations: (1) blowing-ups and blowing-downs in
the central fibre, (2) twisting the hyperplane bundle by a component of the central fibre.

Construction 3.6. Let S = Sa,b be a smooth, rational, normal scroll of type (a, b) in Pr,
where r = a + b + 1 ≥ 3 and we assume that b ≥ a. Then S degenerates to the union of a
plane and a smooth, rational normal scroll Sa,b−1 meeting the plane along a ruling.
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Indeed, S is the embedding of the Hirzebruch surface Fn, n = b−a ≥ 0, via the linear system
|C + aF |, where F is the ruling and C is a section of self-intersection n (clearly, if n = 0,
we may choose F to be either one of the two rulings and C to be the other ruling). Set

H = C + aF . Consider the trivial family S = Fn × ∆
σ
−→ ∆. On S we have the hyperplane

bundle H which coincides with H on each fibre of σ.
Now blow up S at a general point of the central fibre S0. Let V be the exceptional divisor

and S ′ be the proper transform of S0. Then, H⊗O(−V ) embeds V as a plane and maps S ′

to a scroll of type (a, b − 1), which meet each other along a ruling of S ′. We explain these
operations in Figure 8, where the dotted lines represent the hyperplane bundle. The last arrow
is the so-called type I transformation on the vertical (−1)-curve (cf. [11]), which consists in
blowing up the (−1)-curve and then blowing down the exceptional divisor, which is a F0,
along the other ruling. The total effect on S0 is to perform an elementary transformation.

When r = 3 this process gives the degeneration of a smooth quadric to two planes meeting
along a line.

•
C p
n

F 0

a

−n

0
blow-up p
−−−−−→

n−1

0

a

−
1

−
1

−n

1

1
1

twist by O(−V )
−−−−−−−−−→

n−1

0

a

−
1

−
1

−n

1

1

1

→

n−1

0

a

−n+1

0

1

0

−1

0

Figure 8. Degeneration of a scroll Sa,b to the union of a plane and a scroll Sa,b−1

Construction 3.7. Let S = Sa,b be a smooth, rational, normal scroll of type (a, b) in Pr,
where r = a+ b+1 and assume that b ≥ a > 1. Then S degenerates to the union of a quadric
and a smooth, rational normal scroll Sa−1,b−1 meeting the quadric along a ruling.

Indeed, consider the Hirzebruch surface Fn, n = b − a ≥ 0, and the trivial family S =
Fn × ∆

σ
−→ ∆, with the hyperplane bundle H, as in Construction 3.6.

Now blow up a ruling F0 in the central fibre S0. Let W be the exceptional divisor and S ′

be the proper transform of S0. Then H⊗O(−W ) embeds W as a quadric and S ′ as a scroll
of type (a − 1, b − 1), which meet along a ruling of S ′, cf. Figure 9.

C
n

F 0

a

−n

0 F0
blow-up F0−−−−−−→

n

0

a

−n

0

0

0

0

0
twist by O(−W )
−−−−−−−−−→

n

0

a
−

1 −n

0

0

0

0

0

Figure 9. Degeneration of a scroll Sa,b to the union of a quadric and a scroll Sa−1,b−1

By induction on the degree of the scroll and by using Constructions 3.6 and 3.7 for the
inductive steps, we now show the following:

Proposition 3.8. Let d ≥ 2 and set r = d + 1 ≥ 3. Let X := Xd,0 be a planar Zappatic
surface of degree d in Pr, whose dual graph is a chain, i.e. X has d − 2 points of type R3 as
Zappatic singularities. Then, the Hilbert point of X belongs to the irreducible component Hd,0

of the Hilbert scheme parametrizing rational normal scrolls of degree d.
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Remark 3.9. It is well-known (cf. e.g. Lemma 3 in [6]) that Hd,0 is generically reduced and
of dimension d2 + 4d − 3.

Proof of Proposition 3.8. We will directly show that a smooth, balanced scroll S degenerates
to X.

Suppose first that r is even. Let S = S(a, a + 1) be a balanced scroll of degree d in Pr, i.e.
a = (d − 1)/2 = r/2 − 1. Consider the trivial family F1 × ∆, where F1 is embedded in Pr by
the linear system |C + aF |, such as in Constructions 3.6 and 3.7, cf. the picture on the left
in Figure 10.

Now blow up a ruling in the central fibre, call W ∼= F0 the exceptional divisor and twist
the hyperplane bundle by O(−aW ). In this way, one gets a degeneration of S to the union
of a scroll of type (a, a) in Pr−1 and a plane, meeting along a ruling, cf. Construction 3.7 and
the picture in the middle of Figure 10.

Then blow up a general point (the bottom left corner in Figure 10) of the scroll, twist
again by the opposite of the new surface and perform a type I transformation, as we did
in Construction 3.6. By twisting again by the opposite of the new surface, counted with
multiplicity a − 1, one gets the configuration depicted on the right in Figure 10, namely the
first two components are two planes, whereas the new component is a scroll of type (a−1, a).

Going on by induction on a, by following the same process, one gets a chain of planes which
is a planar Zappatic surface with only R3-points, as wanted.

If r is odd, one starts from a F0 as in the central picture of Figure 10 and one may perform
exactly the same operations in order to get a similar degeneration. �

Remark 3.10. In practice, Proposition 3.8 follows by Contructions 3.6 and 3.7 with a suit-
able induction. The explicit argument we made in the proof shows that there exists a flat
degeneration of smooth, rational scrolls to X whose total space is singular only at the R3-
points of X. For another approach, the reader is also referred to [18].

1

0

a

−1

0 →

• 0

0

a

0

0

1

0

−1

0 →

1

0

a
−

1 −1

0

−1

0

1

0

1

0

−1

0

Figure 10. Degeneration of Sa,a+1 to a planar Zappatic surface with only R3-points

Remark 3.11. Suppose to have a smooth scroll S which is the general fibre of an embedded
degeneration in Pr to a Zappatic planar surface X. The ruling of S, considered as a curve Γ
in the Grasmannian G(1, r), accordingly degenerates to a stick-curve Γ0. This means that the
ruling degenerates to a union of pencils of lines, one in each plane of X. Since Γ0 is connected,
each double line of X belongs to the pencil in either one of the two planes containing it. Hence,
the centers of the pencils also belong to the double lines of X. Therefore, on each plane which
contains more than one double line of X, all the double lines pass through the same Zappatic
singularity which is the center of the pencil. However, the location of the centers of the
pencils on the planes containing only one double line of X is not predictable.

We conclude this section by proving the following:

Proposition 3.12. Let S = Sa,b be a smooth, rational normal scroll in Pa+b+1, with b−a ≥ 4.
Assume that S is the general fibre of a degeneration whose central fibre is a planar Zappatic
surface X. Then X has worse singularities than R3-points.
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Proof. By construction of the scroll S (cf. Definition 2.15), the minimum degree of a section
of S is a and let Ca be the section of degree a. Suppose by contradiction that S is the general
fibre of an embedded degeneration of surfaces whose central fibre is a planar Zappatic surface
X =

⋃a+b
i=1 Vi in Pa+b+1, with only R3-points as Zappatic singularities. Then the dual graph

GX is a chain and we may and will assume that two planes Vi and Vj meet along a line if and
only if j = i ± 1.

