THE DYNAMICS NEAR QUASI-PARABOLIC FIXED POINTS OF HOLOMORPHIC DIFFEOMORPHISMS IN C^2

By FILIPPO BRACCI and LAURA MOLINO

Abstract. Let F be a germ of holomorphic diffeomorphism of C^2 fixing O and such that dFO has eigenvalues 1 and $e^{i\theta}$ with $|e^{i\theta}| = 1$ and $e^{i\theta} \neq 1$. Introducing suitable normal forms for F we define an invariant, $\nu(F) \geq 2$, and a generic condition, that of being dynamically separating. In the case F is dynamically separating, we prove that there exist $\nu(F) - 1$ parabolic curves for F at O tangent to the eigenspace of 1.

1. Introduction. Let $\text{End}(C^2, O)$ denote the group of germs of holomorphic diffeomorphisms at the origin O of C^2 fixing O. One of the main open problems is to understand the dynamics near O of an element $F \in \text{End}(C^2, O)$ for which the spectrum of the differential dFO is contained in the unit circle (see Question 2.26 in [9]). The case where O is a parabolic point of F, that is $dFO = \text{id}$, and O is an isolated fixed point, has been studied by several authors ([7], [17], [10], [1]). To recall their main result we need first a definition:

Definition 1.1. A parabolic curve for $F \in \text{End}(C^2, O)$ at O tangent to (the space spanned by) $v \in C^2 \setminus \{O\}$ is an injective holomorphic map $\varphi : \Delta \to C^2$ satisfying the following properties:

1. Δ is a simply connected domain in C with $0 \in \partial\Delta$,
2. φ is continuous on $\partial\Delta$, $\varphi(0) = O$ and $[\varphi(\zeta)] \to [v]$ as $\zeta \to 0$ (where $[\cdot]$ denote the projection of $C^2 \setminus \{O\}$ to P^1),
3. $F(\varphi(\Delta)) \subset \varphi(\Delta)$, and $F^n(\varphi(\zeta)) \to O$ as $n \to \infty$ for any $\zeta \in \Delta$.

Then the main result is:

Theorem 1.2. (Écalle, Hakim, Abate) Let $F \in \text{End}(C^2, O)$ be tangent to the identity and such that O is an isolated fixed point. Let $t(F) \geq 2$ denote the order of vanishing of $F - \text{id}$ at O. Then there exist (at least) $t(F) - 1$ parabolic curves for F at O.

Actually, Écalle [7] and Hakim [10] proved such a theorem for any dimension, but only for generic mappings, while Abate [1] using an ingenious index theorem...
makes the result holds for any map, but just in \(\mathbb{C}^2 \). The case where there is a curve of fixed points passing through \(O \) has also been studied ([11], [5], [2]), and actually one can see Theorem 1.2 as a consequence of results on dynamics near curves of fixed points by means of blow-ups of \(O \) in \(\mathbb{C}^2 \) (see [1], [4]). We also wish to mention that for the semi-attractive case in \(\mathbb{C}^n \) (that is one eigenvalue \(1 \) with some multiplicity and the others of modulus strictly less than 1) the existence of parabolic curves is provided by Rivi [13].

Roughly speaking the underlying idea in all previous results is to find “good invariants” attached to \(F \) which read dynamical properties of \(F \) itself (for instance Hakim’s nondegenerate characteristic directions or Abate’s indices in [1], and residues in [4]).

In this paper we deal with the case of a map \(F \in \text{End}(\mathbb{C}^2, O) \) with \(\text{Sp}(dF_O) = \{ 1, e^{i\theta} \} \) for \(\theta \in \mathbb{R} \) and \(e^{i\theta} \neq 1 \). We call \(O \) a quasi-parabolic fixed point for \(F \).

If \(e^{i\theta} \) satisfies some Brjuno condition then Pöschel proved that there exists a (germ of) complex curve \(\Gamma \) tangent to the eigenspace of \(e^{i\theta} \) which is invariant for \(F \) and on which \(F \) is conjugated to the rotation \(\zeta \mapsto e^{i\theta} \zeta \) (see [12]). However nothing is known about the dynamics in the direction tangent to the eigenspace of 1.

