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1. THE STOKES THEOREM AND THE DERHAM THEOREM

1.1. The Stokes Theorem.Let M be aC∞ manifold of dimensionm. Let U ⊆ M be an open
subset ofM . We indicate byAp(U) the vector space of complex-valuedp-forms onU . More
precisely, ifTM is the tangent bundle ofM andTCM := TM ⊗R C is the complexified tangent
bundle ofM , acomplex-valuedp-formonU is aC∞ section of the vector bundleΛp(TCM)∗ onU .

If U is a coordinate set with{x1, . . . , xm} local coordinates then aC∞ sectionω of Λp(TCM)∗

onU is given by
ω =

∑
1≤i1<...<ip≤m

fi1...ip(x)dxi1 ∧ . . . ∧ dxip ,

for some complex-valuedC∞ functionsfi1...ip defined onU .
A set R ⊂ M is a manifold of dimensionm with C∞ boundaryif IntR is a m-dimensional

manifold and for anyp ∈ ∂R there exists a open coordinate setU in M with local coordinates
{x1, . . . , xm} such thatR ∩ U = {q ∈ U |x1(q) ≤ 0} and ∂R ∩ U = {q ∈ U |x1(q) = 0}.
Thus∂R is a (m − 1)-dimensional manifold. Moreover ifM is oriented and the above system
of local coordinates{x1, . . . , xm} is positive, we give∂R the orientation coming from declaring
{x2, . . . , xm} to be a positive system of local coordinates for∂R.

Theorem 1.1.1(Stokes). SupposeM is oriented. LetR ⊂ M be anm-dimensional manifold with
C∞ boundary and leti : R → M be the inclusion map. Letω ∈ Am−1(M). Then∫

R

dω =

∫

∂R

i∗ω.

1.2. The de Rham cohomology.The exterior derivatived of forms gives rise to a cohomological
complex, thede Rham complex:

. . . → Ap−1(M)
dp−1→ Ap(M)

dp→ Ap+1(M) → . . .

Let us define the group ofp-closedforms asZp(M) := Kerdp and the group ofp-exactforms as
Bp(M) := Imdp−1. Sincedp◦dp−1 = 0 thenBp(M) ⊆ Zp(M) and we can define the quotient group
Hp

d(M) := Zp(M)/Bp(M) which is called thep-th de Rham cohomologyof M . If ω ∈ Zp(M),
we denote by[ω] ∈ Hp

d(M) its image by the canonical projectionZp(M) → Hp
d(M).

Note that ifM is connected thenB0(M) = {0} andZ0(M) contains only constant functions,
thereforeH0(M) ' C. Also we have the well known
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Lemma 1.2.1(Poincaŕe). The de Rham cohomologyHp
d(Rm) = 0 for p ≥ 1.

More generally, letHp(M,C) = Hp(M,C)∗ whereHp(M,C) is thep-th homology with complex
coefficients onM , for instance, consider the singular homology withC-coefficients onM . Then

Theorem 1.2.2(de Rham). Hp
d(M) ' Hp(M,C), the isomorphism being given by

[ω] 7→
(

σ 7→
∫

σ

ω :=

∫

∆p

σ∗ω
)

,

where∆p is the standardp-simplex andσ : ∆p → M is any singular simplex.

SupposeM is oriented and compact (and∂M = ∅). Let ω ∈ Bm(M). Therefore there exists
θ ∈ Am−1(M) such thatdθ = ω. By Stokes’ theorem it follows

∫

M

ω =

∫

M

dθ =

∫

∂M

θ = 0,

since the boundary ofM is empty. Thus the operator
∫

M
: Am(M) → C induces a well-defined

operator, calledintegration
∫

M

:Hm
d (M) → C,

[ω] 7→
∫

M

ω.

2. THE ČECH-DE RHAM COHOMOLOGY

TheČech-de Rham cohomology is defined for any coverings of a manifoldM but for simplicity
here we only consider a covering ofM given by only two open sets.

2.1. Čech-de Rham cohomology.Let M be aC∞ manifold of dimensionm. LetU := {U0, U1}
be an open covering ofM . Let U01 := U0 ∩ U1. Define a vector spaceAp(U) as follows:

Ap(U) := Ap(U0)⊕ Ap(U1)⊕ Ap−1(U01).

Therefore an elementσ ∈ Ap(U) is given by a tripleσ = (σ0, σ1, σ01) such thatσ0 is ap-form on
U0, σ1 is ap-form onU1 andσ01 is a(p− 1)-form onU01.

Let us define the following operatorD:

D :Ap(U) → Ap+1(U) := Ap+1(U0)⊕ Ap+1(U1)⊕ Ap(U01)

σ = (σ0, σ1, σ01) 7→ (dσ0, dσ1, σ1 − σ0 − dσ01).

One can check thatD ◦D = 0. This allows to define a cohomological complex,theČech-de Rham
complex:

. . . → Ap−1(U)
Dp−1→ Ap(U)

Dp→ Ap+1(U) → . . .

Let Zp
D(U) := KerDp, Bp

D(U) := ImDp−1. SinceD ◦D = 0 the groupBp
D(U) ⊆ Zp

D(U). thus we
can define the quotient group

Hp
D(U) := Zp

D(U)/Bp
D(U),

called thep-th Čech-de Rham cohomology with respect toU .
The canonical projectionZp

D(U) → Hp
D(U) is denoted byσ 7→ [σ].
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Theorem 2.1.1.The map

Ap(M) → Ap(U)

ω 7→ (ω, ω, 0)

induces an isomorphism

(2.1) α : Hp
d(M)

∼→ Hp
D(U).

Proof. First we have to show thatα is well-defined. That is to say we have to show that

(1) if dω = 0 thenD(ω, ω, 0) = 0 and
(2) if ω = dθ for someθ ∈ Ap−1(M) then(ω, ω, 0) = Dτ for someτ ∈ Ap−1(U).

The first one is immediate. As for the second defineτ := (θ, θ, 0) and check that this does the job.
Now we have to prove thatα is surjective. Letσ := (σ0, σ1, σ01) be such thatDσ = 0. Let

{ρ0, ρ1} be a partition of unity subordinated to the coveringU , i.e., ρj is aC∞ function onM with
support inUj (j = 1, 2) andρ1(p)+ρ2(p) = 1 for anyp ∈ M . Defineω := ρ0σ0 +ρ1σ1−dρ0∧σ01.
Clearlyω ∈ Ap(M). Sincedσj = 0 on Uj (j = 0, 1) andσ1 = σ0 + dσ01 on U01 it is easy to see
thatdω = 0 onM . Moreover[(ω, ω, 0)] = [σ], i.e., (ω, ω, 0) = σ + Dθ for someθ = (θ0, θ1, θ01) ∈
Ap−1(U). To see this we first show that there exists a(p− 1)-form θ0 onU0 such thatω = σ0 + dθ0

onU0. OnU0−U1 the functionρ0 ≡ 1 andρ1 ≡ 0 andω = σ0. OnU0∩U1 it follows from Dσ = 0
that

ω = ρ0σ0 + ρ1(σ0 + dσ01)− dρ0 ∧ σ01 = σ0 + ρ1dσ01 + dρ1 ∧ σ01 = σ0 + d(ρ1σ01).

