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Abstract

In this paper we study holomorphic vector fields transverse to the boundary of a polydisc in
C™ n > 3. We prove that, under a suitable hypothesis of transversality with the boundary of
the polydisc, the foliation is the pull-back of a linear hyperbolic foliation via a locally injective
holomorphic map. This is the n > 3 version for one-dimensional foliations of a previous result
proved for n = 2 in [3] and for codimension one foliations in [11].

1 Introduction and main result

One of the main results in the classical theory of codimension one real foliations is a theorem of A.
Haefliger [8] which implies that an analytic codimension-one foliation admits no null (homotopic)
transversals. In the course of the proof one is led to consider real vector fields in a neighborhood
of the closed disc D? C R? which are transverse to the boundary 9D? ~ S'. The use of Poincaré-
Bendixson Theorem shows the existence of some unilateral hyperbolicity, for some closed orbit
v C D?, what is not compatible with the analytical behaviour. Unfortunately, there is no feature
like the classical Poincaré-Bendixson Theorem in the case of holomorphic vector fields. To overcame
this difficult is one of the basic motivations for the present work. Moreover, we have, in the complex
setting, natural domains to be considered which are not regular (at the boundary), as polydiscs for
instance A™ C C". Therefore, the study of the consequences of transversality should be somehow
extended to such domains.

The case of round domains is studied by T. Ito in [9] where it is proved that if a holomorphic
vector field Z in a neighborhood of the closed ball B"(R) = {z € C"; |z| < R}, is transverse to
the sphere S?"~1(R) = 0B"(R) = {z € C"; |z| = R}, then such vector field exhibits only one
singularity o € B"(R), which is accumulated by each orbit of Z in B*(R). Moreover, the germ of
Z at o is simple and in the Poincaré domain ([2]). In this paper we are interested in the case of
a holomorphic vector field transverse to the boundary of a polydisc in dimension n > 3. Let us
introduce the notions we use.

Let X be a holomorphic vector field in a neighborhood W of the origin 0 € C™, n > 2 and
denote by sing(X) its singular set. For z € W we denote by L the leaf of the real 2-dimensional
foliation defined by the nonsingular orbits of X in W \ sing(X).

Definition 1. Let M C W be a smooth real submanifold. We say that X is transverse to M if for
any € M it follows that X (z) # 0 and T, M + T,,L¥ = T, (R*").

This definition is natural in case M is smooth and codimg M < 2. However, if M is singular
one has to replace this concept suitably. For instance, if A%(1) := {(z1, 22) € C?: |21] < 1, 20| < 1}
is the unit bidisc in C2 then M = 9A2(1) is composed by 3 smooth components:

OA%(1) = (ST x A)U (A x SHyu (S x SY),
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where A = Al(1) = {z € C: |2] < 1} and S* = JA. In [3] the authors define that X is transverse
to the boundary OA%(1) provided X is transverse to each smooth component of the boundary. Using
such a definition they prove

Theorem ([3]) Let X be a holomorphic vector field defined in a neighborhood of the closure of
A2(1) c C?. If X is transverse to OA?(1) then there exist

1. alocally injective holomorphic map ® which sends a neighborhood of A2(1) to a neighborhood
of the origin 0 € C? and

2. a linear hyperbolic foliation Ly on C? defined by xdy + Aydx =0, A € C\ R

such that the singular holomorphic foliation F(X) defined by X is the pull-back F(X) = ®*(L)).
Moreover, the map ® is injective as a map between spaces of leaves.

In this paper we extend this result to one-dimensional foliations in any dimension. When trying
to do this, several differences with the two dimensional case appear. One difficult, is the fact that
in dimension n = 2, a one-dimensional foliation is always of codimension one, and this is no longer
true if n > 3. Usually, holonomy and extension techniques are well-developed for codimension one
holomorphic foliations, so we have to develop some material on that either. Another difficult arises
when trying to introduce the notion of transversality with the boundary of a polydisc in dimension
n > 3, since there are smooth components of this boundary which have codimension higher than 2.

In what follows we use the following notations: Given real numbers R > 0 and p > 2 we
define A"(R) := {(z1,...,2n) € C" : |2;| < R,j = 1,...,n} the open polydisc of radius R > 0;
A™R] := A™(R) the closed polydisc of radius R; BJ(R) := {(z1,...,2n) € C" : 3 |2|* < R*};
B[R] := B2(R) and S2""'(R) := dBJ!(R). The following proposition is proved in [12]:

Proposition 1. Given a holomorphic vector field X in a neighborhood of A%[1] C C? the following
conditions are equivalent:

1. X is transverse to the boundary OA%(1).

2. X is transverse to the boundary 0B (1) = S3(1) (which is smooth) for all p large enough.

The proposition suggests the following definition of transversality that we will adopt:

Definition 2. A holomorphic vector field X defined in a neighborhood of the closed polydisc A™[1]
is transverse to the boundary 0A™(1) if:

1. There exist € > 0 and py € (2, +00) such that if p > pp and |R — 1| < € then X is transverse
to S2"~L(R) = B"|R]

2. X is transverse M C C" and to the boundary OM for any manifold M such that, up to
reordering the affine coordinates, is of the form of M = S x B;}_l(R) and, therefore, M =
St x Sf)”_?’(R).

n
Example 1. Let X = > )‘jzja%j be a linear vector field on C", n > 3. We assume that X is in the
j=1

Poincaré domain, i.e., the origin 0 € R? does not belong to the convex hull of the set {A1,..., A\, }
in R2. Also we assume that X is hyperbolic, i.e., A\;/A\j € C\ R for all i # j. Then X is transverse
to the boundary of the unit polydisc A™(1) C C".

Our main result is the following:



Theorem 1. Let X be a holomorphic vector field defined in a neighborhood of the polydisc A™[1] C
C™, n > 2 and transverse to the boundary OA™(1). Then there exist a holomorphic locally injective
map ®: W — C" from a neighborhood W of the polydisc and a linear vector field Z in C™ such that
in W the singular holomorphic foliation F(X) defined by X is the pull-back by ® of the foliation
F(Z) defined by Z. The map ® is a diffeomorphism in a neighborhood of the origin and is injective
as a map between leaf spaces.

Remark 1. Transversality with 9A™(1) is a much stronger condition than transversality with spheres
S2n=1(r) = 9B?[r]. Indeed, the holomorphic vector field X = :ca% + ya% + (x4 z)% is transverse
to all spheres S°(r),r > 0 in C3 but is not transverse to A3[1].

