Universita' degli Studi di Roma "Tor Vergata" Laurea Triennale in Matematica - a.a. 2024/2025 Corso: Algebra 1

Docente: Prof.ssa I. Damiani, Codocente: Prof. F. Flamini

Esercitazione/Tutorato 3 (17 Marzo 2025) - Prof. F. Flamini

Esercizio 1. Sia $a \in \mathbb{Z}^+$ non divisibile per 3. Sia $\{a_n\}_{n\geq 0}$ la successione di interi definita per **ricorrenza** nel modo seguente:

$$a_0 := 1, \ a_1 := a, \ a_{n+1} := 5a_n + 3a_{n-1}, \ \forall \ n \ge 1.$$

Dimostrare che, per ogni $n \ge 0$, gli interi a_n e a_{n+1} sono **coprimi**.

Esercizio 2. Sia $n \geq 3$ un intero e siano

$$a_1, a_2, \dots, a_{n-2}, a_{n-1}, a_n \in \mathbb{Z}$$

interi non nulli. Analogamente al caso di due interi, definiamo:

- (a) un **divisore comune** degli n interi $a_1, a_2, \dots, a_{n-2}, a_{n-1}, a_n \in \mathbb{Z}$, un qualsiasi intero $d' \in \mathbb{Z}$ tale che $d' | a_i$, per ogni $1 \le i \le n$;
- (b) il **Massimo Comun Divisore** $d:=MCD(a_1, a_2, \cdots, a_n)$ degli n interi come il massimo intero tra i divisori comuni degli $a_1, a_2, \cdots, a_n \in \mathbb{Z}$; in altre parole d é un intero positivo tale che, per ogni divisore comune d' degli $a_1, a_2, \cdots, a_{n-2}, a_{n-1}, a_n \in \mathbb{Z}$, si ha che d'|d.
- (i) Nel precedente asserto, dimostrare che vale la seguente eguaglianza

$$MCD(a_1, a_2, \dots, a_{n-2}, a_{n-1}, a_n) = MCD(MCD(a_1, a_2, \dots, a_{n-2}, a_{n-1}), a_n).$$

- (ii) Considerati gli interi $a_1 = 525$, $a_2 = 495$, $a_3 = 140$, utilizzare la fattorizzazione unica in \mathbb{Z} per determinare $MCD(a_1, a_2, a_3) = MCD(525, 495, 140)$.
- (iii) Utilizzare il punto (i) per determinare un'identitá di Bezout per $MCD(a_1, a_2, a_3) = MCD(525, 495, 140)$.
- (iv) Determinare tutte le identitá di Bezout per $MCD(a_1, a_2, a_3) = MCD(525, 495, 140)$.
- (v) Utilizzare la fattorizzazione unica in \mathbb{Z} per determinare $mcm(a_1, a_2, a_3) = mcm(525, 495, 140)$.

Esercizio 3. Siano dati gli interi $a_1 = 343$, $a_2 = 273$, $a_3 = 243$. Utilizzare la fattorizzazione unica in \mathbb{Z} per:

(i) determinare la cardinalitá dei seguenti insiemi

$$D_1 := \{ x \in \mathbb{Z}^+ \mid 1 < x \le a_1 = 343 \text{ e } MCD(x, a_1) > 1 \},$$

$$C_1 := \{ x \in \mathbb{Z}^+ \mid 1 \le x < a_1 = 343 \text{ e } MCD(x, a_1) = 1 \};$$

(ii) calcolare il

$$MCD(a_1, a_2, a_3) = MCD(525, 495, 140).$$