Therefore once we defineθ0 := ρ1σ01 ∈ Ap−1(U0), we are done. Similarly one can check that
θ1 := −ρ0σ01 works forω = σ1 + dθ1 on U1. Finally if we takeθ01 = 0, θ = (θ0, θ1, 0) does the
job.

It is left to show thatα is injective, but this follows easily and we skip its proof. ¤

2.2. Integration. Suppose that them-dimensional manifoldM is orientedandcompactand let
U := {U0, U1} be a covering ofM . Let R0, R1 ⊂ M be two compact manifolds of dimensionm
with C∞ boundary with the following properties:

(1) Rj ⊂ Uj for j = 0, 1,
(2) IntR0∩IntR1 = ∅ and
(3) R1 ∪R2 = M .

Let R01 := R0 ∩ R1 and giveR01 the orientation coming from being the boundary ofR0, i.e.,
R01 = ∂R0. equivalently giveR01 the opposite orientation coming from being the boundary ofR1,
i.e., R01 = −∂R1. Define the following integration operator:

∫

M

:Am(U) → C

σ = (σ0, σ1, σ01) 7→
∫

M

σ :=

∫

R0

σ0 +

∫

R1

σ1 +

∫

R01

σ01.

Lemma 2.2.1.The operator
∫

M
has the following properties:

(1) Letσ ∈ Am(U). If Dσ = 0 then
∫

M
σ is independent of{R0, R1}.

(2) Letσ ∈ Am(U). If σ = Dτ for someτ ∈ Ap−1(U) then
∫

M
σ = 0.

Proof. Apply The Stokes theorem. ¤
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Corollary 2.2.2. The operator
∫

M
defined onAm(U) induces an operator

∫

M

:Hm
D (U) → C

[σ] 7→
∫

M

σ.

Note that ifω ∈ Hm
d (M) andα(ω) ∈ Hm

D (U) then

(2.2)
∫

M

α(ω) =

∫

M

ω.

2.3. Relative Čech-de Rham cohomology.Let M be am-dimensional manifold,U := {U0, U1}
a covering ofM . Let us define

Ap(U , U0) := {σ = (σ0, σ1, σ01) ∈ Ap(U)|σ0 = 0}.
By the very definition ofD, if σ ∈ Ap(U , U0) thenDσ ∈ Ap(U , Uo). This gives rise to another
complex, called therelativeČech-de Rham complex:

. . . → Ap−1(U , U0)
Dp−1→ Ap(U , U0)

Dp→ Ap+1(U , U0) → . . .

Similarly to what we did before, we define thep-th relativeČech-de Rham cohomology with respect
to (U , U0) as

Hp
D(U , U0) := KerDp/ImDp−1.

The relativeČech-de Rham cohomology is indeed a topological invariant ofM :

Lemma 2.3.1.There is a natural isomorphism

Hp
D(U , U0) ' Hp(M, U0;C),

whereHp(M,U0;C) is thep-th group of the relative cohomology with complex coefficients.

2.4. Integration. SupposeM is anm-dimensional oriented manifold (not necessarily compact).
Let S ⊂ M be a compact subset ofM . Let U0 := M −S and letU1 be an open neighborhood ofS.
Let R1 be a compact manifold of dimensionm with C∞ boundary such thatS ⊂ IntR1 ⊂ R1 ⊂ U1.
Let R0 := M− IntR1. Note thatR0 ⊂ U0. The integral operator

∫
M

(which is not defined in general
for Am(U) unlessM is compact) is well defined onAp(U , U0):

∫

M

:Am(U , U0) → C

σ = (0, σ1, σ01) 7→
∫

M

σ :=

∫

R1

σ1 +

∫

R01

σ01,

and induces an operator
∫

M
: Hm

D (U , U0) → C.
If M is compact andj∗ : Hm

D (U , U0) → Hm
D (U) is the map induces by the injection, then for any

σ ∈ Hm
D (U , U0) it follows

(2.3)
∫

M

j∗(σ) =

∫

M

σ.
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Example 2.4.1.Let M = Rm andS = {0}. ThenU0 = Rm − {0} ' Sm−1 andU1 = Rm.
We first calculateH0

D(U , U0). If σ ∈ A0(U , U0) then σ = (0, f, 0) for some smooth function
defined onU1. If Dσ = 0 by definitionf ≡ 0 and thereforeH0

D(U , U0) = {0}. For p = 1, let
σ ∈ A1(U , U0). Thenσ = (0, σ1, f) whereσ1 is a1-form onU1 andf is aC∞ function onU0 ∩U1.
If σ is a cocycle thendσ1 = 0 on U1 anddf = σ1 on U0 ∩ U1. By the Poincaŕe lemma the first
condition implies thatσ1 = dg for someC∞ function g on U1 and the second condition implies
thatf ≡ g + c for somec ∈ C. Thereforef has a smooth extension—still denoted byf—at {0}
andσ = (0, df, f) = D(0, f, 0). Hence every cocycle is a coboundary andH1

D(U , U0) = {0}. For
p ≥ 2 the map

Hp−1
d (U0) → Hp

D(U , U0)

[ω] 7→ [(0, 0,−ω)]

is an isomorphism (we left the details to the reader) and therefore by the de Rham Theorem for
p ≥ 2 it follows

Hp
D(U , U0) ' Hp−1

d (U0) ' Hp−1(Sm−1) =

{
C for p = m

0 for p = 2, . . . , m− 1.

In particular, whenm = 2, identifyingR2 with C = {z}, an explicit generator ofH2
D(U , U0) '

H1
d(U0) is given by the Cauchy kernel 1

2π
√−1

dz
z

.

3. CHARACTERISTIC CLASSES OF COMPLEX VECTOR BUNDLES

In this section we are going to discuss the Chern-Weil theory adapted to the previously introduced
Čech-de Rham cohomology.

3.1. Connections on complex vector bundles.Let M be aC∞ manifold of dimensionm and let
E → M be a complex vector bundle of rankr. Let U be a open subset ofM and let us indicate by
Ap(U,E) the vector space ofp-forms onU with coefficients inE. In other words,Ap(U,E) is the
space ofC∞ sections of the bundleΛp(TCM)∗ ⊗ E on U . This means that locally an element of
Ap(U,E) is given by ∑

i

ωi ⊗ si,

where theωi’s arep-th forms onU and thesi’s areC∞ sections of the bundleE onU .
Note thatA1(M,E) is the space of theC∞ sections of the vector bundle(TCM)∗ ⊗ E '

Hom(TCM, E). Also A0(M) indicates the space ofC∞ functions onM andA0(M, E) the space
of C∞ sections of the bundleE.

Definition 3.1.1. A connectionfor E is aC-linear map

∇ : A0(M, E) → A1(M, E)

satisfying the followingLeibnitz rule:

∇(fs) = df ⊗ s + f∇(s),

for anyf ∈ A0(M) ands ∈ A0(M, E).

Example 3.1.2.Let E = M × C. ThenAp(M, E) = Ap(M) and∇ := d is a connection onE.

Now we recall some basic facts about connections coming out from the very definition.
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Lemma 3.1.3. A connection∇ on E is a local operator,i.e., if U ⊆ M is a open set ands ∈
A0(M,E) is such thats|U = 0 then∇s = 0 onU .