Sketch of the proof

A brief sketch of the proof of Theorem 1 is as follows. First we use Definition 2 and apply [9] to
conclude that X has a unique singularity § € A"(1) and DX (0) is in the Poincaré domain. By
the classical Poincaré-Dulac theorem X is holomorphically conjugate in a neighborhood of 4 to its
linear part or a Poincaré-Dulac resonant normal form. Using the transversality of F(X) with the
components ¥ C A" (1) diffeomorphic to S* x B~1[1] and with their boundaries, we obtain that
(in a neighborhood of) such ¥ the foliation F(X) induces a transversely holomorphic £(X) with
a single periodic orbit whose holonomy map is an attractive diffeomorphism globally linearizable
or globally holomorphically conjugate to a normal form of Poincaré-Dulac resonant type. This
suspension flow £(3) can therefore be transversely holomorphically conjugated to standard models
what allows the construction of suitable systems of closed meromorphic one-forms {ny}7_, in
neighborhoods of (each) ¥, which describe F(X) in these neighborhoods.

A gluing process based on the rigidity of the transverse dynamics of the flows £(X) and followed
by application of Hartogs’ Extension Theorem for polydiscs gives then a system of closed meromor-
phic one-forms {7;}7_, in a which defines 7(X) in a neighborhood of A"[1]. Finally, using the local
normal form of X around 6 we give global normal forms for the 7; and conclude the linearization
of F(X) as stated.
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Our result is a step towards a compact leaf theorem for holomorphic foliations of dimension
one, for its proof states the existence of nontrivial (hyperbolic) holonomy for such foliations which
are transverse to the boundary of certain product domains as S x A"~1(1). Of course, additional
hypotheses shall be made on the foliation, like existence of some leaf with subexponential growth
or, more generally, of an invariant transverse measure. This is subject of incoming work.

2 Preliminary results

Before going into the foliation framework we need some results on holomorphic diffeomorphisms.

Proposition 2. Let M be a complex manifold of dimension m > 1. Let F : M — M be a
holomorphic map having a fized point p € M such that dF), is in the Poincaré domain. If there
exist m hypersurfaces which are F'-invariant and linearly independent at p then F' is holomorphically
linearizable in a meighborhood of p.

Proof. Up to work with FF~! we can assume that p is attractive. Moreover, being the result of local
nature, we can assume that M = C” and p = 0 the origin of C"™. We are going to give the proof
by induction on m. If m = 1 the result is true. Assume it is true for m — 1.



First of all we show that dF{ is diagonalizable. Indeed, /i\f Hy,...,Hp, are the F-invariant
hypersurfaces, the m (non-singular) curves v; := HyN...N H; N...N Hy, (here H; is omitted)
are F-invariant and linearly independent at 0. Since dFy(Toyj) = To7y; then dFp is diagonalizable.
Therefore we can change coordinates in such a way that dFj is diagonal. Moreover, up to linear
changes of coordinates we can assume that Ty, is generated by E; = (eji)izlp,,’m, €ji = (5; All the
changes of coordinates perform in the rest of the proof are tangent to the identity and therefore
these properties will survive.

Let A1,..., A, be the eigenvalues of dFy labelled so that 1 > |\ > [\ > ... > |Ap] > 0.
We claim that A; is not resonant (see [2]). Indeed, if it were Ay = AJ'--- Afm with s; € N and
s1 4 ...+ s, > 2 then for each s; > 0 we would have [A;| < |A;| contrary to our definition of
Aj’s. Similarly one can show that A\; can be resonant only with the A;’s such that k& < j and
|Ak| > |Aj|. Therefore, by the Poincaré-Dulac Theorem (see, e.g., [2]) we can holomorphically
change coordinates to have

F(z1,...,2m) = (Mz1, Aazo + fa(21), - o Amam + [ (21, -+, Zm—1)),

where f; are holomorphic polynomials which are the sum of the resonant terms in F;. The aim is to
show that f; = 0 for all j. Assume on the contrary that f; =0 for j =2,...,r —1 and f, Z 0, for
some 2 < r < m. First, we claim that there exists an F-invariant (r — 1)-dimensional submanifold
7 C C™ passing through 0 and such that Z is parameterized by

r: (Cla"'7CT—1) — (Ch' . '7<T—1a(pT(C17'"aCT—l)v" . ﬂpm(Cl,- . '7CT—1))7

with ¢;(0) = 0 and %(0) =0forj=r...,mand k=1,...,r—1. Indeed, taking into account our
preliminary choice of coordinates, intersecting m — r 4+ 1 suitably chosen F-invariant hypersurfaces
given by hypothesis, one can find an (r — 1)-dimensional F-invariant submanifold whose tangent
space at 0 is generated by F1,..., E._1. Then an application of the implicit function theorem gives
Z with its parametrization, as wanted. Writing down the equation F(Z) C Z in terms of I, we
obtain the following functional equation

F(F(Clv s 7€r—1) = F(C?a K 7C£fl)7

namely, looking at the first r-terms,

)\TSDT(CL cee 7CT—1) + f'r‘(Clv ey (T—l) == QOT(AlCla DRI AT—lCT—l)) (21)
for all (y,...,(—1 € C close to 0. Notice that, since f, #Z 0 then ¢, Z 0. Now write

ky_
QOT(Clv ) C?”) = Z ALy .k fl T (7-_11

and put this expression in (2.1). Equating coefficients with the same (r — 1)-degrees we find that
necessarily f, = 0. Indeed, assume that f, contains a term like ¢(j* - - -Cf:l. This is possible only

if A, = Aj'--- A7 Looking at terms of degrees (s1,s2,...,8-—1) in (C1,...,¢—1) we find

_ S1 Sr—1
ArQsy s,y T €= sy s, AT - A

and hence ¢ = 0. O

Lemma 1. Let D C C™ be a bounded conver domain or a bounded strongly pseudoconvex domain
and F' : D — D a holomorphic map. Assume that there exists a point p € D such that F(p) = p and
dFy, is in the Poincaré-domain. Then F' is holomorphically conjugate to its Poincaré-Dulac normal
form in D, .i.e, there is holomorphic diffeomorphism 1): D — C™ such that F = ¢~ 'oFovy: D — D
where Fy: C" — C" is a Poincaré-Dulac normal form for F in a neighborhood of p € D.