While S degenerates to X, the ruling of S degenerates to a pencil of lines Λi on each plane
Vi, i = 1, . . . , a + b (cf. Remark 3.11) and the section Ca degenerates to a chain of lines
l1, . . . , la, with li ⊂ Vji

, i = 1, . . . , a, and we may and will assume that j1 < j2 < · · · < ja.
The pencil Λ1 has to meet

⋃a
i=1 li, hence V1 has to have non-empty intersection with

Vj1, therefore the assumption that X has at most R3-points implies that j1 ≤ 3. For each
k = 2, . . . , a, the lines lk and lk−1 meet at a point, so the same argument implies that
jk ≤ jk−1 + 2 (cf. Figure 11). It follows that ja ≤ j1 + 2(a − 1) ≤ 2a + 1.

On the other hand, the pencil Λa+b has to meet
⋃a

i=1 li, hence ja ≥ a+ b−2. In conclusion,
one has that:

a + b − 2 ≤ ja ≤ 2a + 1,

which contradicts the assumption that b ≥ a + 4. �

l1 l2 l3 . . . la

Figure 11. Degeneration of Sa,b, b = a + 3, to X with only R3-points

For another approach to degenerations of rational scrolls to unions of planes, the reader is
referred to [18].

Remark 3.13. By following the lines of the proof of Proposition 3.8 it is possible to prove
that, given a, b positive integers such that 0 ≤ b − a ≤ 3, there exist degenerations whose
general fibre is a scroll of type S(a, b) and whose central fibre is a planar Zappatic surface
with only R3-points as Zappatic singularities (cf. Figure 11). We will not dwell on this here.

4. Degenerations of scrolls: inductive constructions

In this section we produce families of smooth scrolls of any genus g ≥ 0 which degenerate
to planar Zappatic surfaces with Zappatic singularities of types R3 and S4 only.

We start by describing the planar Zappatic surfaces which will be the limits of our scrolls.
We will construct these Zappatic surfaces by induction on g. From now on in this section,
we will denote by Xd,g a planar Zappatic surface consisting of d planes and whose sectional
genus is g.

We start with the case g = 1.

Construction 4.1. For any d ≥ 5, there exists a planar Zappatic surface Xd,1 =
⋃d

i=1 Vi in
Pr, with r = d − 1, whose dual graph is a cycle.

Indeed, if p1, . . . , pd are the coordinate points of Pr, we may let Vi, i = 2, . . . , d − 1,
be the plane spanned by pi−1, pi, pi+1 and let V1 = 〈pd, p1, p2〉, Vd = 〈pd−1, pd, p1〉. Then

Xd,1 =
⋃d

i=1 Vi is a planar Zappatic surface with dual graph a cycle and whose Zappatic
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singularities are points of type R3 at p1, . . . , pd, cf. Figure 12, where one identifies the line
〈pd, p1〉 on the left with the same line on the right.

• •

••

•

•

•

•

•

•

•

•

•
pd

p1

p2

p3

p4

p5

p6

pd−4

pd−3

pd−2

pd−1

pd

p1

Figure 12. Planar Zappatic surface Xd,1 with dual graph a cycle

We will show in Theorem 4.6 that Xd,1 is the flat limit of a smooth scroll of genus 1 in Pr.
In order to do that, now we describe another way to construct Xd,1, which will also help to
understand the next inductive steps.

Let Xd−2,0 =
⋃d−2

i=1 Vi be a planar Zappatic surface of degree d− 2 in Pr, whose dual graph
is a chain. We may and will assume that the planes Vi and Vj meet along a line if and only
if j = i ± 1.

Now choose a general line l1 in V1 and a general line l2 in Vd−2, thus l1 [resp. l2] does not
pass through the R3-point V1 ∩ V2 ∩ V3 [resp. Vd−4 ∩ Vd−3 ∩ Vd−2]. Clearly the lines l1 and
l2 are skew and span a P3, call it Π. By a computation in coordinates one proves that, if
d ≥ 6, then Π ∩ X0 = l1 ∪ l2. Therefore there exists a smooth quadric Q′ in Π such that l1,
l2 are lines of the same ruling on Q′ and Q′ meets X0 transversally along Q′ ∩ X0 = l1 ∪ l2.
On the other hand, if d = 5, then Π ∩ X0 = l1 ∪ l2 ∪ l, where l is a line in the central plane.
Nonetheless it is still true that there exists a smooth quadric Q′ which contains l1 and l2 and
meets X0 transversally.

Finally, in Π, the quadric Q′ degenerates to two planes Vd−1 and Vd, such that li ⊂ Vd−i+1,

i = 1, 2. By construction, the planar Zappatic surface Xd,1 = Xd−2,0 ∪ Vd−1 ∪ Vd =
⋃d

i=1 Vi

has dual graph which is a cycle, hence it has only R3-points as Zappatic singularities (cf.
Example 3.3 and Figure 13). Note that, if d ≥ 6, then there are pairs of disjoint planes in
the cycle.

l1

l
2V1 Vd−2

Q′  

l1

l
2V1 Vd−2

Vd

Vd−1

Figure 13. Construction of Xd,1 from Xd−2,0

Next, we complete the construction proceeding inductively.

Construction 4.2. Fix integers g, d such that g ≥ 2 and d ≥ 2g + 4. Set c = d− 2g − 4 ≥ 0
and r = 5 + c = d − 2g + 1. There is a planar Zappatic surface Xd,g =

⋃d
i=1 Vi in Pr such

that:

• Xd,g has 3g + 6 + c double lines, i.e. its dual graph GXd,g
has 3g + 6 + c edges;



12 A. CALABRI, C. CILIBERTO, F. FLAMINI, R. MIRANDA

• Xd,g has r + 1 points of type R3 and 2(g − 1) points of type S4;
• for each i, Vi is the central plane through a point p of type either R3 or S4, i.e. Vi is

the central component of Xd,g passing through p as defined in Notation 2.2;
• there exist two R3-points of Xd,g whose central planes do not meet;
• χ(OXd,g

) = 1 − g, pω(Xd,g) = 0, q(Xd,g) = g(Xd,g) = g.

Taking into account Construction 4.1, which covers g = 1 and d ≥ 5, we can proceed by
induction and assume that we have the surface Xd−2,g−1. Let V1 and V2 be disjoint planes
in Xd−2,g−1 such that each one of them is the central plane for a R3-point, say p1 and p2

respectively.
Now choose a line l1 in V1 [resp. l2 in V2] which is general among those passing through

p1 [resp. through p2]. Then l1 and l2 are skew and span a P3, say Π, therefore there exists a
smooth quadric Q′ in Π containing l1 and l2 as lines of the same ruling, cf. Figure 14.

Now we prove the following:

Claim 4.3. For general choices, Q′ and Xd−2,g−1 meet transversally along Xd−2,g−1 ∩ Q′ =
l1 ∪ l2.