The previous lemma allows to restrict a connection∇ for E to an open setU ⊂ M giving rise to
well-defined connection∇|U for E|U .

Lemma 3.1.4.Suppose∇1, . . . ,∇k are connections forE andf1, . . . , fk are C∞ functions onM
such that

∑
j fj ≡ 1 then

∑k
j=1 fj∇j is a connection forE.

Using partitions of unity subordinated to a trivializing covering of a vector bundle the previous
Lemma as a very strong consequence:

Corollary 3.1.5. Every complex vector bundle admits a connection.

One may also “derive” forms of higher degree onE. For our purposes we only need to define

∇ : A1(M, E) → A2(M,E).

To do this we note that any element ofA1(M, E) is a linear combination of elements of the form
ω ⊗ s for ω ∈ A1(M) ands ∈ A0(M,E). Therefore we define

∇ : ω ⊗ s 7→ dw ⊗ s− ω ∧∇s,

for ω ∈ A1(M) ands ∈ A0(M, E) and extend for linearity to the other elements ofA1(M,E).

Definition 3.1.6. Thecurvatureof ∇ is K := ∇ ◦∇.

Note thatK 6= 0 in general, and it actually measures how far from the trivial bundleE is.
It is easy to show thatK(fs) = fK(s) for anyf ∈ A0(M) ands ∈ A0(M,E).
Let U be a open set ofM trivializing E, i.e., E|U ' U × Cr. Let s1, . . . , sr ber sections ofE

onU linearly independent at each point ofU (just take for instancesj to be the inverse image of the
j-th element of a basis ofCr under the diffeomorphismE|U ' U × Cr). The setS := (s1, . . . , sr)
is called aframefor E onU .

Let S := (s1, . . . , sr) be a frame forE on U . Note that any section ofE on U is a linear
combination (withC∞ coefficients) ofs1, . . . , sr. Then we may write

∇si =
r∑

j=1

θij ⊗ sj,

for some1-forms θij defined onU . The matrixθ := (θij) is called theconnection matrixwith
respect toS.

Similarly for the curvatureK we may write

K(si) =
r∑

j=1

kij ⊗ sj,

wherekij are2-forms onU . The matrixk = (kij) is thecurvature matrixwith respect toS.
FromK = ∇ ◦∇ it follows

(3.1) kij = dθij −
r∑

k=1

θik ∧ θkj,

or, in matrix notationk = dθ − θ ∧ θ.
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Now letS′ = (s′1, . . . , s
′
r) be a frame on a open setU ′ and suppose thatU ∩ U ′ 6= ∅. Then there

existC∞ functionsaij onU ∩ U ′ such that

s′i =
r∑

j=1

aijsj,

and the matrixA = (aij) is pointwise invertible inU ∩ U ′.

Proposition 3.1.7. Let θ′ be the connection matrix with respect toS′ andk′ the curvature matrix
with respect toS′. Then

(1) θ′ = dA · A−1 + AθA−1,
(2) k′ = AkA−1.

The proof is left to the reader.

3.2. Chern forms. Let M be aC∞ manifold,E a rankr complex vector bundle onM and∇ a
connection forE.

Let S be a frame forE on a open setU and letk = (kij) the curvature matrix with respect toS.
We define a2i-form σi(k) onU by

det(I + k) = 1 + σ1(k) + σ2(k) + . . . + σr(k).

Note that since thekij ’s are even forms and the wedge product of two even forms is symmetric then
the determinant ofI + k is well defined. Also note thatσ1(k) = tr(k) andσr(k) = det k.

If S′ is a frame forE onU ′ with U ∩U ′ 6= ∅ andk′ is the curvature matrix with respect toS′ then
σi(k

′) = σi(k) on U ∩ U ′ by Proposition 3.1.7.2. Therefore we can patch together the formsσi(k)
defined on the open sets trivializingE in order to obtain a global2i-form, denoted byσi(∇).

Definition 3.2.1. The2i-form

ci(∇) :=

(√−1

2π

)i

σi(∇),

is thei-th Chern form.

The normalization is chosen in such a way that the first Chern class of the hyperplane bundle on
the projctive space is1.

Lemma 3.2.2.The Chern forms have the following properties:

(1) For any connection∇ for E it holdsdci(∇) = 0 for everyi.
(2) If ∇,∇′ are two connections forE then there exists a(2i − 1)-form c1(∇,∇′)—called the

Bott difference form—such that

dci(∇,∇′) = ci(∇′)− ci(∇).

The previous Lemma implies thatci(∇) defines a class[ci(∇)] ∈ H2i
d (M) and that this class is

independent of the connection∇ (but depends only onE). Therefore we can define

ci(E) := [ci(∇)]

and called it thei-th Chern class ofE.

Remark3.2.3. One may defineci(E) by means of obstruction theory. Roughly speakingci(E) is
the first obstruction to constructingr − i + 1 global sections ofE which are pointwise linearly
independent.
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Now we generalize the previous construction to symmetric polynomials. Letϕ be a symmetric
polynomial in the variablesx1, x2, . . . , xl. Let σi be thei-th elementary symmetric function. Recall
that the elementary symmetric functions are defined by

l∏
j=1

(1 + xj) = 1 + (x1 + x2 + . . . + xl) + (x1x2 + . . .) + . . .

= σ0(x1, . . . , xl) + σ1(x1, . . . , xl) + σ2(x1, . . . , xl) + . . .

By a well known result, every symmetric polynomial can be written as a polynomial in the variables
σ1, . . . , σl. Therefore there exists a polynomialp such thatϕ = p(σ1, . . . , σl). We define

ϕ(∇) := p(c1(∇), c2(∇), . . . , cl(∇)).

Since theci(∇)’s are closed forms, thendϕ(∇) = 0. Moreover if∇,∇′ are two connections onE
there exists a formϕ(∇,∇′) such that

ϕ(∇)− ϕ(∇′) = dϕ(∇,∇′).

Thusϕ(∇) defines a class inH∗
d(M) independent of∇:

ϕ(E) := [ϕ(∇)] ∈ H∗
d(M).

3.3. Characteristic classes in thěCech-de Rham cohomology.LetM be anm-dimensional man-
ifold and letU := {U0, U1} be an open covering ofM . Let E → M be a rankr complex vector
bundle onM . Let∇j be a connection forE|Uj

. Let ci(∇∗) be the element ofA2i(U) given by

ci(∇∗) := (ci(∇0), ci(∇1), ci(∇0,∇1)),

whereci(∇0,∇1) is the Bott difference form of the restrictions toU0∩U1 of the connections∇0,∇1

for E|U0∩U1. ThenDci(∇∗) = 0. Therefore this defines a class[ci(∇∗)] ∈ H2i
D (U).

Theorem 3.3.1.The class[ci(∇∗)] ∈ H2i
D (U) corresponds to the Chern classci(E) ∈ H2i

d (M)
under the isomorphism(2.1).

4. COMPLEX MANIFOLD AND THE GROTHENDIECK RESIDUE

4.1. Complex manifolds. Let U ⊂ Cn be a open set. Recall that a mapf : U → C is called
holomorphicif f can be expressed as the sum of a convergent power series in a neighborhood of
each point ofU . A complex manifoldof dimensionn is a topological space together with an atlas
{Uα, ϕα} such thatϕα(Uα) is an open set ofCn for anyα and the transiction functionsϕα ◦ϕ−1

β are
holomorphic.