Proof. By the Cartan-Carathéodory theorem (see, e.g., [1]) the point p is attractive and its basin
of attraction is D then one can extend the local linearizing map to D. O

Finally we collect here, as a lemma, main facts from [9] and [10]:

Lemma 2. Let X be a holomorphic vector field in a neighborhood of the closed unit ball B™[1] C C",
n > 2. Assume that X is transverse to the boundary S*"~1(1) = OB"[1] and singular at the origin
0. Then

1. The only singularity of X in B™[1] is the origin 0 € C™.

2. For all0 < R < 1 the vector field X is transverse to the sphere S*"~1(R) = OB"[R).

3. The origin is a simple singularity of X and the linear part DX (0) is in the Poincaré domain.
4. Each solution L of X which crosses S*"~1[1] tends to the origin, i.c., 0 € L.

We will also need the following fact:

Lemma 3. Let X be a holomorphic vector field with a isolated singularity p € U C C"*, n > 2,
U connected. Assume that the singularity is linearizable and in the Poincaré domain. Let h be
a holomorphic function in U such that dh(X) = 0 in U (outside the polar set of h). Then h is

constant.

Proof. Assume that p = 0 and U contains a small polydisc A™ centered at the origin where h has
a Taylor expansion. Choose coordinates for which X is linear, i.e., X = Z?Zl akzk% and h is

given by A
e T
for jp >0 and k =1,...,n. The condition dh(X) =0 in A" (off the polar set of h) implies

Z hjlv"wjn(aljl +...+ anjn)Z{l R ZZ'Ln =0.
j17"'7jn

Thus hj, ... (@1j1+...+onjn) =0forall ji,...,jn. If a1ji+...+ayj, =0 for some ji,...,7, #0

then 0 is not in the Poincaré domain for then 0 belongs to the convex hull of (aq,...,a,) (indeed
it would be 0 = > }_; a(ji/J) with J = >°7_;jr > 0), against our hypothesis. Therefore
hij,,...jn = 0 for all (j1,...,4n) # (0,...,0), and thus h is constant. O

3 Vector fields transverse to certain product domains

In this section we study the transversely holomorphic flows induced by F(X) on the components
of A™(1) diffeomorphic to S* x Bp[1]. We will prove these flows correspond to suspensions of
holomorphic diffeomorphisms F: V' > A" 1[1] — F(V) D A"![1] which are either linearizable
diagonal or conjugate to a Poincaré-Dulac normal form. In particular, F' always has a single fixed
point 6, which is attractive, and dFy is in the Poincaré domain. The first result is a generalization
of the main construction in [3].

Lemma 4. Let X be a holomorphic vector field in a neighborhood W of the product S* x BJ[R] C
C x C™ and assume that

1. X is transverse to S' x BJ(R),



2. X is transverse to ST x SY"1(R).

Then X induces a transversely holomorphic flow L in the manifold with boundary S* x By [R] which
is transverse to the boundary and has a single periodic orbit v C S! x B} (R) with the following
properties:

1. v meets transversely every fiber {2} x BJ[R],
2. the holonomy map associated to vy is defined in all Bj(R) and is an attractor.

Proof. Denote by £ the transversely holomorphic flow defined by X in S! x B[R] By transversality
hypothesis this is a non-singular flow. Orient £ in such a way that it points inward S! x By [R]
from the boundary. By the transversality hypothesis it follows that £ is transverse to all the
fibers {z} x B}'(R), z € S'. Fix a point zp € S and let (z0,y) € {z} x B}[R]. From our
orientation of £ and by transversality hypothesis, the orbit of £ starting from (zp,y) necessarily
meets (transversely) all fibers {z} x Bj(R) and comes back to the starting fiber at some point
(20, h(20,9)) € {20} x By (R). Thus we have a well defined first return map

. 1 n 1 n
H: S x BJ[R] — S x B, (R),
(Z()uy) = (Z07 h(Z[),y))‘

This map is clearly holomorphic in y. Moreover, since X is holomorphic, it is also analytic in
z € 5. Now, fix 29 € S and consider H., : B)'[R] — Bj'(R). By the Brouwer fixed point theorem
there exists at least one fixed point y(z9) € By (R). Moreover, by iteration theory (see, e.g., [1])
this fixed point is unique and HZ¥(y) — y(zo) as k — oo for all y € Bp[R]. Thus y(z0) gives rise
to a (analytic) periodic orbit v of £ in S* x BJ(R). This periodic orbit 7 is unique and intersects
each fiber {z} x BJ[R] in y(z), the unique fixed point of H,. Finally, it is clear by construction
that H, is an attractor for all z € S1. O

Lemma 5. Let X be a holomorphic vector field defined in a neighborhood U of the closed set By [R],
p > 2 and transverse to the boundary Sgn_l(R). Then X has a unique singularity 0 € B, (R) in
Bp[R] which is in the Poincaré domain. Moreover, any leaf L of the foliation F(X) defined by X
which crosses OB)/(R) tends to 0, i.e., 0 € L.

Proof. This is essentially proved in [9] for one can adapt his proof to the case of any strongly
convex domain. However, for the reader’s convenience, we give here a sketch of the proof. First,
the main result of [4] implies that under our hypothesis there exists a biholomorphism % from a
neighborhood of B[R] onto a neighborhood of the closed unit ball Bf[1] and a holomorphic vector
field v in this latter set such that v = v,(X) and v is transverse to the spheres S2"~!(r) for all
r € (0,1]. By Lemma 2 and since X = 1, !(v) then the result follows. O

From now on, we assume X to be a holomorphic vector field in a neighborhood W of the
polydisc A™[1] C C", transverse to JA™(1) in the sense of Definition 2. By Lemma 5 the vector
field X admits a unique singularity # € A™ in A" which is in the Poincaré domain. By a Moebius
map we can assume that 6 = 0 the origin of C"*. We recall that a local separatriz of X through 0 is
an irreducible (germ of) analytic invariant curve I'(0) passing through the origin. Since I'(0) \ {0}
is connected (of punctured disc type) it follows that for a sufficiently small neighborhood U of
the origin we have I'(0) \ {0} = LN U for some leaf L of F(X). Conversely, by Remmert-Stein
extension theorem [7], if a leaf L of F(X) is such that for some neighborhood U of the origin we
have L\ L = {0} (i.e., L is closed off the origin in a neighborhood of the origin and accumulates at



the origin) then LNU =T'(0) \ {0} for some local separatrix I'(0) C U of F(X) through the origin.
Motivated by these facts we will call a global separatriz of F(X) in W an invariant irreducible
analytic curve I' C W such that 0 € ', equivalently, 0 € I" and I" \ {0} = L is a leaf L of F(X),
equivalently, I' = LU {0} for a leaf L of F(X) which is closed outside 0 and accumulates the origin.