Our starting point is the following trivial observation: the map \(F : (z, w) \mapsto (z + z^3, e^{i\theta} w) \) has \(\{ w = 0 \} \) as invariant curve and thus, by the one-dimensional Fatou theory (see, e.g., [6]) there exist two parabolic curves for \(F \) at \(O \) tangent to the eigenspace of 1, no matter what \(e^{i\theta} \) is. However, conjugating \(F \) with a map \(G \in \text{End}(\mathbb{C}^2, O) \) tangent to \(\text{id} \) at \(O \), it might be very difficult to check that the new map has an invariant curve tangent to the eigenspace of 1 and two parabolic curves in there.

Motivated by the previous results for germs tangent to the identity, we direct our study in searching invariants for \(F \) at a quasi-parabolic point which are related to dynamical properties of \(F \) along the direction tangent to the eigenspace of 1.

The main difference between the parabolic and quasi-parabolic case is that in the first, all terms of \(F \) are resonant in the sense of Poincaré-Dulac (see, e.g., [3]), while in the second case some are not, and this allows us to dispose of those terms with suitable transformations. More precisely, let \(F = (F_1, F_2) \in \text{End}(\mathbb{C}^2, O) \) be given in some system of local coordinates by

\[
\begin{align*}
F_1(z, w) &= z + \sum_{j+k \geq 2} p_{j,k} z^j w^k, \\
F_2(z, w) &= e^{i\theta} w + \sum_{j+k \geq 2} q_{j,k} z^j w^k,
\end{align*}
\]

for \(p_{j,k}, q_{j,k} \in \mathbb{C}, \theta \in \mathbb{R} \) and \(e^{i\theta} \neq 1 \). A monomial \(z^m w^n \) in \(F_1 \) is resonant if \(1 = 1^m e^{i\theta n} \), while a monomial \(z^m w^n \) in \(F_2 \) is resonant if \(e^{i\theta} = 1^m e^{i\theta n} \), for \(m, n \in \mathbb{N}, m+n \geq 2 \). A germ \(F \) is said to be in Poincaré-Dulac normal form if it is given by (1.1) and \(p_{j,k} = q_{j,k} = 0 \) for all nonresonant monomials \(z^j w^k \). The Poincaré-Dulac Theorem states that it is always possible to formally conjugate \(F \) to a (formal) map \(G \) in normal form by means of a (formal) transformation tangent to the
identity, and actually the method of Poincaré-Dulac is constructive in the sense that given \(k \in \mathbb{N} \) it is possible to analytically conjugate \(F \) to a (convergent) map \(G \) which is in normal form up to order \(k \) (that is, nonresonant monomials of degree less than or equal to \(k \) are all zero) by means of a (convergent) transformation tangent to the identity.

Therefore if there exist invariants for \(F \) at a quasi-parabolic fixed point they have to be found in normal forms. Unfortunately normal forms are not unique and also they do not reflect the character of \(e^{i\theta} \), while our leading example does not make differences. Also, normal forms are not stable under blow-ups, which are one of the basic ingredients of parabolic theory. Indeed the only invariant terms are those we call ultra-resonant monomials, that is, for \(F \) given by (1.1), of type \(z^m \) in \(F_1 \) and \(z^m w \) in \(F_2 \), \(m \in \mathbb{N} \). And we say that \(F \) is an asymptotic ultra-resonant normal form if \(q_{0,0} = 0 \) for any \(j \). Note that Poincaré-Dulac normal forms are in fact examples of asymptotic ultra-resonant normal forms but the converse is not true in general, and indeed there are convergent asymptotic ultra-resonant normal forms which have no convergent Poincaré-Dulac normal forms. With a simplified Poincaré-Dulac method we prove that given \(F \in \text{End}(\mathbb{C}^2, O) \) with \(O \) as quasi-parabolic fixed point, there always exist (possibly formal) asymptotic ultra-resonant normal forms conjugated to \(F \) by means of transformations tangent to the identity. Again asymptotic ultra-resonant normal forms are not unique, but we show that the first \(j \in \mathbb{N} \) such that \(p_{j,0} \neq 0 \) is an invariant for (even formal) conjugated ultra-resonant normal forms. Therefore we find the first invariant \(\nu(F) \in \mathbb{N} \cap [2, \infty] \) associated to \(F \). Of course this invariant could also have been defined from Poincaré-Dulac normal forms. However, the following result justifies the usage of ultra-resonant normal forms instead of Poincaré-Dulac normal forms:

Proposition 1.3. Let \(F \in \text{End}(\mathbb{C}^2, O) \) and assume \(O \) is a quasi-parabolic fixed point of \(F \). Then there exists an invariant nonsingular complex curve \(\Gamma \) for \(F \) passing through \(O \) and tangent to the eigenspace of 1 if and only if \(F \) is analytically conjugated to a convergent asymptotic ultra-resonant normal form. Moreover in this case, if \(\nu(F) = \infty \) then \(F \) pointwise fixes \(\Gamma \), while if \(\nu(F) < \infty \) there exist \(\nu(F) - 1 \) parabolic curves for \(F \) at \(O \) contained in \(\Gamma \).

For the practical purpose of calculating \(\nu(F) \) one does not need to find an asymptotic ultra-resonant normal form. Indeed it is enough to find what we call a ultra-resonant normal form, that is, \(F \) given by (1.1) for which the first pure non-zero term in \(z \) of \(F_2 \) has degree greater than or equal to the first non-zero pure term in \(z \) of \(F_1 \) (see Section 2).

In the generic case \(\nu(F) < \infty \), we can associate to \(F \) a second invariant, essentially the sign of \(\Theta(F) \). The latter, for \(F \) in ultra-resonant normal form given by (1.1), is defined as \(\Theta(F) = \nu(F) - j - 1 \) where \(j \) is the first integer for which \(q_{j,1} \neq 0 \) and, roughly speaking, measures the “degree of mixing” of the dynamics along the eigenspace associated to 1 and \(e^{i\theta} \). Therefore, given any \(F \in \text{End}(\mathbb{C}^2, O) \) for which \(O \) is quasi-parabolic for \(F \), we say that \(F \) is dynamically separating
if $\nu(F) < \infty$ and $\Theta(F) \leq 0$ for some ultra-resonant normal form \tilde{F} of F (see Definition 2.7). Our main result can now be stated as follows:

Theorem 1.4. Let $F \in \operatorname{End}(\mathbb{C}^2, O)$ and assume O is a quasi-parabolic point of F. If F is dynamically separating then there exist $\nu(F) - 1$ parabolic curves for F at O tangent to the eigenspace of 1.

One remarkable consequence of this theorem is that if F is given by (1.1) and $p_{2,0} \neq 0$ then there always exists a parabolic curve for F at O tangent to the eigenspace of 1. This is similar to a result in the quasi-hyperbolic case—one eigenvalue 1, the other of modulus < 1—where, under similar hypothesis, the existence of a basin of attraction for F is proved (cf. [8], [14], [15]).

The plan of the paper is the following: In Section 2 we introduce ultra-resonant normal forms, the invariant $\nu(F)$ and dynamically separating maps and give the proof of Proposition 1.3. In Section 3 we prove Theorem 1.4. Finally, in Section 4 we conclude with some remarks and discuss the case $\Theta(F) = 1$ for some $s \geq 2$, especially relating parabolic curves provided by Theorem 1.4 with the ones given by Hakim’s and Abate’s theory for F^s.

Acknowledgments. We wish to thank the referee for many useful comments.

2. Ultra-resonant normal forms.

Definition 2.1. Let $F \in \operatorname{End}(\mathbb{C}^2, O)$ be given by (1.1). We call ultra-resonant the monomials of type z^n in F_1 and of type $z^m w$ in F_2, $m \in \mathbb{N}$.

In case there exists $j \in \mathbb{N}$ such that $p_{j,0} \neq 0$ we let

$$
\mu(F, z) := \min\{j \in \mathbb{N} : p_{j,0} \neq 0\},
$$

and let $\mu(F, z) = +\infty$ if $p_{j,0} = 0$ for all j's. Similarly if there exists $j \in \mathbb{N}$ such that $q_{j,1} \neq 0$, we let

$$
\mu(F, w) := \min\{j \in \mathbb{N} : q_{j,1} \neq 0\},
$$

setting $\mu(F, w) = +\infty$ if $q_{j,1} = 0$ for all j's.

Finally, if $\mu(F, z) < +\infty$ we let $\Theta(F) := \mu(F, z) - \mu(F, w) - 1$ (with the convention that $\Theta(F) = -\infty$ if $\mu(F, w) = +\infty$).