Let M be a complex manifold of dimensionn, and let(z1, . . . , zn) be local coordinates on
U ⊂ M . Thenzi = xi +

√−1yi for xi, yi ∈ R and i = 1, . . . , n and the local coordinates
(x1, y1, . . . , xn, yn) onU give rise to a structure of2n-dimensional real manifold onM .

Let us indicate byTpM the real tangent space (of dimension2n) of M atp ∈ M , and byTM the
real tangent bundle ofM . OnU with local coordinates{z1 = x1+

√−1y1, . . . , zn = xn+
√−1yn},

the vector spaceTpM is spanned by{ ∂
∂x1

, ∂
∂y1

, . . . , ∂
∂xn

, ∂
∂yn
}, evaluated atp. LetTCp M := TpM⊗C

be the complexified tangent space ofM at p ∈ M and letTCM := TM ⊗ C be the complexified
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tangent bundle ofM . Thus a basis forTCp M is given by{ ∂
∂z1

, . . . , ∂
∂zn

, ∂
∂z1

, . . . , ∂
∂zn
}, where

∂

∂zi

:=
1

2

(
∂

∂xi

−√−1
∂

∂yi

)
,

∂

∂zi

:=
1

2

(
∂

∂xi

+
√−1

∂

∂yi

)
.

We indicate byTpM := span{ ∂
∂z1

, . . . , ∂
∂zn
} and byTpM := span{ ∂

∂z1
, . . . , ∂

∂zn
}. Therefore

TCp M = TpM ⊕ TpM.

The vector spaceTpM is called theholomorphic partof TCp M and the vector spaceTpM is called
theanti-holomorphic partof TCp M . Note thatTpM is an-dimensional complex vector space.

By the Cauchy-Riemmann equations this decomposition is independent of the local coordinates
chosen. Thus we have a decomposition of the complex tangent bundle

TCM = TM ⊕ TM.

Note thatTM has a natural structure ofholomorphic vector bundle, i.e., it has a system of holomor-
phic transiction functions which gives it a structure of complex manifold.

A C∞ section ofTM is locally given by

v =
n∑

i=1

fi
∂

∂zi

,

with thefi’s beingC∞ complex valued functions.

Proposition 4.1.1.There is a real isomorphism (as real bundles)TM ' TM , locally given by

(4.1) v =
n∑

i=1

fi
∂

∂zi

7→
n∑

i=1

Refi
∂

∂xi

+
n∑

i=1

Imfi
∂

∂yi

Proof. One can check easily that (4.1) is a real isomorphism. Then, using Cauchy-Riemann equa-
tions, one can show that it gives rise to a vector bundle isomorphism. ¤
Example 4.1.2.In C = {z} we havez ∂

∂z
7→ x ∂

∂x
+ y ∂

∂y
andz2 ∂

∂z
7→ (x2 − y2) ∂

∂x
+ 2xy ∂

∂y
.

We say that a sectionv =
∑

fi
∂

∂zi
ofTM is aholomorphic vector fieldif thefi’s are holomorphic,

i.e., if v is a holomorphic section of the holomorphic vector bundleTM .
Similarly we have a decomposition of the complexified cotangent bundle ofM :

A0(M) := (TCM)∗ = TM∗ ⊕ TM∗.

In local coordinates a basis forTM∗ is given by{dz1, . . . , dzn} and a basis forTM∗ is given by
{dz1, . . . , dzn}, where

dzi :=dxi +
√−1dyi

dzi :=dxi −
√−1dyi.

Accordingly we have a decomposition for forms of higher degree. That is to say, anr-form ω ∈
Ar(M) can be written as

ω =
∑

p+q=r

ωp,q,
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whereωp,q is a form of type(p, q). In local coordinates

ωp,q =
∑

fi1,...,ip,j1,...,jqdzi1 ∧ . . . ∧ dzin ∧ dzj1 ∧ . . . ∧ dzjn ,

where thefi1,...,in,j1...,jn ’s areC∞ complex valued functions.
Note thatTM∗ ∧ . . .TM∗ has a natural structure of holomorphic vector bundle.
We say that a formω of type(p, 0) is holomorphicif locally ω =

∑
fi1,...,ipdzi1 ∧ . . .∧ dzin with

thefi1,...,in ’s holomorphic functions, that is,ω is a holomorphic section of the holomorphic bundle
TM∗ ∧ . . . ∧ TM∗ (p-times).

4.2. Grothendieck residue. Let U ⊂ Cn be an open set containing the originO = (0, . . . , 0) ∈
Cn. Letf1, . . . , fn : U → C be holomorphic functions such that{p ∈ U |fi(p) = 0, i = 1, . . . , n} =
{O}. Let ω = hdz1 ∧ . . . ∧ dzn be a holomorphicn-form onU . TheGrothendieck residueat O of
ω with respect tof1, . . . , fn is given by

ResO

[
ω

f1, . . . , fn

]
:=

(
1

2π
√−1

)n ∫

Γ

ω

f1 · · · fn

,

whereΓ := {p ∈ U : |fi(p)| = εi, i = 1, . . . , n} for εi > 0 so small thatΓ is compact. Note that for
genericεi small enough, the setΓ is a compact realn-dimensional manifold and we orient it so that
d(arg f1) ∧ . . . ∧ d(arg fn) > 0.

Example 4.2.1.Let ω = hdz with h holomorphic near0, and letf be a holomorphic function in a
neighborhood of0 so thatf(p) = 0 impliesp = 0. Then

Res0

[
ω
f

]
=

1

2π
√−1

∫

{|f |=ε}

h

f
dz.

5. LOCALIZATION OF THE TOPCHERN CLASS

Let M be a complex manifold of dimensionn. Let E be a complex vector bundle of rankr over
M . Let s : M → E be a non-vanishing section ofE, i.e., s is aC∞ map fromM to E such that
s(x) ∈ Ex ands(x) 6= 0 for anyx ∈ M .

Definition 5.0.2. A connection∇ for E is s-trivial if ∇s = 0.

Given a non-vanishing sections of E it is always possible to define ans-trivial connection∇ for
E (simply define∇s = 0).

Proposition 5.0.3. If ∇ is ans-trivial connection forE thencr(∇) ≡ 0.

Proof. Let U ⊂ M be an open set such thatE|U ' U ×Cr. Sinces 6= 0 everywhere onM , we may
take a framS = (s1, . . . , sr) on U so thats1 = s. Then the connection and the curvature matrices
of ∇ with respect toS are of the form (

0 . . . 0
?

)

and sincecr(∇) = det k up to a constant, thencr(∇) = 0. ¤
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5.1. The case rankE =dimM . Suppose now that the rankr of E coincides with the dimension of
M , i.e., r = n.