Lemma 6. The foliation F(X) has exactly n local separatrices through the origin.

Proof. For sake of clearness we give the proof in case n = 3. Consider a component S* x AZ ¢ A3
with boundary 9(S! x A2 = §1 x §A2. By hypothesis X is transverse to the boundary S* x A2
and therefore by definition X is transverse to S' x A%, to S x B2(1) and to S* x B2(1) for all
p >> 1. By Lemma 4 the restriction of the foliation F(X) to S' x B2[1] is a transverse holomorphic
flow with a unique periodic orbit 71(1) whose holonomy map is an attractor defined in Bg[l].

Now we are going to slightly perturb the product S' x A2%[1] as S1(s) x A2[1] (here, as usual,
St(s) = 0A2(s)) for |s — 1| < e. We claim that if € > 0 is small enough than X is transverse to
S1(s) x A%(1), to S'(s) x BZ(1) and to S'(s) x Sy(1) for all p > 1. This is clearly true for any
p fixed and our definition of transversality implies that we can in fact find such an ¢ > 0 which
works for all p. Indeed, assuming by contradiction that for any m € N there exist p,, and z,, such
that X is not transverse to, say, S'(s) x B2(1) at zp,, then passing to the limit we find a point
z € S' x A%[1] such that X is not transverse to some components of S* x A%[1] at 2.

Fix such a small € > 0. As before, the flow induced by X on S*(s) x Bg[l] has a unique periodic
orbit v5(1) whose holonomy map is an attractor defined in the ball Bg[l].

Let I't := Us_1|< 7s(1) be the union of the periodic orbits. Then I'y C 4y x B3(1) c Cx C?
where Ay := {( € C: | — 1] < €}. Notice that I'; is a “piece” of an attractive leaf of F(X) in
A1 X A2(1>.

Analogously using the components A x S x A and A2[1] x S! we obtain corresponding “pieces”
of attractive closed leaves I's C A x Ay x A and I's C A? x A3. By Lemma 5 the leaves T';(0)’s
tend to 0. Therefore X has at least three separatrices at 0. On the other hand, by the Maximum
Principle, any separatrix of X must intersect some slice as above and therefore, X has exactly
three separatrices through 0. Moreover, this shows that any local separatrix of X is contained in
a unique global separatrix of X. O

Now we fix some notation. We denote by A(X,0) the union of germs of invariant analytic hy-
persurfaces through the origin and write A(X,0) = [J;_; A;(X,0) its decomposition in irreducible
components. Then we have 1 < r < n. Denote A(X) the union of globally defined invariant
hypersurfaces passing through the origin and write A(X) = U;lzl A;(X) its decomposition in irre-
ducible components. We have < r; and we can assume that A;(X,0) C Aj(X) forall j =1,...,r.
Later on, we will see that any local invariant hypersurface corresponds to a unique global invariant
hypersurface and thus r = r1. Also let us denote by Sep(X,0) = (Jj_, I';(0) the union of local
separatrices of X through the origin and by Sep(X) the set of global separatrices passing through
the origin and write Sep(X) = Ujlzl I'; in irreducible components. From the final part of the proof
of Lemma 6 we have that s = n and we can assume that I';(0) is the germ of I'; at the origin, i.e.,
FJ(O) C Fj, j=1..n.

For each j € {1,...,n} we denote by E?”_l the component of the boundary of A™(1) which is
diffeomorphic to ST x A"71[1] € C x C" and defined by |zj| = 1. We can consider the induced
"holonomy map” Fj: A"71[1] — A"~1[1], obtained as the holonomy maps of the induced flows
on approximations St x By [R] of 2?”_1. This map is well-defined up to analytic conjugation in
Aut(A"71[1]) and we can assume that F} has a single fixed point at the origin, which is an attractor.
In particular, according to Lemma 1 we have two possibilities for F:

1. Fj is analytically linearizable in a neighborhood of E?”_l.

7



2. Fj is analytically conjugate to its Poincaré-Dulac normal form in a neighborhood of E?”_l.

4 Semi-local constructions of differential forms

In this section we construct systems of closed meromorphic one-forms, in neighborhoods W; of
the components E?"_l, which define the foliation F(X) and are closely related to the transverse
dynamics in Z?”_l. We fix a component Z?”_l and a sufficiently small neighborhood of Z?”_l in
S1 x C" where we shall work. Given the holonomy map Fj: A"71[1] — A" ![1] we assume first
that Fj is linearizable. Let ~;(1) be the periodic orbit in Z?"‘l and fix a point z;«) € S'. Since the
holonomy map Fj is linearizable diagonal one can find holomorphic coordinates (uq, ..., up—1) in
{29} x A"~1[1] such that the holonomy map is linear of the form Fj(u1, ..., un;) = (AMU1, ey Apy Un)
for some A1,...,A\y—1 € C with 0 # [A\x] < 1 for all £ =1,...,n — 1. Define a system of one-forms
M5, .-, 7, in the transverse section {29} x Al[1] as follows:

; du
(U, ey Un—1) = “E o k=2,..n.

U,
Since F J’."(n;?) = 17;? , 7 =2,...,n, these forms admit holonomy extensions to a neighborhood of Z?”_l
which we still denote by 77;?’, and satisfy (by the holonomy extension) n;?(X) =0,k=2,...,n. Each
form 7] is closed and transversely meromorphic with simple poles in 2]2."_1. Moreover for each

zj € S! the intersections (ni)oo N ({z;} x A"71]), k = 2, ...,n, are the invariant hypersurfaces of
the corresponding holonomy map. ‘

Arguing as in the proof of Lemma 6 we can indeed construct the system of one-forms {ni}ﬁjﬁ
in a product W; = A; x V]."fl, where A; = {z; € C:|z; — 1] < €} and anfl ={(z1,.., Zj;, .., 2n) €
C bz —1l < eVl =1,..,n, £+ 7} for some small € > 0.

Assume now that Fj is not linearizable. For simplicity of notation we suppose n = 3. Let
us first make some general considerations. Take a holomorphic vector field Z in a neighborhood
of the origin 0 € C?, with an isolated singularity at the origin, in the Poincaré domain, but not
linearizable in a neighborhood of the origin. Then the Poincaré-Dulac theorem implies that we
can find local holomorphic coordinates (z,y) in a neighborhood of the origin such that Z(z,y) =
(nx + cy”)a% + ya%, for some n € N\ {1} and some ¢ € C\ {0}. We can assume that ¢ = 1.
Straightforward forward integration then shows that the flow Z; of Z is given in a neighborhood
of the origin by Zi(z,y) = ((z + ty™)e™, ye'), t € C. If we put F = Z, for some time a € C and
A=e" u=ec=a) then we have

F(z,y) = Az +cy”, py)

where A = p™.