In general $\mu(F, z)$ and $\mu(F, w)$ are not invariant under change of coordinates. However $\mu(F, z)$ and the sign of $\Theta(F)$ are invariant under a suitable normalization which we are going to describe.

Definition 2.2. We say that a (possibly formal) germ of diffeomorphism $F \in \operatorname{End}(\mathbb{C}^2, O)$ is in ultra-resonant normal form if F is given by (1.1) and $q_{j,0} = 0$ for $j = 2, \ldots, \mu(F, z) - 1$. If $q_{j,0} = 0$ for any j we call F an asymptotic ultra-resonant normal form.
The first result we prove is the existence of (possibly formal) asymptotic ultra-resonant normal form.

Proposition 2.3. Let $F \in \text{End}(\mathbb{C}^2, O)$ and assume O is a quasi-parabolic fixed point for F. Then there exists a formal transformation $\hat{K} \in \text{End}(\mathbb{C}^2, O)$ tangent to id such that $\hat{K}^{-1} \circ F \circ \hat{K} = \hat{F}$, with \hat{F} a formal asymptotic ultra-resonant normal form.

Proof. We may assume F in the form (1.1). Let $q_{s,0} \neq 0$ be the first nonzero coefficient of a pure term in z in F. Consider the transformation

$$K_s = \begin{cases} z = Z \\
 w = W + aZ^s
\end{cases}$$

with $a = -q_{s,0}/(e^{i\theta} - 1)$. Then $K_s^{-1} \circ F \circ K_s$ has pure term in Z in the second component of degree $\geq s + 1$. Proceeding this way we can get rid of all pure terms in z in the second component, and \hat{K} is given by composition of the K_s's. \hfill \Box

Ultra-resonant normal forms are by no means unique as the following example shows.

Example 2.4. The germs $F(z,w) = (z + z^2, e^{i\theta}w)$ and $G(z,w) = (z + z^2, e^{i\theta}w - e^{i\theta}wz^2/(1 + z + z^2))$ are both in normal forms and conjugated by the transformation $(z,w) \mapsto (z, w + zw)$. Moreover $\mu(F,z) = \mu(G,z) = 2$, $\Theta(F) = -\infty$ while $\Theta(G) = -1$.

Using ultra-resonant normal forms we can define some invariants associated to F. Before doing that, we need the following basic lemma.

Lemma 2.5. Let $F, G \in \text{End}(\mathbb{C}^2, O)$ be (possibly formal) germs of diffeomorphisms in ultra-resonant normal form. If F is conjugated to G then $\mu(F,z) = \mu(G,z)$. Moreover if $\mu(F,z) = \mu(G,z) < \infty$ then $\Theta(F) \leq 0$ if and only if $\Theta(G) \leq 0$, while if $\mu(F,z) = \mu(G,z) = \infty$ then $\mu(F,w) = \mu(G,w)$.

Proof. Let F be given by (1.1), and let

$$G(z,w) = (z + \sum_{j+k \geq 2} \tilde{p}_{j,k}z^j w^k, e^{i\theta}w + \sum_{j+k \geq 2} \tilde{q}_{j,k}z^j w^k).$$

If T is the transformation which conjugates F to G, then its differential at the origin must be a diagonal matrix, which we can assume to be the identity. Thus let $T : (z,w) \mapsto (z + \varphi_1(z,w), w + \varphi_2(z,w))$ be the transformation conjugating F to G.

We introduce the following notation: we denote by H_m any term which has order greater than or equal to m. Also, for $m, n \in \mathbb{N}$, $m \leq n$, we write $B_{m,n}$ for...
indicating terms of order greater than or equal to \(m \) but less than or equal to \(n \); we also set \(B_{n,n} = 0 \) for \(m > n \). Moreover we let \(S_k \) denote any term of order strictly smaller than \(k \). We also set \(a := \mu(F,z) \), \(b = \mu(F,w) \) and \(\tilde{a} = \mu(G,z) \), \(\tilde{b} = \mu(G,w) \). In case \(a = \infty \) we agree that terms of type \(p_{a,0}z^a \) and symbols like \(O(z^a) \) should be understood as zeros (similarly if \(\tilde{a} = \infty \)). With this convention we can deal with all cases at the same time. Since \(F = (F_1, F_2) \) and \(G = (G_1, G_2) \) are both in normal form, we can write