Let S be a closed set inM and lets be a section ofE non-vanishing onM − S. We want to
computecn(E). Let U0 := M − S, let U1 be a neighborhood ofS in M and letU := {U0, U1}. Let
∇i be a connection forE onUi, i = 0, 1. By Theorem 3.3.1 the Chern classcn(E) is represented in
H2n

D (U) by the elementcn(∇∗) ∈ A2n(U) given by

cn(∇∗) := (cn(∇0), cn(∇1), cn(∇0,∇1)),

wherecn(∇0,∇1) is the Bott difference form of∇0,∇1 onU0 ∩ U1.

Remark5.1.1. Sinces is non-vanishing onU0, one can assume∇0 is ans-trivial connection forE
on U0. Thus by Proposition 5.0.3 we havecn(∇0) = 0 and actuallycn(∇∗) ∈ A2n(U , U0). This
defines a class inH2n

D (U , U0) which we denote bycn(E, s) and call thelocalization ofcn(E) with
respect tos.

Now supposeS is compact and let{Sλ}λ∈J be the set of connected components ofS. For each
λ ∈ J , let Rλ be a compactC∞ manifold with boundary containingSλ and such thatRλ ∩ Rµ = ∅
for λ, µ ∈ J , λ 6= µ. Let R0λ := −∂Rλ. Then∫

M

cn(E, s) =
∑

λ∈J

(∫

Rλ

cn(∇1) +

∫

R0λ

cn(∇0,∇1)

)
.

One can easily show that the addends on the right-hand side of the previous formula are independent
of Rλ and therefore we may define

(5.1) Rescn(s, E, Sλ) :=

∫

Rλ

cn(∇1) +

∫

R0λ

cn(∇0,∇1).

Proposition 5.1.2. If M is compact
∑

λ∈J

Rescn(s, E, Sλ) =

∫

M

cn(E).

Proof. Apply formulas (2.2) and (2.3). ¤
5.2. The calculation of the residue for a point and a holomorphic section.SupposeE is a
holomorphic vector bundle ands is a holomorphic section ofE. We are going to calculate the
residue Rescn(s, E, Sλ) whenSλ = {p}. In this situation we may takeU1 to be a trivializing set for
E and also we may assume thats(q) 6= 0 for anyq ∈ U1 − {p}. Let S := (s1, . . . , sn) be a frame
for E on U1. Thens =

∑n
i=1 fisi for some holomorphic functionsfi defined onU1. Sincep is an

isolated zero ofs, it follows that{p} = {q ∈ U1 : fi(q) = 0, i = 1, . . . , n}.

Theorem 5.2.1.Rescn(s, E, p) = Resp

[
df1 ∧ . . . ∧ dfn

f1, . . . , fn

]
.

Proof. We give the proof forn = 1 (for n > 1 one needs thěCech-de Rham cohomology theory for
(n + 1)-open sets). Thuss = fs1 for some holomorphic functionf onU1.

Let R be a closed “disc” contained inU1 and containingp. By definition

Resp(s, E, p) =

∫

R

c1(∇1) +

∫

−∂R

c1(∇0,∇1).

One may assume∇1 as ans1-trivial connection onU1, thusc1(∇1) ≡ 0. Therefore Resp(s, E, p) =
− ∫

∂R
c1(∇0,∇1).
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Now we recall how the Bott difference formc1(∇0,∇1) is defined. LetẼ := E×R be the trivial
bundle overM × R, and lett be the coordinate onR. Define a connection for̃E on U01 × R by
∇̃ := (1 − t)∇0 + t∇1. Let π : U01 × [0, 1] → U01 be the canonical projection and letπ∗ be the
integration along the fibers ofπ. That is to say, letω be a2-form on U01 × R given locally by
ω = dt ∧ H1 + H2, with H1 a 1-form andH2 a 2-form given by a linear combination of terms of
the formdzi ∧ dzj (i.e., not containingdt). Thenπ∗(ω) :=

∫ 1

0
dt∧H1 gives rise to a1-form onU01.

Thus we define
c1(∇0,∇1) := π∗c1(∇̃).

In our case, we letθi be the connection matrix of∇i, i = 0, 1 (onU01) with respect to the frames1.
Thereforeθ1 = 0 but θ0 6= 0 (it would be zero in the frames). Thus the connection matrix for̃∇
is given byθ̃ := (1 − t)θ0. Note that ifθ′0 = 0 is the connection matrix for∇0 with respect to the
frames, sinces = fs1, then by Proposition 3.1.7.1 we have

0 = θ′0 = θ0 +
df

f
,

from which it followsθ0 = −df
f

. Henceθ̃ = (1− t)θ0 = (t− 1)df
f

and by equation (3.1), if̃k is the

curvature matrix of̃∇, we have

k̃ = dθ̃ − θ̃ ∧ θ̃ = dt ∧ df

f
.

Thus

c1(∇̃) :=

√−1

2π
dt ∧ df

f

π∗→
√−1

2π

df

f
=: c1(∇0,∇1).

Therefore

Resp(s, E, p) =
1

2π
√−1

∫

∂R

df

f
= Resp

[
df
f

]
,

as wanted. ¤

6. INDICES OF VECTOR FIELDS AND RESIDUES OF SINGULAR FOLIATIONS

6.1. The Poincaŕe-Hopf Theorem. Let M be aC∞ compact manifold of dimensionn. Let v be
a vector field onM with only isolated zeros. Letp ∈ M and fix a coordinate open set with local
coordinates{x1, . . . , xn} aroundp. In this open setv =

∑n
i=1 ai

∂
∂xi

for someC∞ functionsai.
There exists a small open ballUε (contained in the coordinate set) such thatp ∈ Uε andv(q) 6= 0
for everyq ∈ Uε − {p}. Let Sε = ∂Uε ' Sn−1. Consider the map

γv :Sε → Sn−1

q 7→ (a1(q), . . . , an(q))

‖(a1(q), . . . , an(q))‖ .

We define thePoincaŕe-Hopf indexof v atp as

PH(v, p) := the mapping degree ofγv.

Note thatPH(v, p) = 0 if v(p) 6= 0.

Example 6.1.1.If v = x ∂
∂x

+y ∂
∂y

thenP (v, 0) = 1. If v = (x2−y2) ∂
∂x

+2xy ∂
∂y

thenPH(v, 0) = 2.
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Theorem 6.1.2.If v is a vector field onM with only isolated zerosp1, . . . , pr then
r∑

i=1

PH(v, pi) = χ(M),

whereχ(M) is the Euler number ofM .

We want to give a sketch of the proof of such a theorem whenM is complex andv is holomorphic
using the “principle of localization of characteristic classes”.

Suppose first thatM is a compact complexn-dimensional manifold andv is aC∞ vector fields.
Recall that

(6.1)
∫

M

cn(TM) = χ(M).

Let S = S(v) be the zero set ofv. Suppose thatS is compact and let{Sλ}λ∈J be the set of
connected components ofS. We localizecn(TM) with respect tov as in Remark 5.1.1 to get a class
cn(TM, v) ∈ H2n

D (U , U0) whereU0 := M−S, U1 is an open neighborhood ofS andU = {U0, U1}.
Then we may define residues Rescn(v,TM,Sλ) as in (5.1). Thus by Proposition 5.1.2 and (6.1) we
have

(6.2)
∑

λ∈J

Rescn(v,TM, Sλ) = χ(M),

which generalizes the Poincaré-Hopf Theorem.
Now supposeSλ = {pλ} for eachλ ∈ J . Fix p ∈ S. Supposev is a holomorphic vector field,

given byv =
∑n

i=1 ai
∂

∂zi
locally aroundp, for some holomorphic functionsai. By Theorem 5.2.1

we have Rescn(v,TM, p) = Resp

[
da1 ∧ . . . ∧ dan

a1, . . . , an

]
and a direct calculation shows that this last

term is equal toPH(v, p). This gives Theorem 6.1.2 in casev is holomorphic.