In particular F' preserves the vector field Z, i.e., Fi.(Z) = Z. Thus it must preserve its dual
one-forms. That is the idea we want to use. We look for a pair of independent one-forms ny, k = 1,2
such that n;(Z) = 1 and also 7y is closed and meromorphic. We can choose 7o = d—;’ which clear is
closed and dual to Z in the sense that 72(Z) = 1. The one-form 7, must satisfy 71(Z) = 1 and be
closed. In order to find 1; we consider the one-form Q2 = ydz — (nz+y™)dz which satisfies Q(Z) =0

and observe that w := ynlﬂ Q= z—ﬁ —nx yfﬂl — % which is clearly closed, meromorphic and tangent
to Z. Thus we can take 11 = w + 12 satisfies our requirements. We have 1 = Z—i —nx y,‘f?{l which

is closed, dual to Z and independent with 7 (outside y = 0 where both one-forms have poles).
We resume our current situation, where F' = F} is not linearizable. Then, it must be of the form
F(z,y) = (A + ...,py + ...) in a local chart (x,y). Since it is not linearizable we must have some



resonance in the eigenvalues A, u. Let us examine such possible resonances. Since F' is attractive
we must have 0 < |[A\| < 1, 0 < |u| < 1. The only possibility is A = A5 52 with s > 0,s9 > 0 and
s1+ s9 > 2. If s1 = 1 then p® = 1 what is not possible. If s; > 1 then p® = AL751 what is not
possible either. Thus the only possibility is, up to reordering the coordinates, s; = 0 and A = p*2.
Therefore, we have a normal form like F'(z,y) = (Az + cy®, py) for some ¢ € C\ {0} and A = p® for
some s € N, s > 2. By the above considerations we can, arguing as in the linearizable case, construct
a system of two one-forms 7], 73 in a product W; = A; x Vj?, where A; = {z; € C: |z; — 1| < ¢}
and ij = {(21, .y Zjy 0y 23) € C? 1 |2p — 1| < €,¥0 = 1,...,3, { # j} for some small ¢ > 0. For the
general case we obtain therefore:

Lemma 7. Given any j € {1,...,n} we can construct a system closed meromorphic of one-forms
{mi}e=r in a product W; = Aj x anfl, where Aj = {z; € C : |z; — 1] < €} and anf1 =
{215y Zjy ey 2n) € CL |2y — 1] < V0 = 1,..,n, £ # j} for some small ¢ > 0 with the
following properties:

1. The one-forms {ni}’,ﬁig are meromorphic, closed and the system has rank n — 1 outside the
union of the polar sets, which is of complex codimension one.

2. The system {ni}ﬁzg is integrable and defines the foliation F(X) in Wj.

3. The holonomy map F; associated to the component E?nfl is linearizable if and only if the
one-forms have simple poles.

5 Global construction of differential forms

This section consists of a globalization of the semi-local construction performed in Section 4. This
is done by gluing together the systems {n]}7_, obtained for each j = 1,...,n. We divide the
argumentation in two cases.

5.1 The linearizable case

Let us assume that each component E?”_l has a linearizable holonomy map Fj for all j =1,...,n.
For the sake of simplicity once again we will assume that n = 3. From the above Lemma 7
we can construct a pair of closed meromorphic one-forms {77%, 77%} with simple poles in a product
Wy = A1 x VE, where A] = {21 € C: |z1—1| < e} and V2 = {(22,23) € C?: |20—1| < ¢, ]23—1| < ¢}
for some small € > 0. Similarly, for the slices Al[1] x S x Al[1] and A?[1] x S* we construct pairs
of closed meromorphic one-forms {n3,n3} and {n3,n3} with simple poles in suitable neighborhoods
Wa, W3 of Al[1] x Ay x Al[1] and A%[1] x A3. Moreover 77,(X) =0 on W for j = 2,3 and k = 2, 3.
We can assume that W; N W}, is connected for j,k = 1,2, 3.

Lemma 8. There exist constants a,b,c,d € C such that ad — bc # 0 and
5 = any +bng and 13 = eny + dng
on W1 N Ws.

Proof. Since {n3,n3} and {n3,n3} define the same foliation F(X) in Wi N Wa, then n3 = anl + bni
and 77% = cnd + dn% for some meromorphic functions a, b, c,d. We have to show that a,b,c,d are
in fact constant for a suitable choice. The main remark is that the functions a, b, c and d can be
chosen as holomorphic. All one has to do is to reorder the one-forms n,i and 17,% where k = 2,3 in



such a way that the polar sets (n})oo and (97)so coincide in the common domains of the one-forms.
We have to show that a, b, c,d are in fact constant.
Taking the exterior derivative of n3 = anj + bni we find

0=daAns+dbAn;

and then
0=daA 77% A 1731,.

This implies that the function a is constant along the orbits of X in W3 N Ws. Therefore a is
holomorphic and constant along the orbits of X. Now we use the fact that nj is Fj-invariant
by construction, i.e., F]*(n,]g) = 1 so that from the equation' n3 = any + byt we obtain that0 =
(Ff(a) — a)nj + (Ff(b) — b)ns so that, since the one-forms 7] are independent off the polar sets,
we obtain a o I} = a and bo F} = b also from the identity principle. Now the dynamics of the
diffeomorphism Fj implies that the only holomorphic functions constant along its orbits are the
constants, thus a and b are constant.

Remark 2. Notice that the set W N W3 is an open neighborhood of the intersection (S! x A2[1])N
(A1] x ST x Al1]) = St x S x Al[1]. By hypothesis X is transverse to St x S! x Al(1) in C3.
Thus S x S x Al(1) is a real transverse section to F(X) representing the leaf space of F(X) in a
neighborhood of S! x S! x Al(1). It follows that any holomorphic first integral for F(X) W1 N Ws
is defined on S x S x Al(1) and thus it is constant.

Similarly we prove that ¢ and d are constant. O

Thus we can extend the pair {ni,ni} to Wi U Ws by means

~1
(o Jw=(0) (i)
n ) c d 3
A similar argumentation allows to extend {ni,ni} to W3. Therefore {ni,ni} can be defined in
a neighborhood of A3[1]. Hence, by Hartogs’ Extension Theorem (see, e.g., [13]) we have the

extension of the one-forms 72,73 to a neighborhood of A3[1]. We state the general n-dimensional
conclusion as follows:

Lemma 9. There exist n—1 closed meromorphic one-forms {na, ...,n,}, with simple poles, defined
in a neighborhood W of A™[1] such that

1. nj(X)=0,5=2,..,n.