\[
F(z, w) = \begin{cases}
F_1(z, w) = z + p_{a,0}z^a + wB_{1,a-1} + H_{a+1}, \\
F_2(z, w) = e^{i\theta}w + q_{b,1}z^b w + w^2 S_b + O(z^a, z^{b+1}w, w^2H_b),
\end{cases}
\]

and

\[
G(z, w) = \begin{cases}
G_1(z, w) = z + \tilde{p}_{\tilde{a},0}z^{\tilde{a}} + wB_{1,\tilde{a}-1} + H_{\tilde{a}+1}, \\
G_2(z, w) = e^{i\theta}w + \tilde{q}_{\tilde{b},1}z^{\tilde{b}} w + w^2 S_{\tilde{b}} + O(z^{\tilde{a}}, z^{\tilde{b}+1}w, w^2H_{\tilde{b}}).
\end{cases}
\]

Let \(c_h \geq 2 \) be the order of vanishing of \(\varphi_h(z, 0) \) at \(0, h = 1, 2 \). Since \(F \circ T = T \circ G \), using (2.2) and (2.3) and equating components we obtain

\[
\varphi_1(z, w) + p_{a,0}z^a + \varphi_2(z, w)B_{1,a-1} + H_{a+1} + O(w) = \varphi_1(G(z, w)) + \tilde{p}_{\tilde{a},0}z^{\tilde{a}} + H_{\tilde{a}+1},
\]

and

\[
e^{i\theta} \varphi_2(z, w) + q_{b,1}(z + \varphi_1(z, w))b^b w + \varphi_2(z, w) + [2w\varphi_2(z, w) + \varphi_2(z, w)^2]S_b + O(z^a, z^{b+1+c}, z^{b+1}w) + O(w^2) = \varphi_2(G(z, w)) + \tilde{q}_{\tilde{b},1}z^{\tilde{b}} w + O(z^{\tilde{a}}, z^{\tilde{b}+1}w).
\]

Write \(\varphi_h(z, w) = \sum_{j+k \geq 2} \varphi_h^{jk} z^j w^k \), for \(\varphi_h^{jk} \in \mathbb{C} \) and \(h = 1, 2 \). Then

\[
q_{b,1}(z + \varphi_1(z, w))b^b (w + \varphi_2(z, w)) = q_{b,1}z^b w + O(w^2, z^{b+1}w, z^{b+c_2}),
\]

\[
\varphi_2(G(z, w)) - e^{i\theta} \varphi_2(z, w) = (1 - e^{i\theta})\varphi_2^{c_2, 0}z^{c_2} + O(z^{a}, z^{c_2+1}, w),
\]

and putting (2.6), (2.7) into (2.5) we get that

\[
c_2 \geq \min\{ a, \tilde{a} \},
\]

where we understood \(c_2 = \infty \) (that is \(\varphi_2^{c_2, 0} = 0 \) for any \(j \)) in case \(a = \tilde{a} = \infty \). In particular equation (2.4) reads now as

\[
\varphi_1(G(z, w)) - \varphi_1(z, w) = p_{a,0}z^a - \tilde{p}_{\tilde{a},0}z^{\tilde{a}} + O(w, z^{a+1}, z^{\tilde{a}+1}).
\]
We examine the left-hand side of (2.9). Using (2.3) we have

\[(2.10) \quad \varphi_1(G(z, w)) = \sum_{j+k \geq 2} \varphi_{j,k}^1 [z + O(z^\alpha, w)]^j [e^{i\theta} w + O(z^\alpha, w^2)]^k = \varphi_1(z, w) + O(w, z^{\hat{a}+1}).\]

Therefore from (2.9) and (2.10) we get \(a = \hat{a}\), that is \(\mu(F, z) = \mu(G, z)\).