6.2. Non singular Foliations and the Bott vanishing Theorem.Let M be a complex manifold of
dimensionn.

Definition 6.2.1. A rank one holomorphic subbundleF of TM is a one dimensionalnon-singular
foliation.

Let F be a one-dimensional non-singular foliation onM . A (one dimensional) complex manifold
L ⊂ M is called aleaf of F if TpL = Fp for everyp ∈ L. Note that by Frobenius’ Theorem each
point ofM is contained in a unique leaf and that actually the leaves ofF form a partition ofM .

Definition 6.2.2. A holomorphic vector bundleE is anF -bundleif there exists aC-linear mapα,
calleda holomorphic action,

α : A0(M, F )× A0(M,E) → A0(M, E)

with the following properties:
(1) α([u, v]), s) = α(u, α(v, s))− α(v, α(u, s)) for anyu, v ∈ A0(M, F ) ands ∈ A0(M,E),
(2) α(fu, s) = fα(u, s) for anyf ∈ A0(M), u ∈ A0(M,F ), s ∈ A0(M, E),
(3) α(u, fs) = u(f)s + fα(u, s) for anyf ∈ A0(M), u ∈ A0(M, F ), s ∈ A0(M,E),
(4) if u ∈ A0(M,F ), s ∈ A0(M, E) are holomorphic thenα(u, s) is holomorphic.

Let E be a holomorphic vector bundle onM and let∇ be a connection forE. We say that∇ is of
type(1, 0) if the connection matrix of∇ in every (holomorphic) frame ofE has only(1, 0)-forms
as entries.



14 TATSUO SUWA

Definition 6.2.3. SupposeE is anF -bundle. A connection forE is anF -connectionif
(1) (∇s)(u) = α(u, s) for anyu ∈ A0(M, F ) ands ∈ A0(M,E),
(2) ∇ is of type(1, 0).

If E is anF -bundle it is always possible to define anF -connection forE (define∇us = α(u, s)
for u ∈ A0(M,F ), s ∈ A0(M, E) and extend it).

Theorem 6.2.4(Bott vanishing Theorem). LetM be a complexn-dimensional manifold. LetE be
a holomorphic vector bundle onM , F a one-dimensional non-singular foliation onM and suppose
E is anF -bundle. Let∇ be anF -connection forE. For any symmetric homogeneous polynomial
ϕ of degreen it followsϕ(∇) ≡ 0.

In caseF is a non-singular foliation of dimensionp (i.e., F is an involutive rankp holomorphic
subbundle ofTM ) then the Bott vanishing theorem holds for symmetric homogeneous polynomial
of degree> n− p.

Sketch of the proof of Theorem 6.2.4.Let r be the rank ofE. In a neighborhood of each point we
may choose local coordinates{z1, . . . , zn} so thatF is generated by∂

∂z1
. From the very definition

of holomorphic action we may find a local frameS = (s1, . . . , sr) of E so thatα( ∂
∂z1

, si) = 0 for
any i. Thus∇ ∂

∂z1

= 0. Let θ = (θij) be the connection matrix of∇ in the frameS. Since∇ is of

type(1, 0) then theθij ’s are(1, 0)-forms andθij(
∂

∂z1
) = 0 for i, j = 1, . . . , r. This means that each

θij is of the form
∑n

l=2 fldzl for someC∞ functionsfl. Hence each entry of the curvature matrixk
of ∇ is of the form

∑n
l=2 ηl ∧ dzl for some1-formsηl. Therefore sinceϕ has degreen, it follows

ϕ(k) = 0. ¤
6.3. The Baum-Bott Residue Theorem.

Definition 6.3.1. A one dimensionalsingular foliationF onM is determined by the following data:
(1) a open covering{Uα} of M ,
(2) a family of holomorphic vector fields{vα} such thatvα is defined onUα and
(3) a family of holomorphic non-vanishing functions{fαβ} such thatfαβ is defined onUα ∩Uβ

(once non-empty),
with the property that, ifUα ∩ Uβ 6= ∅ thenvβ = fαβvα.

Let S(vα) := {p ∈ Uα|vα(p) = 0}. Sincevβ = fαβvα thenS(vα) ∩ Uβ = S(vβ) ∩ Uα and thus
we may consider thesingular setS = S(F) of F defined as

S = S(F) := {p ∈ M |∃α : vα(p) = 0}.
Let M0 := M − S.

The functions{fαβ} satisfy the cocycle conditions relative to the covering{Uα} and therefore
they define a rank one holomorphic vector bundleF , called thetangent bundle ofF . We have the
vector bundle homomorphism

i : F → TM.

A sectionf of F is given locally onUα by aC∞ functionfα and onUα∩Uβ 6= ∅ it holdsfα = fαβfβ.
The mapi is locally defined as

i : (fα) 7→ fαvα.

Since onUα ∩ Uβ it holdsfα = fαβfβ andvα = fβαvβ, one can easily check thati is well defined.
Note that the mapi is injective only onM0. ThusF0 := i(F|M0) is a rank one holomorphic

subbundle ofTM|M0 and thereforeF gives rise to a non-singular foliation onM0. We define the
quotient vector bundleNF0 := TM0/F0 onM0 and call it thenormal bundleof the foliationF .
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Remark6.3.2. One may consider the sheaf of holomorphic sections ofF—still denoted byF—and
the sheafΘM of holomorphic sections ofTM . Thus one gets an injective mapF ↪→ ΘM (basically
because the singular setS(F) has at least codimension1 in M ), and one may consider the exact
sequence of sheaves

0 → F → ΘM → NF → 0,

whereNF is the quotient sheaf. HoweverNF is not locally free (actually it is locally free only on
M0) and therefore it is not the sheaf of section of a vector bundle (if one restrictsNF to M0 then
one get the sheaf of holomorphic sections ofNF0).

By the very definition, onM0 we have the following exact sequence of vector bundles:

(6.3) 0 → F0
$→ TM0

π→ NF0 → 0.

One can check the following lemma.

Lemma 6.3.3.The vector bundleNF0 is anF0-bundle with the action

A0(M0, F0)× A0(M0, NF0) → A0(M0, NF0)

(u, π(w)) 7→ π([u, w]).

We define thevirtual normal bundleνF ofF as

νF := TM − F,

in the sense ofK-theory.
If E is a complex vector bundle onM , thetotal Chern classof E is by definition

c(E) := 1 + c1(E) + . . . + cn(E),

which is an invertible element inH∗(M,C), the inverse being given by expanding1/c(E) (note that
this is actually a finite sum sinceHp(M,C) = 0 for p > n).

For the virtual normal bundleνF the total Chern class is defined as

c(νF) :=
c(TM)

c(F )
,

and thei-th Chern classci(νF) is the component ofc(νF) in H2i(M,C). Thus ifϕ is a symmetric
polynomial we defineϕ(νF) as a polynomial in the Chern classes ofνF .