Proof. In order to prove the claim, it suffices to show that Π does not meet the remaining
components of Xg−1 along a curve, i.e. that Π does not meet Vi, i 6= 1, 2, along a line. Before
proving the claim, we make a remark. Suppose that there are two further planes, say V3 and
V4, in Xd−2,g−1 contained in 〈V1, V2〉 = Σ ∼= P5. Suppose also that the dual graph of the
planar Zappatic surface V1 ∪ V3 ∪ V4 ∪ V2 is a chain of length 4. Then the points V1 ∩ V3 ∩ V4

and V3 ∩ V4 ∩ V2 are of type R3. Note that this certainly happens if c = 0 and g = 2 because
in that case the dual graph of Xd−2,g−1 is a cycle of length six.

In this situation, a computation in coordinates in Σ shows that for a general choice of l1
and l2, Π = 〈l1, l2〉 does not intersect either V3 or V4 along a line.

Now we prove the claim arguing by contradiction. Fix the line l2 in V2 and consider
〈l2, V1〉 = Ω ∼= P4. By moving l1 in the pencil of lines of V1 through p1, one gets a pencil Φ
of P3’s inside Ω and each of these P3’s meets a plane, say V3, along a line. There are two
possibilities: either V3 ⊂ Ω, or V3 * Ω.

In the former case, V3 intersects V1 at a point q. Let l2 move in the pencil of lines of V2

through p2: one gets a pencil of P4’s in Σ = 〈V1, V2〉, whose base-locus is 〈p1, V2〉 ∼= P3 in
which V3 is contained. This implies that q = p1, moreover V3 intersects V2 along a line which
necessarily contains p2. In conclusion, V3 contains the line passing through p1 and p2. This
yields the existence of a plane V4 which forms, together with V1, V2 and V3, a configuration
in Σ of four planes as the one discussed above. This is a contradiction.

Suppose now that V3 * Ω. Then V3 meets along a line the base locus of the pencil Φ, which
is the plane 〈p1, l2〉. By moving l2, we see that V3 has to contain the line through p1 and p2

and we get a contradiction as before. �

In Π, the smooth quadric Q′ degenerates to the union of two planes, say Vd−1 ∪ Vd, where
li ⊂ Vd−i+1, i = 1, 2. Consider the planar Zappatic surface Xd,g = Xd−2,g−1 ∪ Vd−1 ∪ Vd of
degree d in Pr. Thus, we added to Xd−2,g−1 two planes and three double lines V1∩Vd, Vd∩Vd−1

and Vd−1 ∩V2. Moreover, the points p1 and p2 become points of type S4 for Xg and we added
two further points of type R3 at V1 ∩ Vd ∩ Vd−1 and Vd ∩ Vd−1 ∩ V2, cf. Figure 14. Finally,
one checks that each one of the planes Vd−1 and Vd is disjoint from some other plane in the
configuration. This ends the construction.

Next, we will prove that the Zappatic surfaces Xd,g we constructed are limits of smooth
scrolls of genus g. First we make a remark.
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•

•

p1

p2

l
1

l
2V1 V2Q′  

•

•

p1

p2

l
1

l
2

Vd

V1 V2
Vd−1

Figure 14. Construction of Xd,g from Xd−2,g−1

Remark 4.4. If Xd,g is the flat limit of a family of smooth surfaces Y , then Theorem 2.12
implies that:

g(Y ) = g, pg(Y ) = 0, χ(OY ) = 1 − g, 8(1 − g) ≤ K2
Y ≤ 6(1 − g). (4.5)

Theorem 4.6. Let g ≥ 0 and d ≥ 2g + 4 be integers. Let r = d − 2g + 1. The Hilbert point
corresponding to the planar Zappatic surface Xd,g belongs to an irreducible component Hd,g

of the Hilbert scheme of scrolls of degree d and genus g in Pr, such that:

(i) the general point of Hd,g represents a smooth, linearly normal scroll Y ⊂ Pr;
(ii) Hd,g is generically reduced, dim(Hd,g) = h0(Y,NY/Pr) = (r + 1)2 + 7(g − 1), and

moreover h1(Y,NY/Pr) = h2(Y,NY/Pr) = 0.

Proof of Theorem 4.6: beginning. We prove Theorem 4.6 by induction on g. The case g = 0
has been treated in Proposition 3.8. By induction on g, we may assume that Xd−2,g−1 is the
flat limit of a smooth scroll S of degree d−2 and genus g−1 in Pr, which is represented by a
smooth point of a component Hd−2,g−1 of the Hilbert scheme of dimension (r +1)2 +7(g−2).

We can now choose l1 and l2 as in Constructions 4.1 and 4.2 so that they are limits of
rulings F1 and F2, respectively, on S (cf. Remark 3.11).

Let Q be a smooth quadric containing F1 and F2, whose limit is Q′. By the properties
of Xd−2,g−1 and of Q′ (see Claim 4.3), it follows that S and Q meet transversally along
S ∩ Q = F1 ∪ F2.

The inductive step is a consequence of the following lemma. �

Lemma 4.7. In the above setting, consider the union

R := S ∪ Q.

Let NR and TR be the normal and the tangent sheaf of R in Pr, respectively; then, one has:

H1(NR) = H2(NR) = 0, (4.8)

h0(NR) = (r + 1)2 + 7(g − 1) = d2 − 4dg + 4d + 4g2 − g − 3. (4.9)

Furthermore the natural map H0(NR) → H0(T 1), induced by the exact sequence

0 → TR → TPr |R
τ
−→ NR → T 1 := Coker(τ) → 0, (4.10)

is surjective.

Proof. We will compute the cohomology of NR, by using a similar technique as in section 2.2
of [6] (see Lemma 3 therein).
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Let Γ := S ∩ Q = F1 ∪ F2 be the double curve of R. Since R has global normal crossings,
the sheaf T 1 in (4.10) is locally free, of rank 1 on the singular locus Γ of R and, by [10], it is

T 1 ∼= NΓ/S ⊗NΓ/Q.

Since Γ is the union of two lines of the same ruling on both Q and S, it follows that

T 1 ∼= OΓ. (4.11)

Let us consider the inclusions ιS : NS → NR|S and ιQ : NQ → NR|Q. Lemma 2 in [6] shows
that T 1 ∼= coker(ιS) and T 1 ∼= coker(ιQ). For readers’ convenience, we recall here the proof.
By a local computation, one sees that the cokernel K of ιS is locally free of rank 1 on Γ. In
the diagram

TPr |R NR T 1 0

NR|S

TPr |S NS

ιS

0

(4.12)

the horizontal and diagonal rows are exact, hence the commutativity of the pentagon shows
that T 1 surjects onto K. Since both are locally free sheaves of rank 1, one concludes that
T 1 ∼= K. The same argument works for Q.