Let \(a < \infty\). We assume \(\Theta(F) \leq 0\) and want to show that \(\Theta(G) \leq 0\) (the other implication will follow reversing the role of \(F\) and \(G\)). We have already proved that \(\hat{a} = a\) and now we are assuming \(b \geq a - 1\). Seeking for a contradiction we suppose that \(\hat{b} < a - 1\). Taking into account (2.6) and (2.8), equation (2.5) becomes

\[(2.11) \quad \varphi_2(G(z, w)) - e^{i\theta} \varphi_2(z, w) = -\tilde{q}_{b,1} \zeta^b w + O(wz^{\hat{b}+1}, z^\alpha, w^2).\]

We examine the left-hand side of (2.11). Since \(\varphi_{j,0}^2 = 0\) for \(j < c\) and \(c \geq a\) by (2.8), using (2.3) we have

\[(2.12) \quad \varphi_2(G(z, w)) = \sum_{j \geq 0} \varphi_{j,0}^2 [z + O(z^\alpha, w)]^j + \sum_{j+k \geq 1} \varphi_{j,k}^2 [z + O(z^\alpha, w)]^j [e^{i\theta} w + O(wz^\hat{b}, z^\alpha, w^2)]^k = \varphi_2(z, e^{i\theta} w) + O(w^2, z^\alpha, wz^{\hat{b}+1}).\]

Put (2.12) into (2.11) and noting that \(e^{i\theta} \varphi_2(z, w) - \varphi_2(z, e^{i\theta} w)\) does not contain terms in \(z^m w\) for any \(m \in \mathbb{N}\), we reach a contradiction. Therefore \(\hat{b} \geq a - 1\) and \(\Theta(G) \leq 0\) as wanted.

Finally suppose \(a = \hat{a} = \infty\). Then by hypothesis and by (2.8) the maps \(G(z, w), F(z, w)\) and \(\varphi_2(z, w)\) do not contain pure terms in \(z\). Therefore, using (2.6), equation (2.5) becomes

\[\varphi_2(G(z, w)) - e^{i\theta} \varphi_2(z, w) = -\tilde{q}_{b,1} \zeta^b w + q_{b,1} \zeta^b w + O(wz^{b+1}, wz^{\hat{b}+1}, w^2),\]

where, as usual, we set all the terms containing \(z^b\) or \(\zeta^b\) equal to zero if \(b = \infty\) or \(\hat{b} = \infty\). From this and from (2.12) it follows that \(b = \hat{b}\).

Remark 2.6. If \(F\) and \(G\) are conjugated and in ultra-resonant normal form (and \(\mu(F, z) = \mu(G, z) < \infty\), \(\mu(F, w)\) might be different from \(\mu(G, w)\), as one can see in the Example 2.4.

Now we are in the position to define our invariants:

Definition 2.7. Let \(F \in \text{End}(\mathbb{C}^2, O)\) and assume \(O\) is a quasi-parabolic fixed point for \(F\). Let \(\hat{F}\) be a (possibly formal) asymptotic ultra-resonant normal form of...
F. We let $\nu(F) := \mu(\hat{F}, z)$. In case $\mu(\hat{F}, z) < \infty$ we call F dynamically separating if $\Theta(\hat{F}) \leq 0$.

Remark 2.8. By Lemma 2.5 the previous definition is well posed. Moreover, if $\nu(F) < \infty$ one can find a (convergent) ultra-resonant normal form conjugated to F after a finite number of transformations of type (2.1).

Let $F \in \text{End}(\mathbb{C}^2, O)$. The Poincaré-Dulac normal form theorem states that it is always possible to find a resonant formal normal form for F. Namely there exists a formal transformation $T : (z, w) \mapsto (z + \ldots, w + \ldots)$ such that $T^{-1} \circ F \circ T(z, w) = (z + R_1(z, w), e^{\theta w} w + R_2(z, w))$, where R_1, R_2 are series of resonant monomials, that is $R_1(z, w)$ is a combination of terms of type z^n, $z^n w^n$, while $R_2(z, w)$ is a combination of terms of type $z^n w, z^n w^{m+1}$ for $m, n \in \mathbb{N}$, where $s \in \mathbb{N}$ is such that $e^{i\theta} = 1$ (thus $s = 0$ if $e^{i\theta}$ is not a root of unity).

Due to Lemma 2.5 our (formal) asymptotic ultra-resonant form is equivalent to the Poincaré-Dulac normal form for the purpose of calculating $\mu(F, z)$ and $\Theta(F)$. However, asymptotic ultra-resonant normal forms reflect better the dynamics of F, as claimed in Proposition 1.3. Here is its proof.