2. The system {nk}ﬁig has rank n — 1 off the polar sets and defines the foliation F(X).
3. Moo NeeeN(Mp)oo = (F1U...UTY,) and

4 (M2)oc U o U (Mn)oo = Uj—g A4(X) = A(X).

5.2 The nonlinearizable case

Now we assume that some component Z?"fl has a nonlinearizable holonomy map Fj for some
j=1,...,n. Again we assume that n = 3. As in the preceding section, an application of Lemma 7
gives the construction of a pair of closed meromorphic one-forms {13, 17%} in a product Wy = Ay x V2,
and pairs of closed meromorphic one-forms {n3,n3} and {n3, 73} in suitable neighborhoods Wa, W
of AM1] x A x A'[1] and A%[1] x Az. Moreover 72 (X) = 0 on W; for j = 2,3 and k = 2,3. We
can assume that W; N W}, is connected for j, k = 1,2, 3.
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Lemma 10. There exist constants a,b,c,d € C such that ad — bc # 0 and
= any +big and 15 = eng + digs
on W1 N Ws.

Proof. We proceed similarly to the proof of Lemma 8. Therefore, because {ni,ni} and {n3,n3}
define the same foliation F(X) in Wi N Wa, we have 73 = anl + bni and 73 = cnd + dn} for
some meromorphic functions a, b, c,d and ad — bc # 0 and we have to show that a,b,c,d are in
fact constant. Again this comes from the fact that the functions a,b,c and d can be chosen as
holomorphic if we reorder the one-forms 17,& and 17,% where k£ = 2,3 in such a way that the polar sets
(nt) and (n?)eo coincide in the common domains of the one-forms. Then, as before, the invariance

of the ni with respect to the holonomy maps F}; as well as the local dynamics of the F; imply that
the functions are constant indeed. O

Lemma 11. There exist n — 1 closed meromorphic one-forms {na,...,nn}, not all having simple
poles, defined in a neighborhood W of A™[1] such that

2. The system {n}X=2 has rank n — 1 off the polar sets and defines the foliation F(X).

4. (Mm2)oo U oo U (Mn)oo = U§:1 Aj(X) = A(X) where 1 < r < n and r is the number of global
invariant hypersurfaces of F(X).

6 Linearization of foliations

In this section we assume that each component E?"_l has a linearizable holonomy map F}. Under
this hypothesis, we will prove that the foliation F(X) is linearizable in the sense of Theorem 1. We
shall state it in a more general context as follows:

Proposition 3. Let X be a holomorphic vector field in a neighborhood W of the closed polydisc
A"[1] Cc C", n > 3 and assume that:

1. sing(X) N A™[1] = {0} and the origin is a singularity in the Poincaré domain.

2. There exists a system {n; ?:2 of closed meromorphic one forms, with simple poles in W, such
that the system has rank n — 1 (outside the polar sets) and n;(X) =0 for j =2,...,n.

Then there exists a holomorphic map F: W — C" such that F(0) = 0 and nonsingular at

the origin, and a linear polynomial vector field Z = > )‘J'Zjaizj i C™, which is in the Poincaré
j=1
domain, such that the foliation F(X) is the pull-back F*(F(Z)). In this sense, F(X) is globally

the pull-back by F of its normal form at the origin.
Our first step is the following lemma:

Lemma 12. Let X be a holomorphic vector field in a neighborhood W of the closed polydisc
A™1] c C", n > 3. Let {773‘}?:2 be a system of closed meromorphic one forms with simple poles
in W such that the system has rank n — 1 and n;(X) = 0 for j = 2,...,n. Assume that X has
an wsolated singularity at the origin O which is in the Poincaré domain. Then X s linearizable in
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a neighborhood of the origin and there exist holomorphic functions fj, j=1,....n defined in a
neighborhood of A™[1] and complex numbers p; € C* such that, up to a linear automorphism of the
system {n;}]_y, one can write for j =2,....n

A i
Proof. Assume that we have proved that X is linearizable at 0, thus there exist a neighborhood of
0 and local coordinates z1,...,x, on U such that z;(0) = 0 and
- 0
X(x1,...,Tp) :Z:lakwkaxk, (6.1)

for a; € C* and the origin is not in the convex hull of {ay, ..., oy} in R2.
In particular, the foliation F(X) defined by X has n separatrices at 0, whose union in U is
given by

Sep(F(X),0) = | J{z1 =...=dp=... =2, =0},
k=1

where ) means omitted. Moreover there are n local X-invariant hypersurfaces through the origin,
whose union is given by

A(F(X),0) := U{xk = 0}.

Therefore the analytic set (1;)o (Which is not irreducible in general but it is F(X)-invariant by
the condition 7;(X) = 0) coincides with an some component of the subset A(F (X)), the saturated
of the germ A(F(X),0).

In particular A(F (X)) is analytic of pure codimension one, writes as A(F (X)) = Jj_5(n;)c and
has exactly n irreducible components of codimension one. Thus we can find n reduced holomorphic
functions fi,..., fn : W — C such that

AFX) = [J{f =0},
k=1

and each {f; = 0} is irreducible. In particular (1;)ec C Up_1{fx = 0} and by the Integration
Lemma ([5], [6]) we can write

Z)\ () f’“ +dFy, (6.2)

()

for some A;/" € C and some holomorphic functions F; : W — C, j=1,...,n.
We claim that in U

ydw
77]‘(55'1,---, Z)\(J I’:’ (63)
k=1

and

Sann =0 (6.4)
k=1

12



for j = 2,...,n. To prove the claim we argue as follows. Up to reordering we can assume that
{z =0} ={fr =0}NU, for k =1,...,n. Thusin U we can write fx(x1,...,z,) = xpgr(x1,...,Tp)
for some never vanishing holomorphic function gy defined in U. Thus (6.2) implies that on U

= zw dﬂ”uzA P,

Since 7;(X) = 0, setting

dg
M5 ::ZAI(C)J+dFJ7

1 9k
we have .
S APy +6;(X) = 0. (6.5)
k=1

The one-form 6; is closed and holomorphic in U. Therefore 6;(X)(0) = 0 for X (0) = 0. Using this,
from (6.5) evaluated at 0 we obtain (6.4). And then, again from (6.5) we get that 6;(X) = 0 in
U. Since 0; is closed and holomorphic in U, up to shrink U, we can assume that ¢; is also exact in
U and set 6; = dG; for some holomorphic function G; in U. Thus dG;(X) =0, j =2,...,n. By
Lemma 3 the functions G; are then constant and hence dG; = 0 proving that §; = 0 and thus (6.3).

