Universita' degli Studi di Roma "Tor Vergata" CCS - STM

Prova di Esame - Luglio 2020

Geometria - a.a. 2019/2020 Docente I e II Modulo: F. Flamini

SVOLGIMENTO

Esercizio 1. Sia $V=M(2,2;\mathbb{R})$ lo spazio vettoriale delle matrici quadrate di ordine 2 ad elementi reali. Si consideri il sottoinsieme

$$W = \left\{ \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \in V \mid 3a + b + c = 0 \right\}.$$

- (i) Verificare che W e' un sottospazio di V.
- (ii) Determinare la dimensione di W.
- (iii) Detto $U = Sym(2,2;\mathbb{R})$ il sottospazio di V delle matrici simmetriche, stabilire $\dim(U+W) \in \dim(U\cap W)$.

Svolgimento. (i) Poiche l'equazione che definisce W e' lineare, W e' banalmente chiuso rispetto alla somma e rispetto al prodotto per uno scalare. Pertanto W e' sottospazio.

(ii) Poiche' c = -b - 3a, dim(W) = 3. Infatti una sua base e' data dalle matrici

$$\left(\begin{array}{cc} 1 & 0 \\ -3 & 0 \end{array}\right), \left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array}\right), \left(\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array}\right).$$

(iii) Notiamo che ad esempio la prima matrice della base di W non e' simmetrica; pertanto essa non puo' appartenere ad U. Visto che U ha dimensione 3, con base

$$\left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right), \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right), \left(\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array}\right),$$

allora $\dim(U+W) > \dim(U) = 3$. Poiche' $U+W \subseteq V$ e $\dim(V) = 4$, necessariamente deve valere

$$U + W = V$$
.

Dalla Formula di Grassmann, $\dim(U \cap W) = 3 + 3 - 4 = 2$.

Esercizio 2. Sia (\mathbb{R}^3,\cdot) spazio vettoriale euclideo, munito del prodotto scalare standard e della base canonica e. Sia $W \subset \mathbb{R}^3$ il sottospazio definito dalle equazioni parametriche

$$W: \left\{ \begin{array}{rcl} X_1 & = & s \\ X_2 & = & s \\ X_3 & = & t \end{array} \right., \; s, t \in \mathbb{R}.$$

- (i) Verificare che il vettore $\underline{v}=\begin{pmatrix} 0\\1\\2 \end{pmatrix}$ non appartiene a W.
- (ii) Determinare il vettore proiezione ortogonale di \underline{v} su W.
- (iii) Determinare il vettore proiezione ortogonale di \underline{v} su W^{\perp} , il complemento ortogonale $\mathrm{di}\ W.$

Svolgimento. (i) E' ovvio che v non giace in W, dato che le sue coordinate rispetto ad e non soddisfano le equazioni parametriche di W.

(ii) Una base per W e' data dai vettori $\underline{b}_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$, $\underline{b}_2 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$. Facilmente si vede che tali vettori formano una base ortogonale per W. Le proiezioni ortogonali di \underline{v} su tali vettori sono

$$\pi_{\underline{b}_1}(\underline{v}) = \left(\begin{array}{c} 1/2 \\ 1/2 \\ 0 \end{array}\right), \ \pi_{\underline{b}_2}(\underline{v}) = \left(\begin{array}{c} 0 \\ 0 \\ 2 \end{array}\right).$$

Pertanto $\pi_W(\underline{v}) = \pi_{\underline{b}_1}(\underline{v}) + \pi_{\underline{b}_2}(\underline{v}) = \begin{pmatrix} 1/2 \\ 1/2 \\ 2 \end{pmatrix}$.

(ii) La proiezione ortogonale cercata e' $\underline{v} - \pi_W(\underline{v}) = \begin{pmatrix} -1/2 \\ 1/2 \\ 0 \end{pmatrix}$ che in effetti e' proporzionale al vettore normale a W.

Esercizio 3. Nello spazio cartesiano \mathbb{R}^3 , con origine O e coordinate (x, y, z), si considerino i punti di coordinate, rispettivamente,

$$P = (2, 2, 1), Q = (0, 0, -1), R = (3, 2, 0),$$

e la retta r, di equazioni cartesiane

$$x + y + z - 1 = 0 = x + 2y - z - 3.$$

- (i) Determinare un'equazione cartesiana del piano π contenente r e passante per P.
- (ii) Determinare equazioni parametriche della retta s passante per P e perpendicolare al piano π trovato al punto (i).
- (iii) Determinare l'area del triangolo di vertici $P, Q \in R$.