Proof of Proposition 1.3. If F has a convergent asymptotic ultra-resonant normal form then F is conjugated to a germ of biholomorphism $G = (G_1, G_2)$ such that $G_2(z, w) = w A(z, w)$ for some holomorphic function $A(z, w)$. In particular $w = 0$ is invariant by G. For the converse, if there exists an invariant curve tangent to the eigenspace of 1 we can choose coordinates in such a way that $\Gamma = \{(z, w) : w = 0\}$ and $F(z, w) = (z + \ldots, e^{i\theta w} + w A(z, w))$ for some holomorphic function $A(z, w)$. In particular F has a (convergent) asymptotic ultra-resonant form. By Lemma 2.5, if F has a convergent asymptotic ultra-resonant normal form G then $\mu(G, z) = \nu(F)$. Thus if $\nu(F) = \infty$ then $G_1(z, w) = z + w A_1(z, w)$ and $\{w = 0\}$ is a curve of fixed points for G. If $\nu(F) < \infty$ then the classical one-dimensional Fatou theory gives the result. \qed

3. Dynamics. In this section we give the proof of Theorem 1.4. The idea is that starting from an ultra-resonant normal form, if $\Theta(F) \leq 0$, it is possible to blow up O a certain number of times in order to find some simpler expression for F, where one can apply a modified Hakim’s argument to produce parabolic curves.

We divide the proof into several steps, which might be of some interest on their own.

Recall that if $F \in \text{End}(\mathbb{C}^2, O)$ and $\pi : \hat{\mathbb{C}}^2 \to \mathbb{C}^2$ is the blow-up (quadratic transformation) of \mathbb{C}^2 at O, then there exists a holomorphic map \hat{F} defined near the exceptional divisor $D := \pi^{-1}(O)$ such that $\pi \circ \hat{F} = F \circ \pi$, $\hat{F}(D) = D$ and the action of \hat{F} on D is given by $D \ni [\nu] \mapsto [dF_O(\nu)] \in D$ (see for instance [1], [17]). We call such a \hat{F} the blow-up of F.
LEMMA 3.1. Suppose F is given by (1.1). If

(1) $q_{j,0} = 0$ for $j < \mu(F, z)$ and

(2) $q_{j,1} = 0$ for $j < \mu(F, z) - 1,$

then one can perform a finite number of blow-ups and changes of coordinates in such a way that the blow-up map $\tilde{F} = (\tilde{F}_1, \tilde{F}_2)$ is given by

\begin{equation}
\begin{aligned}
\tilde{F}_1(z, w) &= z - z^{\nu(F)} + O(z^{\nu(F)+1}, z^{\nu(F)}w), \\
\tilde{F}_2(z, w) &= e^{\theta}w - \lambda w z^{\nu(F)-1} + O(w z^{\nu(F)} - z^{\nu(F)-1} w^2, z^{\nu(F)+2}),
\end{aligned}
\end{equation}

with $\text{Re}(\lambda e^{-i\theta}) < 0.$

Proof. Note that by hypothesis F is an ultra-resonant normal form, thus $\nu(F) = \mu(F, z).$ First of all, we can use transformations of type (2.1), for $s = \nu(F),$ as in the proof of Proposition 2.3, to dispose of $q_{\nu(F),0}.$ Note that K_j does not decrease the order of vanishing of $F_1(z, w) - z$ and $F_2(z, w) - e^{\theta}w,$ nor it effects the ultra-resonant monomials of order $\leq \nu(F).$ Now we blow-up the point O in $\mathbb{C}^2.$ Recalling that $1/(1+\xi) = \sum_{k \geq 0} (-1)^k \xi^k$ for $|\xi| < 1,$ in coordinates $(z = u, w = u\nu)$ we have that the blow-up map $\tilde{F} = (\tilde{F}_1, \tilde{F}_2)$ is given by

\begin{equation}
\begin{aligned}
\tilde{F}_1(u, v) &= u + \sum_{j+k \geq 2} p_{j,k} u^{j+k} v^k = u + \sum_{j+k \geq 2} \tilde{p}_{j,k} u^{j+k} v^k, \\
\tilde{F}_2(u, v) &= e^{\theta} v + \sum_{j+k \geq 2} q_{j,k} u^{j+k-1} v^k \left[1 - \sum_{j+k \geq 2} p_{j,k} u^{j+k-1} v^k \right. \\
&\quad + \left. \left(\sum_{j+k \geq 2} p_{j,k} u^{j+k-1} v^k \right)^2 + \cdots \right] = e^{\theta} v + \sum_{j+k \geq 2} \tilde{q}_{j,k} u^{j+k} v^k.
\end{aligned}
\end{equation}