Let ϕ be a symmetric homogeneous polynomial of degreen. Thus

ϕ(νF) =
∑

i

ϕi(TM)ψi(F )

where theϕi(TM)’s are polynomials inci(TM) and theψi(F )’s are polynomials inci(F ).
Let U1 be a neighborhood ofS in M , U0 := M0 andU := {U0, U1}. Let∇M

i be a connection for
TM on Ui, i = 0, 1, let∇F

i be a connection forF on Ui, i = 0, 1 and let∇ be anF0-connection
for NF0 on U0 in such a way that the triple(∇F

0 ,∇M
0 ,∇) is compatiblewith the exact sequence

6.3. This means that∇M
0 ◦ $ = (1 ⊗ $) ◦ ∇F

0 and∇0 ◦ π = (1 ⊗ π) ◦ ∇M
0 . Such a triple can

be constructed starting from anF0-connection∇ for NF0 (see Lemma 6.3.3), defining a connection
compatible to∇ for a complement of$(F ) in TM , extending this to allTM and finally defining a
connection forF compatible with the previous ones.

Let

ϕ(∇•
1) :=

∑
ϕi(∇M

1 )ψi(∇F
1 ),

ϕ(∇•
0) :=

∑
ϕi(∇M

0 )ψi(∇F
0 ).
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As in Lemma 3.2.2, one can show—and for this the compatibility condition does not play any
role—thatdϕ(∇•

i ) = 0, i = 0, 1 and there exists a(2n− 1)-form ϕ(∇•
0,∇•

1) such that

ϕ(∇•
1)− ϕ(∇•

0) = dϕ(∇•
0,∇•

1).

Thus[(ϕ(∇•
0), ϕ(∇•

1), ϕ(∇•
0,∇•

1))] ∈ H2n
D (U) and one can check that it corresponds toϕ(νF) under

the isomorphism (2.1).
Now by the compatibility conditionϕ(∇•

0) = ϕ(∇) and by the Bott vanishing Theorem 6.2.4
ϕ(∇) = 0. Thereforeϕ(νF) is represented by(0, ϕ(∇•

1), ϕ(∇•
0,∇•

1)) ∈ A2n(U , U0), whose class
ϕ(νF ,F) ∈ H2n

D (U ,M0) is called thelocalization ofϕ(νF) with respect toF .
For each compact connected componentSλ of S(F) one can define theBaum-Bott residue

Resϕ(F , νF , Sλ) similarly to what we did in (5.1). IfM is compact, by (2.2) and (2.3), we have the
Baum-Bott residue formula:

∑

λ

Resϕ(F , νF , Sλ) =

∫

M

ϕ(νF).

Remark6.3.4. (1) If Sλ = {p} the Bott residue is again expressed in terms of a Grothendieck
residue.

(2) If F is generated by a global vector fieldv thenϕ(νF) = ϕ(TM). Indeed in this caseF has
a global non-vanishing section (x 7→ v(x)) and therefore it is trivial. Hencec(F ) = 1 and
the result follows from the very definition of total Chern class. Also, ifϕ = cn, we recover
the Poincaŕe-Hopf theorem.

6.4. Residues relative to invariant submanifolds.Let W be a(n + k)-dimensional complex ma-
nifold and letM ⊂ W be a complex submanifold of dimensionn. SupposeF is a one dimensional
singular foliation onW . Assume thatFx ⊂ TMx for anyx ∈ M , i.e., M is invariant by F . Thus
F induces a singular foliationFM on M . Let S := S(FM) := S(F) ∩M , M0 := M − S. Let F
be the tangent bundle ofF . Let FM0 := F|M0 and letNM0 := TW|M0/TM0 be the normal bundle
of M0 (this coincides with the restriction of the normal bundle ofM , NM := TW|M/TM , to M0).
Thus we have the following exact sequence of vector bundles:

0 → TM0 → TW|M0

η→ NM0 → 0.

Lemma 6.4.1.There exists a holomorphic action ofFM0 onNM0 given by

A0(M0, FM0)× A0(M0, NM0) → A0(M0, NM0)

(u, v) 7→ α(u, v) := η([ũ, w̃]|M0),

whereũ, w̃ are any vector fields onW such that̃u|M0 = u andη(w̃)|M0 = w.

Let ϕ be a symmetric homogeneous polynomial of degreen. Let U1 be an open neighborhood of
S andU := {M0, U1}. Let∇0 be anF0-connection forNM onM0. By the Bott vanishing Theorem
6.2.4,ϕ(∇0) = 0. Let∇1 be a connection forNM onU1. The isomorphism 2.1 allows to represent
ϕ(NM) by the class[(0, ϕ(∇1), ϕ(∇0,∇1)] ∈ H2n

D (U ,M0), thelocalization ofϕ with respect toF ,
denoted byϕ(NM ,F).

If a connected componentSλ of S is compact then one may define the residue Resϕ(F , NM , Sλ)
(see (5.1)). IfM is compact (as in Proposition 5.1.2) the followinggeneralized Camacho-Sad
formulaholds: ∑

λ

Resϕ(F , NM , Sλ) =

∫

M

ϕ(NM).
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Now supposeSλ = {p} and let{z1, . . . , zn+k} be local coordinates on an open setU ⊂ W contain-
ing p in such a way thatM := {q ∈ U |zn+1(q) = . . . = zn+k(q) = 0}. SupposeF is generated by
ṽ :=

∑n+k
i=1 ai

∂
∂zi

onU . SinceM is invariant forF thenṽ is tangent toM , i.e.,

an+i =
k∑

j=1

cijzn+j, for i = 1, . . . , k.

For ak × k-matrixA we defineσi(A) to be given by the following relation:

det(I + tA) = 1 + tσ1(A) + . . . + tkσk(A).

Thus, ifϕ = p(σ1, σ2, . . .), thenϕ(A) := p(σ1(A), σ2(A), . . .).
Let C = (cij). It is possible to show that

Resϕ(F , NM , p) = Resp

[
ϕ(C)dz1 ∧ . . . ∧ dzn

a1, . . . , an

]
.

7. CHARACTERISTIC CLASSES ON SINGULAR VARIETIES

7.1. Locally complete intersection. Let W be a(n + k)-dimensional complex manifold.

Definition 7.1.1. A closed setV ⊂ W is avariety in W (or subvarietyor analytic set) if for any
p ∈ V there exist an open neighborhoodŨ of p in W andf1, . . . , fr holomorphic functions oñU
such that

V ∩ Ũ = {q ∈ Ũ |f1(q) = . . . = fr(q) = 0}.
The functions(f1, . . . , fr) are called a set ofdefining functionsfor V .

A point p ∈ V is regular if there exists a set of defining functions(f1, . . . , fr) aroundp such that
rank ∂(f1,...,fr)

∂(z1,...,zn+k)
= r.

By the implicit function theorem, ifp ∈ V is a regular point thenV is (in a neighborhood ofp) a
(n + k − r)-dimensional complex manifold.