Hence the following sequences are exact:

0 → NS → NR|S → T 1 → 0, (4.13)

0 → NQ(−Γ) → NR|Q(−Γ) → T 1(−Γ) → 0. (4.14)

Moreover, one has the exact sequence

0 → NR|Q ⊗OR(−Γ) → NR → NR|S → 0, (4.15)

so that, in order to prove (4.8), it suffices to show that

H i(NR|S) = 0, for 1 ≤ i ≤ 2, (4.16)

H i(NR|Q ⊗OR(−Γ)) = 0, for 1 ≤ i ≤ 2. (4.17)

By induction on g, one knows that H i(NS) = 0, i = 1, 2. By (4.11), one has that H i(T 1) =
H i(OΓ) = 0, i = 1, 2, because Γ is the union of two distinct lines. Hence the sequence (4.13)
implies (4.16).

Note that H i(T 1(−Γ)) = H i(OΓ(−Γ)) = 0, i = 1, 2. Taking into account the exact
sequence (4.14), the proof of (4.17) is concluded if one shows that

H i(NQ(−Γ)) = 0, for 1 ≤ i ≤ 2. (4.18)

Since Q lies in a P3, one has that

NQ
∼= OQ(2) ⊕OQ(1)⊕(r−3).

Recall that F1 and F2 are lines of the same ruling, so F1 ∼ F2 and OQ(−Γ) ∼= OQ(−2F1). Let
G be the other ruling of Q and H be the general hyperplane section of Q, hence H ∼ G + F1

and one has that:

NQ ⊗OQ(−Γ) ∼= OQ(2G) ⊕OQ(G − F1)
⊕(r−3) (4.19)

and one sees that hi(OQ(2G)) = hi(OQ(G − F )) = 0, for i = 1, 2, which proves (4.18). The
proof of (4.8) is thus concluded.
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We now prove formula (4.9). By (4.8), one has that h0(NR) = χ(NR), which one computes
by using (4.13), (4.14) and (4.15):

χ(NR) = χ(NR|S) + χ(NR|Q ⊗OQ(−Γ)) = χ(NS) + χ(T 1) + χ(NQ(−Γ)) + χ(T 1(−Γ)).

By (4.11), one has that χ(T 1) = χ(T 1(−Γ)) = 2. By (4.19), one has χ(NQ(−Γ)) = 3. Finally,
by induction

χ(NS) = (r + 1)2 + 7(g − 2),

which concludes the proof of (4.9).
It remains to show that the map H0(NR) → H0(T 1) is surjective. Since H1(NS) = 0, the

map H0(NR|S) → H0(T 1) is surjective by (4.13). Finally (4.17) implies that H0(NR) surjects
onto H0(NR|S), which concludes the proof of the lemma. �

We are finally ready for the

Proof of Theorem 4.6: conclusion. By Lemma 4.7, one has that H1(NR) = 0, which means
that R corresponds to a smooth point [R] of the Hilbert scheme of surfaces with degree d
and sectional genus g in Pd−2g+1. Therefore, [R] belongs to a single reduced component Hd,g

of the Hilbert scheme of dimension h0(NR). The last assertion of Lemma 4.7 implies that a
general tangent vector to Hd,g at the point [R] represents a first-order embedded deformation
of R which smooths the double curve Γ. Therefore, the general point in Hd,g represents a
smooth, irreducible surface Y . Thus Y degenerates to R and also to the planar Zappatic
surface Xd,g (cf. Proposition 3.8 and Constructions 4.1, 4.2).

Classical adjunction theory (cf. e.g. [15] and § 7 in [9]) implies that Y is a scroll: otherwise,
if H is the hyperplane section of Y , one has KY +H nef and therefore 0 < d ≤ 4(g−1)+K2

Y

contradicting K2
Y ≤ 6(1 − g) in (4.5).

Finally, the assertion about linear normality is trivial for g = 0 and is clear by induction
and construction, for g > 0. �

Remark 4.20. By using the same first part of the proof of Theorem 4.6, one can observe
that Construction 4.2 can be carried on also when d = 2g + 3.

Indeed, in this case, Xd,g is a union of planes lying in P4 which is not a Zappatic surface if
g ≥ 2, since there are singular points where only two planes of the configuration meet, which
are not Zappatic singularities. The only difference in the construction is that, since there are
no pairs of disjoint planes, we have to choose l1 and l2 on two planes V1 and V2 which meet
at a point but not along a line. Moreover the proof of the existence of the quadric meeting
transversally the union of planes along l1 ∪ l2 is a bit more involved.

Nonetheless, as in the proof of Theorem 4.6, one can show that Xd,g is a flat limit of a
family of linearly normal scrolls in P4 for any genus g ≥ 0 and degree d = 2g + 3. These
scrolls are smooth only if g = 0, 1, whereas they have isolated double points if g ≥ 2.

We finish this section by mentioning two more examples of configurations of planes forming
a planar Zappatic surface, with only points of type R3 and S4, which are degenerations of
smooth scrolls. The advantage of this construction is that they are slightly simpler than
Construction 4.2. The disadvantage is that they work only for larger values of the degree.

Example 4.21. Fix arbitrary integers g, d such that g ≥ 2 and d > 4g. Set r = d − 2g + 1.
Let Xd−2g,0 =

⋃d−2g
i=1 Vi be a planar Zappatic surface in Pr whose dual graph is a chain. One

can attach 2g planes to Xd−2g,0 in order to get a planar Zappatic surface Yd,g of degree d and
sectional genus g in Pr with d − 2g + 2 points of type R3 and 2g − 2 points of type S4.
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Indeed, we may assume that Vi meets Vj along a line if and only if j = i ± 1. Denote by
p2, . . . , pd−2g−1 the points of type R3 of Xd−2g,0, where pi = Vi−1∩Vi∩Vi+1, i = 2, . . . , d−2g−1.

Choose a general line l1,1 in V1 [resp. l1,2 in Vd−2g], i.e. a line not passing through p2 [resp.
pd−2g−1]. For i = 2, . . . , g, choose a line li,1 in Vi [resp. a line li,2 in Vd−2g+1−i], which is general
among those lines passing through pi [resp. through pd−2g+1−i].

The generality assumption implies that all the lines li,1, li,2, 1 ≤ i ≤ g, are pairwise skew.
For every i = 1, . . . , g, there is a smooth quadric surface Q′

i which contains li,1 and li,2, in the
P3 spanned by them. In this P3 the quadric Q′

i degenerates to two distinct planes, say Vi,1

and Vi,2, leaving li,1 and li,2 fixed: the plane Vi,1 contains li,1 whereas Vi,2 contains li,2. Then
Y = Yd,g := Xd−2g,0 ∪

⋃g
i=1(Vi,1 ∪Vi,2) is a planar Zappatic surface in Pr. Note that we added

to the points p2, . . . , pd−2g−1 new Zappatic singularities at the points:

(i) qi,j, with 1 ≤ i ≤ g, 1 ≤ j ≤ 2, where qi,1 = Vi∩Vi,1∩Vi,2 and qi,2 = Vi,1∩Vi,2∩Vd−2g+1−i,
(ii) p1 = V1 ∩ V2 ∩ V1,1 and pd−2g = Vd−2g ∩ Vd−2g−1 ∩ V1,2

Then Y is a planar Zappatic surface with the following properties:

• the dual graph GY has d vertices and d + g − 1 edges;
• Y has 2g − 2 points of type S4, namely p2, . . . , pg, pd−3g+1, . . . , pd−2g−1;
• Y has d − 2g + 2 points of type R3, namely qi,j, 1 ≤ i ≤ g, 1 ≤ j ≤ 2, p1, pd−2g and

pg+1, . . . , pd−3g.
• χ(OX) = 1 − g, pω(X) = 0, q(X) = g(X) = g,

(cf. Figure 15).

l1,1

V1

l2,1

V2

l3,1

V3

V4

l3,2

V5

l2,2

V6

l1,2

V7

 

•

• •

••

• •

••

• •

••
V1 V2 V3 V4 V5 V6 V7

V1,1 V1,2

V2,1 V2,2

V3,1 V3,2

Figure 15. Construction of Yd,g from Xd−2g,0 for g = 3 and d = 4g + 1 = 13

Recall that Xd−2g,0 is the flat limit of a smooth, rational normal scroll S of degree d − 2g
in Pd−2g+1. If Fi,j, 1 ≤ i ≤ g, 1 ≤ j ≤ 2, is the ruling of S whose limit is li,j and Qi a
smooth quadric containing Fi,1, Fi,2, whose limit is Q′

i, then one can show, by using similar
techniques as in the proof of Theorem 4.6, that the union of the rational normal scroll S and
the g quadrics Qi is a flat limit of a family of smooth, linearly normal scrolls of degree d and
genus g in Pd−2g+1, which is contained in a the same component Hd,g of Theorem 4.6 (cf.
Theorem 5.4 and Remark 5.5 below).

With a slight modification of the previous construction, one can cover also the case d = 4g.
We do not dwell on this here.

Example 4.22. Fix integers g, d such that g ≥ 1 and d ≥ 3g +2. By induction on g, we will
construct a planar Zappatic surface Zd,g =

⋃d
i=1 Vi in Pd−2g+1 such that:

• Zd,g has d − 2g + 1 double lines, i.e. GZd,g
has d − 2g + 1 edges;

• Zd,g has d − 2g + 2 points of type R3 and 2g − 2 points of type S4;
• for each i, Vi is the central plane through a point p of type either R3 or S4;
• there exist two R3-points of Zd,g whose central planes do not meet, unless g = 1 and

d = 5;
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• χ(OZd,g
) = 1 − g, pω(Zd,g) = 0, q(Zd,g) = g(Zd,g) = g.

The base of the induction is the case g = 1. In this case, Zd,1 is the surface Xd,1 considered
in Construction 4.1. Now we assume g > 1 and we describe the inductive step.

Consider the surface Zd−3,g−1, which sits in Pd−2g, which we suppose to be embedded as a
hyperplane in Pd−2g+1.

If g = 2 and d = 8, choose two distinct planes V1 and V2 of Z5,1 = X5,1, which do not meet
along a line. Otherwise, choose two distinct planes V1 and V2 of Zd−3,g−1 which are central
for two R3-points, say p1 and p2, and which span a P5.

Choose a line l1 in V1 [resp. l2 in V2] which is general among those lines passing through p1

[resp. through p2]. Consider a general P4 in Pd−2g+1 containing l1 and l2.
One can show that, in this P4, there is a smooth, rational normal cubic scroll R′ which

contains l1 and l2 and such that R′ meets transversally Zd−3,g−1 along R′ ∩Zd−3,g−1 = l1 ∪ l2.
In this P4, the cubic scroll R′ degenerates to a planar Zappatic surface X3,0, consisting of

three planes, say Vd−2, Vd−1 and Vd, such that l1 ⊂ Vd and l2 ⊂ Vd−2.
We define Zd,g = Zd−3,g−1 ∪ X3,0. We added three planes and four double lines; the points

p1 and p2 becomes of type S4 for Zd,g and we added three points of type R3 at V1 ∩Vd−1 ∩Vd,
at V2 ∩ Vd−2 ∩ Vd−1 and at Vd−2 ∩ Vd−1 ∩ Vd. It is clear the existence of two R3-points whose
central planes do not meet.

Arguing by induction, one may assume that Zd−3,g−1 is the flat limit of a smooth, linearly
normal scroll S of degree d − 3 and genus g − 1 in Pd−2g. If Fi, i = 1, 2, is the ruling of S
whose limit is li and R is a smooth, cubic scroll containing F1, F2 as ruling and whose limit
is R′, one can show, by using the same proof of Theorem 4.6, that the union S ∪R is the flat
limit of a family of smooth, linearly normal scrolls of degree d and genus g in Pd−2g+1, which
is contained in the same component Hd,g of Theorem 4.6 (cf. Theorem 5.4 and Remark 5.5).

5. Hilbert schemes of scrolls

In this section we prove that Hd,g, as determined in Theorem 4.6, is the unique irreducible
component of the Hilbert scheme of scrolls of degree d and genus g in Pd−2g+1 whose general
point parametrizes a smooth, linearly normal scroll (cf. Theorem 5.4). This component Hd,g

dominates Mg (cf. Remark 5.6).
This, together with Construction 4.2 and Theorem 4.6, proves Theorem 1.2 in the intro-

duction.
On the other hand, we will also construct families of scrolls Y of degree d and genus g in

Pr, with r > d − 2g + 1, with h1(Y,OY (1)) 6= 0 (cf. Example 5.11). We will also show that
projections of such scrolls may fill up components of the Hilbert scheme, different from Hd,g,
which may even dominate Mg (cf. Example 5.12).

Let C be a smooth curve of genus g and let F
ρ
→ C be a geometrically ruled surface on

C, i.e. F = P(F), for some rank-two vector bundle F on C. Furthermore, we assume that
F is very ample, i.e. F is embedded in Pr, for some r ≥ 3, via the OF (1) bundle as a scroll
of degree d = deg(F). From now on, H will denote the hyperplane section of F . A general
hyperplane section H is isomorphic to C, so that we will set LF the line bundle on C ∼= H
which is the restriction of the hyperplane bundle. We will denote by R a general ruling of F ,
and more precisely by Rx the ruling mapping to the point x in C.

Let Y := C × P1. If L is a line bundle on C, we will set

L̃ := π∗
1(L) ⊗ π∗

2(OP1(1)), (5.1)

where πi denotes the projection on the ith-factor, 1 ≤ i ≤ 2.
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Proposition 5.2. Let C be a smooth curve of genus g ≥ 0 and let F := P(F) be a geomet-
rically ruled surface on C. Assume that deg(F) = d.

Then there is a birational map
ϕ : Y 99K F

which is the composition of d elementary transformations at distinct points of a set Γ :=
{y1, . . . , yd} ⊂ Y lying on d distinct rulings of Y . Moreover,

(i) ϕ∗(OF (H)) = L̃F ;

(ii) ϕ∗(|OF (H)|) = |L̃F ⊗ IΓ/Y |.

Proof. The argument is similar to the one in [12], Prop. 6.2, and in [16]. Indeed, let Π
be a general linear subspace of codimension two in Pr which is the base locus of a pencil
P ∼= P1 of hyperplanes. By abusing notation, we will denote by P the corresponding pencil
of hyperplane sections of F . More specifically, we will denote by Ht the hyperplane section
corresponding to the point t ∈ P1. Then we denote by Z := {z1, . . . , zd} = F ∩ P; note that
Z is formed by distinct points on distinct rulings.