Since by hypothesis the system {n;} has rank n — 1, it follows from (6. 3) that the complex
vectors v; = ()\g ), . )\(3)) € C", j = 2,...,n span an (n — 1)-dimensional subspace of C™.
Let T': C* — C" be a linear invertible transformation which fixes (o, ..., o) and sends v; to
(1,0,...,0,45,0...,0) with p; = —aq/aj, 7 =2,..

Applymg this linear transformation to the system {773 }J —, we obtain a new system {77]} :2 of
the form

~ df 1 f 7

/)7‘7*7—’— Jf +dF],
J

for some holomorphic function Fj W — C.
Now define for each j > 2 the functions fj =fj exp(Fj/Mj). Then

df] _ dfj dF dfj

1 +u——u-—+dﬁ.
f] Hj fj J J f] J
Let us set fl = f1. Thus K )
_dfi df'
T = f‘k j
fl f]

as wanted.

It remains to prove that X is indeed linearizable at the origin. This is a consequence of the
fact that, by hypothesis the one-forms 7n; have simple poles and therefore, any local separatrix of
X through the origin has linearizable holonomy map. The singularity is therefore linearizable as a
consequence of the Poincaré-Dulac theorem. O

The previous lemma implies

Corollary 1. Let X be a holomorphic vector field defined in a neighborhood W of the polydisc
A™1] € C*, n > 3. Assume that X has an isolated singularity at 0 € A™(1) which is lineariz-
able, hyperbolic and in the Poincaré domain. Let {n;}7_o and {i;}]_5 be two systems of closed
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meromorphic one-forms in W, with rank n — 1 and such that for every j = 2,...,n we have
n;(X) = 7;(X) = 0. Then the two systems differ by a linear transformation of C*. Namely, there
exists an n X n invertible matriz T = (T};) such that for every j =2,...,n it follows

n
nj = Z T
1=2

Finally we have the following result:

Lemma 13. Let na,...,n, and X be as in Lemma 12. The foliation F(X) induced by X on A™[1]
is the pull-back of a linear hyperbolic foliation Fz, Z = 2?21 ajzja%j on C™ by some holomorphic
map ® : W — C" defined in a neighborhood W of A™[1]. Such a map ® is injective as a map
between leaves spaces.

Proof. Apply Lemma 12 in order to find n holomorphic function fi,..., f, : W — C in a neighbor-
hood W of A™[1] such that n; = % + ,UJ]'%, for j =2,...,n and also fx = zrgr in a neighborhood
J

U of 0, with g never vanishing and (x1,...,z,) are local coordinates in U such that X is given
by (6.1). Define ® : W — C" by

®(p) = (f1(p),-- -, fu(p)).

The Jacobian matrix of ® at 0 is given by

§ @0) 0 0
Jac(®@)(0) = [%0)] [ 0 - 0
al'l k=1 0 0 gn(O)

which is non singular. In particular, up to shrink U, we can assume that & is invertible on U
and then it is a biholomorphism between U and V = ®(U) C C", a open neighborhood of 0. Let

z1,...,%2n be global coordinates in C" and let Z = Z?:l ajzja%j. Define
N dz1 de
J Z1 +'u] Zj ’
Jj = 2,...,n. The one-forms 7; are linear logarithmic on C" and define a (n — 1)-rank system

{7 }j—o such that 7;(Z) =0, j=2,...,n.

By construction n; = ®*(7); and then the foliation F(X) is the pull back of the linear foliation
Fz and the map ® : W — C" is injective near the origin 0 € C™ and each leaf of F(X) tends to
the origin, therefore the map & is injective as a map between leaf spaces.

O]

Proposition 3 is now a straightforward consequence of Lemmas 12 and 13.

7 The nonlinearizable case

In this section we deal with the nonlinearizable case for some holonomy map F; of a component
E?"_l. Indeed, we study this situation in a more general context and prove the following analogous
of Proposition 3:

14



Proposition 4. Let X be a holomorphic vector field in a neighborhood W of the closed polydisc
A™1] c C", n > 3 and assume that:

1. sing(X) N A™[1] = {0} and the origin is a singularity in the Poincaré domain.

2. There exists a system {nj}?zz of closed meromorphic one forms in W such that the system
has rank n — 1 (outside the polar sets) and n;(X) =0 for j =2,...,n.

Then there exists a holomorphic map F: W — C" such that F(0) = 0 and nonsingular at the
origin, and a polynomial vector field Z in C", which is a Poincaré-Dulac normal form for X is a
neighborhood of the origin, such that the foliation F(X) is the pull-back F*(F(Z)). In this sense,
F(X) is globally the pull-back by F of its normal form at the origin.

Proof. Proposition 3 in Section 6 above refers to the linearizable case. Thus we will assume that
the vector field X has resonances and has a nonlinearizable Poincaré-Dulac normal for Z in a
neighborhood of the origin. Again, for the sake of simplicity we assume that n = 3. There are
therefore three holonomy maps Fj: A"71[1] — A"~1[1] corresponding to the components E?"il of
the boundary of A™[1], with j = 1,2, 3. Some of these maps is nonlinearizable. We will consider the
following situation in coordinates (z,y, z) = (21, 22, 23) € C?: Fy(y, z) is linearizable, F»(x, z) is not
linearizable, F3(z,y) is not linearizable. We recall that according to Proposition 2 the holonomy
map Fj is linearizable if and only if it admits two invariant hypersurfaces through the origin, and it
is nonlinearizable if and only if it admits only one invariant hypersurface through the origin. Each
such an invariant hypersurfaces corresponds to an invariant hypersurface through the origin 0 € C?
for the foliation F(X) and to an irreducible component of the polar set of the corresponding system
of one-forms nf, k = 1,2 and therefore appears as one irreducible component of the polar set of the
system of one-forms {n}if{) defined in W. Therefore, the nonlinearizable case for X corresponds
to the case F(X) has one or two invariant hypersurfaces through the origin and the case that we
are considering corresponds to the case we have two such hypersurfaces. Indeed, according to the
possibility for Fi, F» and F3 that we are considering we can assume that Poincaré-Dulac normal
form Z for X writes as

ox 0z

where v € C\R_. Thus we a local analytic conjugacy between X and Z is a neighborhood of the
origin. We also have from the hypothesis on Fy, F5, F3 that the set of separatrices of F(X) through
the origin A(F(X)) is analytic of pure codimension one, writes as A(F(X)) = U?’:Q(nj)oo and has
exactly 2 irreducible components of codimension one. Thus we can find 2 reduced holomorphic
functions f1, fo : W — C such that