Svolgimento: (i) Il fascio di piani di asse r e'

$$\lambda(x+y+z-1) + \mu(x+2y-z-3) = 0.$$

Imporre il passaggio per P fornisce la condizione $\mu = -2\lambda$; pertanto il piano cercato e' $\pi: x+3y-3z=5$.

(ii) La retta cercata e' la retta per P, con vettore direttore il vettore normale di $\pi;$ pertanto

$$x = 2 + t$$
, $y = 2 + 3t$, $z = 1 - 3t$, $t \in \mathbb{R}$

(iii) L'area cercata si puo' calcolare ad esempio utilizzando $\frac{1}{2}||\overrightarrow{PQ} \wedge \overrightarrow{PR}||$. Ora

$$\overrightarrow{PQ} = (-2, -2, -2), \ \overrightarrow{PR} = (1, 0, -1).$$

Pertanto,

$$\overrightarrow{PQ} \wedge \overrightarrow{PR} = (2, -4, 2),$$

quindi

$$||\overrightarrow{PQ} \wedge \overrightarrow{PR}|| = \sqrt{24}.$$

In definitiva, l'area cercata e' $\sqrt{6}$.

Esercizio 4. Sia \mathbb{R}^2 il piano cartesiano con origine O e coordinate (x,y). Siano date le rette

$$\ell: x - y = 3$$

$$r: x = 1 + 2t, \ y = 2 + 2t, \ t \in \mathbb{R}.$$

- (i) Identificato il piano cartesiano con la carta affine A_0 di $\mathbb{P}^2(\mathbb{R})$, stabilire se le rette ℓ e r hanno lo stesso punto improprio;
- (ii) Date coordinate omogenee $[x_0, x_1, x_2]$ nel piano proiettivo $\mathbb{P}^2(\mathbb{R})$, determinare equazioni cartesiane omogenee delle rette $\overline{\ell}$ e \overline{r} che sono, rispettivamente, i completamenti proiettivi (o chiusure proiettive) in $\mathbb{P}^2(\mathbb{R})$ delle rette ℓ e r in \mathbb{R}^2 .
- (iii) Data $F: \mathbb{P}^2(\mathbb{R}) \to \mathbb{P}^2(\mathbb{R})$ la proiettivita' determinata dalla classe di proporzionalita' di matrici invertibili generata dalla matrice

$$A = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{array}\right),$$

stabilire se F ha la retta $x_0 = 0$ come retta fissa (o stabile). Determinare gli eventuali punti fissi di F su $x_0 = 0$.

(iv) Stabilire se la retta $x_2 = 0$ e' retta di punti fissi per F. In caso di risposta negativa, determinare gli eventuali punti fissi sulla retta $x_2 = 0$

Svolgimento. (i) Le rette ℓ e r sono parallele, avendo la medesima giacitura x - y = 0. Pertanto il loro punto improprio comune e' il punto di coordinate omogenee [0, 1, 1].

- (ii) $\bar{\ell}$ ha equazione omogenea $3x_0-x_1+x_2=0$. La retta r di \mathbb{R}^2 e' parallela a ℓ e passante per (1,2), quindi ha equazione (affine) in \mathbb{R}^2 x-y+1=0. Pertanto, l'equazione omogena di \bar{r} e' $x_0+x_1-x_2=0$.
- (iii) Notare che $F([0,\alpha,\beta])=[0,\alpha+2\beta,\beta]$, percio' $x_0=0$ viene fissata da F come retta. Pertanto e' una retta stabile per F, ma non e' retta di punti fissi. Un punto fisso sulla retta e' determinato dalle condizioni

$$\alpha + 2\beta = t\beta$$
, $\beta = t\beta$, per qualche $t \in \mathbb{R}$.

Questo fornisce il sistema omogeneo

(*)
$$(1-t)\beta = 0$$
, $\alpha + (2-t)beta = 0$.

Se, dalla prima equazione in (*), fosse $\beta=0$ allora dalla seconda equazione di (*) si avrebbe anche $\alpha=0$ che e' impossibile in $\mathbb{P}^2(\mathbb{R})$. Pertanto la prima equazione (*) impone che t=1. Ma allora la seconda equazione di (*) diventa $\alpha+\beta=0$, che fornisce dunque $\alpha=-\beta$. Quindi l'unico punto fisso per F su $x_0=0$ e' il punto [0,1,-1].

(iv) Notiamo invece che $F([\alpha, \beta, 0]) = [\alpha, \beta, 0]$, cioe' la retta $x_2 = 0$ e' fissata punto per punto da F e quindi ogni punto di questa retta e' punto fisso per F.