The map ϕ : Y 99K F is defined by sending the general point (x, t) ∈ Y to the point
Rx ∩ Ht ∈ F . One verifies that ϕ is birational and that the indeterminacy locus on F is Z.
In order to describe the map ϕ on Y , note that each point zi maps to a point xi ∈ C and
determines a unique value ti ∈ P1 such that Hti contains the ruling Rxi

, 1 ≤ i ≤ d. The
indeterminacy locus of ϕ on Y is Γ := {y1, . . . , yd}, where yi = (xi, ti), 1 ≤ i ≤ d.

As shown in [12], ϕ is the composition of the elementary transformations based at the
points of Γ. The rest of the assertion immediately follows. �

Let Γ = {y1, . . . , yd} ⊂ Y be a subset formed by d distinct points. We consider the line
bundle on C

LΓ := OC(x1 + . . . + xd), (5.3)

where π1(yi) = xi, 1 ≤ i ≤ d.

Theorem 5.4. Let g ≥ 0 and d > 2g + 3 be integers. Then there exists a unique irre-
ducible component Hd,g of the Hilbert scheme, parametrizing scrolls of degree d and genus
g in Pd−2g+1, whose general point represents a smooth scroll F ⊂ Pd−2g+1 which is linearly
normal and moreover with h1(F,OF (1)) = 0.

Proof. Let U ⊂ Hilbd(Y ) be the open subset formed by all Γ = {y1, . . . , yd} ⊂ Y containing d
points lying on d distinct fibres and imposing d independent conditions on |L̃Γ|, which means

dim(|L̃Γ ⊗ IΓ/Y |) = dim(|L̃Γ|) − d.

Note that, by the Kunneth formula, h0(L̃Γ) = 2h0(LΓ) = 2(d − g + 1). Thus, dim(|L̃Γ ⊗
IΓ/Y |) = d − 2g + 1. The linear system |L̃Γ| determines a rational map

ϕ : Y 99K Pd−2g+1.

By Proposition 5.2, every smooth scroll F of degree d and genus g in Pd−2g+1 is the image
of such a map. Therefore, for general Γ in U , the map ϕ is birational onto its image F ,
which is a smooth scroll of degree d and genus g whose Hilbert point [F ] belongs to a unique
well-determined component Hd,g of the Hilbert scheme.

Note that by (ii) of Proposition 5.2, h1(OF (1)) = h1(L̃Γ ⊗ IΓ/Y ) = 0; therefore, by the
Riemann-Roch Theorem, h0(OF (1)) = d − 2g + 2. �
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Remark 5.5. Observe that the irreducible component Hd,g determined in Theorem 4.6 co-
incides with the one determined in Theorem 5.4. The case d = 2g + 3 can also be covered
with similar arguments. In that case, we have surfaces in P4 which are no longer smooth, but
they have 2g(g − 1) double points as dictated by the double point formula. Nonetheless, the
statement of Theorem 5.4 still holds by substituting F with its normalization.

Remark 5.6. The dimension count for Hd,g which has been done in Thereom 4.6 also stems
from the proof of Theorem 5.4, which provides a parametric representation of Hd,g. Indeed,
the number of parameters on which the general point of Hd,g depends, is given by the following
count:

• 3g − 3 parameters for the class of the curve C in Mg, plus
• 2d parameters for the general point in U , plus
• (r + 1)2 − 1 parameters for projective transformations in Pr, where r = d − 2g + 1,

minus
• 2(r − 1) = 2d − 4g parameters for the choice of a codimension-two subspace Π in Pr,

minus
• 3 parameters for projective isomorphisms of the pencil of hyperplanes through Π with

P1.

This computation shows that Hd,g has general moduli, in the sense that the base of the general
scroll [F ] ∈ Hd,g is a general point of Mg.

Observe that this can also be viewed as a consequence of Theorem 4.6 and more specifically
of the fact that h1(OF (1)) = 0 for [F ] a general point of the generically smooth component
Hd,g.

Indeed, if F ⊂ Pr, r = d− 2g + 1, is a smooth scroll, from the Euler sequence restricted to
F ,

0 → OF → H0(OF (1))∨ ⊗OF (1) → TPr|F → 0,

we get that h1(TPr |F ) = 0. Therefore, from the normal sequence of F in Pr

0 → TF → TPr|F → NF/Pr → 0,

we get the surjection
H0(NF/Pr) →→ H1(TF ).

Since F is a P1-bundle over C, from the differential of the map F
ρ
→ C, we get a surjection

H1(TF ) →→ H1(TC),

hence
H0(NF/Pr) →→ H1(TC).

which shows that Hd,g dominates Mg.

Next, we consider the problem of the existence of components of the Hilbert schemes of
scrolls of degree d and genus g in Pr, with r > d − 2g + 1. First, it is easy to determine an
upper-bound for r. This subject has been deeply studied by C. Segre (cf. [20] and [12]). For
the following lemma, compare [20], § 14.

Lemma 5.7. Let g ≥ 1 be an integer. Let C be a smooth curve of genus g and let F = P(F)
be a ruled surface on C and d = deg(F) ≥ 2g + 1. Assume that there exists a smooth curve
in |OF (1)|. Then,

h0(OF (1)) ≤ d − g + 2.

The equality holds if and only if F = OC ⊕L, in which case OF (1) maps F to a cone over a
projectively normal curve of degree d and genus g in Pd−g.
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Proof. The bound on h0(OF (1)) follows by the Riemann-Roch Theorem on C. If the equality
holds, then C is linearly normally embedded as a curve of degree d and genus g in Pd−g. It
is well-known that this curve is projectively normal (cf. [5], [17] and [19]). Therefore F is
mapped to a surface X which is projectively normal, since its general hyperplane section is
(cf. [13], Theorem 4.27).

On the other hand, X is a scroll of positive genus. Therefore X cannot be smooth, and it
has some isolated singularities. This forces X to be a cone (cf. Claim 4.4 in [7]). Hence, the
assertion follows. �

Remark 5.8. Let C be a smooth curve of genus g and let F = P(F) be a ruled surface on
C and d = deg(F) ≥ 2g + 1. Then

d − 2g + 2 ≤ h0(OF (1)) ≤ d − g + 2, (5.9)

where the lower bound is immediately implied by the Riemann-Roch Theorem whereas the
upper bound is given by the previous lemma. Equivalently,

0 ≤ h1(OF (1)) ≤ g, (5.10)

where the upper-bound is realized by the cones and the lower-bound by the general scrolls in
the component Hd,g considered above.

Any intermediate value i of h1(OF (1)), 1 ≤ i ≤ g, can be actually realized. An easy
construction is via decomposable bundles as the following example shows.

Example 5.11. Let g ≥ 3 and let d ≥ 4g − 1 be integers. Let i be any integer between 1
and g. Let C be a smooth, projective curve of genus g with a line bundle L such that |L| is
base-point-free and h1(L) = i. Let D be a general divisor of degree d − deg(L). Notice that,
since deg(L) ≤ 2g − 2 and d ≥ 4g − 1, then deg(D) ≥ 2g + 1 and the linear series |D| is very
ample.