A point p ∈ V which is not a regular point is called asingular point. We denote by Sing(V ) the
set of singular points ofV and byV ′ := V −Sing(V ). Note thatV ′ is a complex submanifold ofW
(possibly not connected). We define the dimension ofV to be the maximum of the dimensions of
the connected components ofV ′. We say thatV is pure dimensionif all the connected components
of V ′ have the same dimension. The varietyV is saidirreducible if V ′ is connected.

Example 7.1.2.Let W = C2 with coordinates{z1, z2}.
(1) The functionf(z1, z2) := z1z2 defines a subvarietyV such that Sing(V ) = {(0, 0)}. To see

that(0, 0) is a singular point one can show that for any3-dimensional sphereS3 centered at
(0, 0) the intersectionV ∩ S3 consists of two connected components.

(2) The functionf(z1, z2) := z3
1−z2

2 defines a subvarietyV with an isolated singularity at(0, 0).
Note that in this case for any3-dimensional sphereS3 the intersectionV ∩ S3 is connected.

If W = CPn+k andV is a variety given (globally) as the zero set of a finite number of homoge-
neous polynomials, thenV is said aprojective algebraic variety. A theorem of Chow says that any
compact variety inCPn+k is algebraic.

Definition 7.1.3. Let V be a closed set inCn+k andŨ ⊂ Cn+k an open set containingV . We say
thatV is complete intersectionif there exists a set of defining functions(h1, . . . , hk) for V on Ũ
such thatdh1 ∧ . . . ∧ dhk 6≡ 0 onV .



18 TATSUO SUWA

If V ⊂ Ũ ⊆ Cn+k is a complete intersection variety defined byh1, . . . , hk then Sing(V ) = {q ∈
V : dh1 ∧ . . . ∧ dhk(q) = 0}. Also note thatV ′ is a complex manifold of dimensionn. Thus
one could equivalently define a complete intersection varietyV ∈ Ũ ⊆ Cn+k as ann-dimensional
variety with a set ofk (independent) defining functions oñU .

Definition 7.1.4. Let W be a(n + k)-dimensional complex manifold. A varietyV ⊂ W is a local
complete intersection (L.C.I.) defined by a sectionif there exist a rankk holomorphic vector bundle
N overW and a holomorphic sections : W → N such that for anyp ∈ V there exist a open set̃U
in W , p ∈ Ũ , and a (holomorphic) frame(s1, . . . , sk) for N so that, ifs =

∑k
i=1 hisi, thenV ∩ Ũ

is a complete intersection defined by(h1, . . . , hk).

If V is a L.C.I. defined by a sections : W → N then the normal vector bundleNV ′ :=
TW|V ′/TV ′ on V ′ coincides with the restrictionN|V ′ of N to V ′. ThusN extends the normal
vector bundle ofV to W .

7.2. Grothendieck residue relative to a subvariety.LetV be a subvariety ofCn+k of pure dimen-
sionn contained in an open set̃U ⊂ Cn+k and suppose it has an isolated singularity at the originO.
Let f1, . . . , fn be holomorphic functions oñU such thatV ∩ {f1 = . . . = fn = 0} = {O}. Let ω
be a holomorphicn-form. Then we define theGrothendieck residueas

ResO

[
ω

f1, . . . , fn

]

V

:=

(
1

2π
√−1

)n ∫

Γ

ω

f1 · · · fn

,

whereΓ := {z ∈ Ũ : |fi(z)| = εi, i = 1, . . . , n} ∩ V , for smallεi > 0, oriented so thatd(arg f1) ∧
. . . ∧ d(arg fn) > 0. Note that for generic smallεi > 0 then-cycleΓ is a submanifold ofV .

If V is a complete intersection defined by(h1, . . . , hk) on Ũ then by theprojection formulawe
have

(7.1) ResO

[
ω

f1, . . . , fn

]

V

= ResO

[
ω ∧ dh1 ∧ . . . ∧ dhk

f1, . . . , fn, h1, . . . , hk

]
.

7.3. Residues on normal bundles.Let W be a(n+k)-dimensional complex manifold,V a L.C.I.
defined by a section of the rankk holomorphic vector bundleN overW . LetF be a one dimensional
holomorphic foliation onW leavingV invariant,i.e., the vectors inF|V ′ are tangent toV ′. We want
to computeϕ(N) for a symmetric homogeneous polynomialϕ of degreen.

LetFV be the foliation onV ′ induced byF . Let S := S(F , V ) := (S(F) ∩ V ) ∪ Sing(V )). Let
V0 := V − S ⊂ V ′. Let Ũ0 be a tubular neighborhood ofV0, ρ : Ũ0 → V0 theC∞ retraction and let
Ũ1 be an open neighborhood ofS in W . LetU := {Ũ0, Ũ1}, Ũ := Ũ0 ∪ Ũ1.

Let F be the one dimensional tangent bundle toF , F0 := F|V0. By Lemma 6.4.1 there is a
holomorphic action ofF0 on NV0. Let ∇ be anF0-connection forNV0. Let ∇1 be a connection
for N on Ũ1 and let∇0 := ρ∗(∇) be a connection forN on Ũ0. By (2.1) the classϕ(N|Ũ) is
represented byϕ(∇∗) := (ϕ(∇0), ϕ(∇1), ϕ(∇0,∇1)) ∈ A2n(U). By the Bott vanishing Theorem
6.2.4 it follows thatϕ(∇0) = ρ∗(ϕ(∇)) = 0 and actuallyϕ(∇∗) ∈ A2n(U , Ũ0).

Now supposeS is a compact. For each connected componentSλ of S let R̃λ be a2(n + k)-
dimensional compactC∞ manifold with boundary such thatSλ is contained in the interior of̃Rλ,
R̃λ ∩ S = Sλ and∂R̃λ is transverse toV atV ∩ R̃λ. Let Rλ := R̃λ ∩ V andR0λ := −∂Rλ. Define

Resϕ(F , NV , Sλ) :=

∫

Rλ

ϕ(∇1) +

∫

R0λ

ϕ(∇0,∇1).
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One can easily show that the number is independent of the choice ofRλ, R0λ. Thus∫

V

ϕ(∇∗) =
∑

λ

Resϕ(F , NV , Sλ).

Also, if V is compact, by formulas similar to (2.2), (2.3), one gets ageneral Camacho-Sad type
formula: ∫

V

ϕ(N) =
∑

λ

Resϕ(F , NV , Sλ).

SupposeSλ = {p}. LetF be generated by the vector fieldṽ nearp and let(h1, . . . , hk) be a set of
defining functions forV nearp. SinceV isF-invariant then fori = 1, . . . , k

ṽ(hi) =
k∑

j=1

cijhj,

for some holomorphic functionscij. Let C = (cij).

Lemma 7.3.1(Existence of good local coordinates). There exists a local system of coordinates
{z1, . . . , zn+k} nearp such that, if̃v =

∑n+k
i=1 ai

∂
∂zi

, then{a1 = . . . = an = 0} ∩ V = {p}.
In a local coordinates system as in Lemma 7.3.1 by (7.1) we have

Resϕ(F , NV , p) = Resp

[
ϕ(C)dz1 ∧ . . . ∧ dzn

a1, . . . , an

]

V

= Resp

[
ϕ(C)dz1 ∧ . . . ∧ dzn ∧ dh1 . . . ∧ dhk

a1, . . . , an, h1, . . . , hk

]
.
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