0 0 0
Z(x,y,2) = (ne+y")=— —i—y(?y +vz—

2
AFX) = [Jif =0}
k=1

and each {f, = 0} is irreducible. In particular (1;)e € Ui_;{fx = 0} and by the Integration
Lemma (see, [5] and [6]) we can write

2

_ () 4k 9
k=1 1 2

for some )x,(cj ) € C and some holomorphic functions g; : W — C, j = 1,2. The numbers r;,s; € N

are the order of {f; = 0} and the order of {f, = 0} as pole of n; respectively.
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Claim 1. In U we have

T dy dy dz
nj(z,y,2) =oj |d|—) — —| + 6 (v— — — 7.2
Jor2) = s () = Ly 4 5y (2 - &) 72)
for some o, 3; € C and j = 1,2.
Proof. We define in the local one-forms 7 = d(y%) - ‘Z—y and 79 = V(Zy - %. Clearly we have

7]? (X)=0for j =1,2. Thus we must have n; = ajn(l) + bjn2 for some meromorphic functions aj, b;
in U for j = 1,2. Taking the exterior derivatives in these expressions we obtain
— dn. 0 . 0
0 = daj A +dbj A n3.
Multiplying conveniently we get
0= daj A} An3 = dbj Ay Ay

Therefore, a; and b; are constant along the leaves of F(X) in U. Nevertheless, the dynamics
of such a Poincaré-Dulac normal form admits no meromorphic first integral in a neighborhood of
the singularity, except for the constants. Thus, a; and b; are constant what proves the claim. [J

In U we can write fo = y.he and f3 = z.hs for some never vanishing holomorphic functions hy
and hs defined in U. Thus (7.1) implies that we must have

_ dfa dfs
Ny = aj (f2)+ba 7 +¢ f3

for some constants aj,b;,c; € C. Using fo = yho and f3 = z3 we obtain

9gj dy dz dhg dhg
i =a;d +bj—+c¢—+bj—— +ci——.
7 J (y"hg) y i I hy I hs

The one-form b; dlfz +¢i % dh3 is closed and holomorphic so that we can write it as b; dh2 +¢i dh‘ = dy;

for some holomorphic functlon defined in a suitable neighborhood of the origin, that we can assume
to be U. From the claim we then obtain

gj dy dz x dy dy dz
n; =a;d —)+b; — +c +dyj=a;|d - +8(v——=—).
= ol 0y W %y =g i) - 2 (0 - B
Comparing the residues along {z = 0} we obtain ¢; = —f; and therefore
9 dy T, dy dy
a;d —)+bj— +dj=aj|d(—) - —| + 85 (v—).
3 W)+ =g [d(0) =P+ 6 ()
Comparing now residues along {y = 0} we get b; = —a; + v, and therefore

nhn
Since 1) is holomorphic necessarily we have diy; = 0 and then
gj L
a;d =a;d(—).
J (ynhg) J (yn)
Thus we have yf—zg = Ajy% + Bj for some contants A;, B; € C. Hence % =B + Ajy% inU.
Replacing g; by g; — Bjfy we can assume that B; = 0. With this we get g—g; = Ajy% in U and

d( )+ vy = ayd( ).
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therefore g;/gs is constant in U and therefore in W. Moreover, from the above equations we we
get that g; = Ajzhy in U. Thus finally we obtain

- g\ _dfey 5o dfs dfs
nj=aj |d(—4;) — ——] T bj|v—— — | +dp;
J ][(f2) f2] J[ f2 fg] ¥j
for some constants a;, Ej € C and some holomorphic functions ¢; in W. If we write § = d(%) — ‘?—22

and § = %2 then 7; = a;0 + b;¢ + dip; so that suitable linear combinations of 7; and 7 can be
vyritten as 71 = 61 +di1 and 7)o = £+ dip2 for some holomorphic functions v; in W. Now we define
fa = fae %" so that we have

dfs d
fo_dh_ .
fo f2
We also define f1 = ge~™1. The functions fl and fg are holomorphic in W and we can write
_ Ay dfe
m=d(fhy -2
I3 f2

Similarly, we define fg = fae~(¥21¥1) 56 that fg, is holomorphic and we can write

5 dfs  dfs

n=v

Jo f3

Now we define ® : W — C3 by o
® = (f1, f2, f3)-
The Jacobian matrix of ® at the origin 0 € C? is clearly non singular. In particular, up to shrink
U, we can assume that & is invertible on U and then it is a biholomorphism between U and

V = ®(U) C C3, a open neighborhood of the origin 0 € C3. Given global affine coordinates
(z,1,z) € C? we recall the definition of the vector field Z given by

0 0 0
Z(x,y,z) = (nx +y")— —i—ya—y +rvz—

ox 0z
as well as the one-forms 77? introduced above as 7 = d(y%) — % and 1) = y% — %. Then

by construction we have 7; = <I>*(77§»)) in W so that the foliation F(X) is the pull-back by ® of
the foliation F(Z) defined by Z. The map & is a diffeomorphism in a neighborhood of the origin
and each leaf of F(X) tends to the origin, therefore the map @ is injective as a map between leaf
spaces. This ends the proof of Proposition 4. O

8 End of the proof of Theorem 1

In order to finish the proof of Theorem 1 we must eliminate the nonlinearizable case dealt with in
Section 7 so that we will just have to apply Proposition 3 from Section 6 and conclude. Suppose by
contradiction that we are in the nonlinearizable situation of Proposition 4 from Section 7. Thus,
F(X) is the pull-back of a resonant nonlinear Poincaré-Dulac foliation F(Z) by a holomorphic
map ¢: W O A"[1] — C", such that ®(0) = 0 and & is a local diffeomorphism at the origin.
According to Lemma 6 the foliation F(X) has exactly n global separatrices through 0. Therefore,
also F(Z) exhibits exactly n separatrices through the origin. Then an immediate analysis on the
Poincaré-Dulac normal form Z in a neighborhood of 0 shows that this singularity is still analytically
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linearizable, yielding a contradiction. Once we have proved that F(X) is the pull-back of a linear
foliation F(Z), it is easy to conclude that Z must be hyperbolic, due to the attractive behavior
of the holonomy maps Fj associated to the components Z?"_l and therefore to all the (global)
separatrices of F(Z). This shows Theorem 1.
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