Consider F = L ⊕OC(D). If F = P(F) then OF (1) is base-point-free and h1(OF (1)) = i.
For large values of i, OF (1) is never very ample. For instance, for i = g − 1, C is forced to

be hyperelliptic and L = g1
2. Thus, the image of F via |OF (1)| has a double line.

Similarly, if i = g− 2, either C is hyperelliptic and L = 2g1
2, or C is trigonal and L = g1

3 or
g = 3 and L = ωC. In the former case, the image of F has a double conic; in the second case,
the image of S has a triple line. Only in the third case, the image of C via |L| is smooth.

The analysis is subtle and we do not dwell here on this.

Now we consider the question of whether there are other components, different from Hd,g,
of the Hilbert scheme of surfaces in Pd−2g+1 whose general point corresponds to a smooth
scroll of degree d and genus g. The answer to this question is affirmative; in fact one can
construct such components even with general moduli. In the next example, we show one
possible construction of a component with general moduli. The reader may easily generate
other similar constructions.

Example 5.12. Let C be a curve with general moduli of genus g = 4l + ǫ, where 0 ≤ ǫ ≤ 3.
Let L be a very-ample, special line bundle of degree m := 3 + g − l with h0(L) = 4. Note
that such a L varies in a family of dimension ρ := ρ(g, 3, m) = ǫ.

Let d be an integer with either d ≥ 2g + 10, if ǫ = 0, 1, or d ≥ 2g + 11, if ǫ = 2, 3. Set
r = d − 2g + 1.

Let N be a general line bundle on C of degree d−m. Note that d−m > g + 7 + l. Hence
N is very ample (cf. e.g. [1]) and h0(N) = d − m − g + 1.

Set F = L ⊕ N and X = P(F). Then R + 1 := h0(OX(1)) = h0(L) + h0(M) = r + 1 + l.
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Since OX(1) is very ample, X is linearly normal embedded in PR as a smooth scroll of
degree d and genus g, which can be generically projected to Pr to a smooth scroll X ′ with the
same degree and genus, which belongs a certain component H of the Hilbert scheme. As in
the proof of Theorem 4.6, the general member of H is a scroll of the same degree and genus.

The dimension of H can be easily bounded from below by the sum of the following quan-
tities:

• 3g − 3, which are the parameters on which C depends,
• g, which are the parameters on which N depends,
• ǫ, which are the parameters on which L depends,
• (r + 1)l = dim(G(r, R)), which are the parameters for the projections,
• (r + 1)2 − 1 = dim(PGL(r + 1, C)).

The hypothesis on d implies that dim(H) ≥ dim(Hd,g), which shows that H is different
from Hd,g.

Remark 5.13. The question of understanding how many components of the Hilbert scheme
of scrolls there are, and the corresponding image to the moduli space of curves of genus g,
is an intriguing one. The previous example suggests that the a complete answer could be
rather complicated. It also leaves open the question whether Hd,g is the only component with
general moduli for 2g + 4 ≤ d ≤ 2g + 10.

6. Comments on Zappa’s original approach

In [23], Zappa stated a result about embedded degenerations of scrolls of sectional genus
g ≥ 2 to unions of planes. His result, in our terminology, reads as Theorem 1.1 in the
introduction.

Zappa’s arguments rely on a rather intricate analysis of algebro-geometric and topological
type of degenerations of hyperplane sections of the scroll and, accordingly, of the branch curve
of a general projection of the scroll to a plane.

We have not been able to check all the details of this very clever argument. This is one
of the reason why we preferred to solve the problem in a different way, which is the one we
exposed in the previous sections. Our approach has the advantage of proving a result in the
style of Zappa, but with better hypotheses about the degree of the scrolls.

However, the idea which Zappa exploits, of degenerating the branch curve of a general
projection to a plane, is a classical one which goes back to Enriques, Chisini, etc, and certainly
deserves attention. We hope to come back to these ideas in the future.

In reading Zappa’s paper [23], our attention has been attracted also by another ingredient
he uses which looks interesting on its own. It gives extendability conditions for a curve on a
scroll which is not a cone. We finish this paper by briefly reporting on this. At the the end
of the section we briefly summarize Zappa’ s argument for the degenerations of the scroll.

Let F ⊂ P3 be a scroll, which is not a cone over a plane curve. We do not assume F to be
smooth. Equivalently, we can look at F as a curve C in the Grassmannian G(1, 3) of lines in
P3, which is isomorphic to the Klein hyperquadric in P5 via the Plücker embedding.

Let Π be a general plane and let Γ := F ∩ Π. Consider

ν : C → Γ
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the normalization map. Then, there is a commutative diagram

C
Φ

ν

C ⊂ G(1, 3) ⊂ P5

π

Γ ⊂ Π

where Φ maps a general point x ∈ C to the unique line of F passing through ν(x), and π
maps each point l ∈ C, corresponding to a ruling L of F , to the point L ∩ Γ.

Zappa proves the following nice lemma:

Lemma 6.1. (cf. §1 in [23]) In the above setting:

ν∗(OΓ(1)) ∼= Φ∗(OC(1)).

More specifically, π is the projection of C from the plane Π∗ ⊂ G(1, 3), filled up by all lines
of Π.

Proof. The assertion follows from the fact that, if r is a line in Π, then π∗(r) is the section of
the tangent hyperplane to G(1, 3) at the point of Π∗ corresponding to r. Such a hyperplane
contains Π∗, and conversely any hyperplane containing Π∗ is of this type. �

Zappa notes that an interesting converse of the previous lemma holds.

Proposition 6.2. (cf. § 2 in [23]) An irreducible plane curve Γ is a section of a scroll F ⊂ P3

of degree d if and only if Γ is the projection of a curve C of degree d, lying on a smooth quadric
Q ⊂ P5, and the center of the projection is a plane contained in Q.

Proof. One implication is Lemma 6.1. Let us prove the other implication.
Suppose that Γ is the projection of C ⊂ Q ⊂ P5 from a plane Π̄ ⊂ Q. Since all smooth

quadrics in P5 are projectively equivalent, we may assume that Q is the Klein hyperquadric.
The assertion follows by reversing the argument of the proof of Lemma 6.1. �

Proposition 6.2 can be extended in the following way. Let Γ be a plane curve of degree
d and geometric genus g, such that d ≥ g + 6. Set i = h1(C, ν∗(Γ(1))). Then, one has the
birational morphism

C
|ν∗(OΓ(1))|
−−−−−−−→ C̄ ⊂ Pr, (6.3)

where r = d − g + i > 5 and the following linear projection:

C̄
π̄
→ Γ ⊂ P2.

Proposition 6.4. (cf. § 3 in [23]) In the above setting, Γ is a plane section of a scroll F in
P3, which is not a cone, if and only if C̄ lies on a quadric of rank 6 in Pr which contains the
center of the projection π̄.

Proof. This is an immediate consequence of Proposition 6.2 and can be left to the reader. �

Zappa uses Proposition 6.4 to prove that any plane curve of degree d >> g is the plane
section of a scroll F which is not a cone. The next proposition is essentially Zappa’s result
in § 7 of [23], with an improvement on the bound on d: Zappa’s bound is d ≥ 3g + 2.

Lemma 6.5. Let g ≥ 0 and let d ≥ 2g + 2 be integers. Let C̄ be an irreducible, smooth curve
of degree d and genus g in Pr, r = d − g. Then there exists a quadric of Pr, of rank at most
6, which contains C̄ and a general Pr−3.
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Proof. Note that a quadric Q of Pr contains a Pr−3 if and only if Q has rank at most 6.
Consider the short exact sequence

0 → IC̄/Pr(2) → OPr(2) → OC̄(2) → 0.

Since d ≥ 2g + 2, one has h0(OC̄(2)) = 2d − g + 1 and C̄ is projectively normal (cf. [5], [17],
[19]). Thus

h0(IC̄/Pr(2)) =

(

r + 2

2

)

− (2d − g + 1). (6.6)

Let Σ be a general Pr−3 in Pr. Then, from (6.6), one has

h0(IC̄∪Σ/Pr(2)) ≥

(

r + 2

2

)

−

(

r − 1

2

)

− (2d − g + 1) = d − 2g − 1 > 0.

�

We need the following lemma:

Lemma 6.7. Let C̄ ⊂ Pr be as in Proposition 6.5 and assume that, if g = 0, d ≥ 3. Let Σ be
a Pr−3. The general quadric in the linear system |IC̄∪Σ/Pr(2)| has rank k > 3.

Proof. Suppose by contradiction that all quadrics containing C̄ and Σ have rank 3. Let us
define

R3(C̄) := {Q ∈ P(H0(IC̄/Pr(2))) | rank(Q) ≤ 3}.

By an easy count of parameters our assumption implies that:

dim R3(C̄) ≥ 3d − 4g − 7.

Next, we will show that this inequality is not possible.
In order to do that, we apply results from [22]. Zamora proves in [22], cf. Lemma 1.2, that

there is a one-to-one correspondence between quadrics Q ∈ R3(C̄) and pairs (g1
a, g

1
b ) of linear

series on C̄, with a ≤ b, such that:

(i) a + b = deg C̄ = d,
(ii) |g1

a + g1
b | = |OC̄(1)|,

(iii) g1
a + Bb = g1

b + Ba, where Ba (Bb, resp.) is the base locus of the g1
a (g1

b , respectively).

Let Q be the general member of an irreducible component W of maximal dimension of
R3(C̄) and let (g1

a, g
1
b ) be the corresponding pair of linear series on C̄.

Zamora’s result implies that there is a base-point-free linear series g1
h on C̄ such that

g1
a = g1

h + Ba, g1
b = g1

h + Bb,

so that
|OC̄(1)| = |2g1

h + Ba + Bb|.

Note that, once the divisor Ba + Bb has been fixed, the line bundle L corresponding to g1
h

belongs to a zero-dimensional set in Pich(C̄). Set δ = deg(Ba + Bb), so that d = 2h + δ.
Suppose now that L is non-special. Then,

3d − 4g − 7 ≤ dim(W ) ≤ δ + 2(h − g − 1) = d − 2g − 2,

which gives a contradiction.
Now assume that L is special, so that |L| = gr

h, with 2r ≤ h. In this case

3d − 4g − 7 ≤ dim(W ) ≤ δ + 2(r − 1) ≤ δ + h − 2,

which leads to a contradiction. �
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As a consequence of the previous lemma, we have:

Theorem 6.8. Let Γ be an irreducible, plane curve of degree d and geometric genus g ≥ 0.
If d ≥ max {g + 5, 2g + 2}, then Γ is a plane section of a scroll in P3, which is not a cone.

Proof. Let C̄ ⊂ Pr be the curve corresponding to Γ in P2. Then Γ is the projection of C̄
from Σ = Pr−3 disjoint from C̄. By Lemma 6.5, there is a quadric Q containing C̄ ∪ Σ. If
rank(Q) := k is 6, we finished by Proposition 6.4. By Lemma 6.7, we know that k ≥ 4.

If k = 5, then the vertex V of Q is a Pr−5. By projecting from V , Q maps to a smooth
quadric Q′ in P4 containing C′, the projection of C̄, and Σ′, the projection of Σ; the line Σ′

is skew with respect to C′. Of course Γ is the projection of C′ from Σ′. Let us embedd P4

in P5 as a hyperplane. We can certainly find a smooth quadric Q̄ in P5 containing Q′ and
containing a plane Π intersecting the P4 in Σ′. The curve Γ is now the projection of C′ from
Π. The assertion follows from Proposition 6.2.

If k = 4, then the vertex V of Q is a Pr−4. Suppose first that Σ contains V ; then by
projecting from V to P3, the quadric Q maps to a smooth quadric Q′, containing C′, the
image of C̄, and the point p ∈ Q′, the image of Σ, which does not sit on C′. The curve Γ is the
projection of C′ from p. At this point, we can finish as in the previous case, by embedding
the P3 in P5 and finding a smooth quadric Q̄ in P5 containing Q′ and the plane Π intersecting
the P3 in p.

If Σ does not contain V , it intersects V in W ∼= Pr−5. By projecting from W to P4 we get
a situation similar to the case k = 5. The only difference is that Q′ is now singular at a point
p, however Σ′, the projection of Σ, does not contain p. So we can conclude exactly as in the
case k = 5. �

Remark 6.9. We add a little remark to Theorem 6.8. Let Γ be a plane curve which is a
plane section of a scroll F ⊂ P3, which is not a cone. So if one applies Theorem 6.8, the scroll
which extends Γ is certainly not developable.

As Zappa does in [23], one can get an interesting consequence of Theorem 6.8 by applying
duality. Recall that the class of an irreducible plane curve is the degree of the dual curve.

Corollary 6.10. An irreducible, plane curve of class d and geometric genus g, such that
d ≥ max {g + 5, 2g + 2}, is the branch curve of a projection of a scroll in P3 of degree d and
genus g, which is not a cone.

Proof. Let D ⊂ P2 be an irreducible plane curve of class d. Let Γ ⊂ (P2)∗ be the dual
curve. By Theorem 6.8, Γ is the plane section of a scroll Φ which is not a cone. By standard
properties of duality, D is the branch curve of the projection of F = Φ∗ from the point
corresponding to the plane in which Γ sits. �

The argument of Zappa to prove the degeneration of a scroll to a union of planes runs as
follows. Zappa considers the scroll F whose hyperplane section Γ is a general member of the
Severi variety Vd,g of plane curves of degree d and geometric genus g. Then he lets Γ degenerate
to a general union of d lines. From a complicated analysis involving the degeneration of Γ
and the degeneration of its dual curve, which is the branch curve of the projection of the dual
of the surface on the plane (see Corollary 6.10), Zappa deduces that in this degeneration of
Γ, F degenerates to a union of planes. Moreover, he controls the degeneration of the linearly
normal model of F deducing that it also degenerates to a union of planes with only points of
type R3 and S4.
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