Thus, setting $p_{j,k} = 0$ for $j + k < 2,$ it follows that $\tilde{p}_{j,k} = p_{j-k,k}. In particular $\mu(F, z) = \mu(\tilde{F}, u)$ and $p_{\mu(F), 0} = \tilde{p}_{\mu(F), 0}.$ Moreover, if m_1 was the order of vanishing of $F_1(z, w) - z$ (that is $p_{j,k} = 0$ for $j + k < m_1$), then the order of vanishing of $\tilde{F}_1(u, v) - u$ is at least $m_1 + 1$ if $m_1 < \nu(F)$ or it is equal to m_1 if $m_1 = \nu(F).$ Also, the lowest nonzero non ultra-resonant term in $\tilde{F}_1,$ i.e., the one of type $w^a z^b,$ $a \geq 1,$ $b \geq 0,$ has degree strictly greater than the lowest one in $F_1.$

The terms $\tilde{q}_{j,k}$ in the second component of \tilde{F} are more difficult to write explicitly. We use the notations H_m and $B_{m,n}$ introduced in the proof of Lemma 2.5. Denote by m_2 the order of vanishing of $F_2(z, w) - e^{\theta}w.$ Note that, since we assumed that $q_{j,0} = 0$ for $j < \nu(F) + 1$ and by hypothesis (2), then for every $q_{j,k} \neq 0$ with $j + k < \nu(F)$ it follows that $k \geq 2.$ Thus, using hypothesis (1) and (2)
we have
\[
\tilde{F}_2(u, v) = [e^{i\theta} v + q_{\nu(F)-1,1} u^\nu v + v^2 B_{m_2-1,\nu(F)-2} + H_{\nu(F)+1}]1
\]
\[+ \sum_{k=1}^{\infty} (-1)^k (p_{\nu(F),0} u^\nu v + v_j^2 B_{m_1-1,\nu(F)-2}) + H_{\nu(F)+1}k\]
\[+ p_{\nu(F),0} u^2 v + v \sum_{j=m_1-1}^\nu \tilde{F}_m \tilde{F}_n + v^2 H_{m_1-1} + v^2 H_{m_2-1} + H_{\nu(F)+1}.\]

In particular note that the ultra-resonant terms in \(\tilde{F}_2\) are vanishing up to order \(\nu(F) - 1\). Also \(\tilde{q}_{\nu(F)-1,1} = (q_{\nu(F)-1,1} - e^{i\theta} p_{\nu(F),0})\) and then
\[\Re(e^{-i\theta} \tilde{q}_{\nu(F)-1,1}/\tilde{p}_{\nu(F),0}) = \Re(e^{-i\theta} q_{\nu(F)-1,1}/p_{\nu(F),0}) - 1.\]

Finally note that the order of vanishing of \(\tilde{F}_2(u, v) - e^{i\theta} v\) is at least \(\min\{\nu(F), m_1 + 1, m_2 + 1\}\). This time the lowest nonzero non ultra-resonant term in \(\tilde{F}_2\) might be of degree strictly smaller than the one in \(F_2\). However, its degree is at least \(\min\{\nu(F)+1, m_1 + 1, m_2 + 1\}\). In particular the map \(\tilde{F}\) has properties (1), (2) in the hypothesis and its lowest nonzero non ultra-resonant term (in both components) has degree at least \(\min\{\nu(F)+1, m_1 + 1, m_2 + 1\}\). Moreover \(\Re(e^{-i\theta} \tilde{q}_{\nu(F)-1,1}/\tilde{p}_{\nu(F),0})\) is one less than \(\Re(e^{-i\theta} q_{\nu(F)-1,1}/p_{\nu(F),0})\).

Repeating the previous arguments (conjugation with \(K_s\) followed by blow-up) we will eventually find a map in ultra-resonant normal form given by (1.1) with

(i) \(q_{j,k} = 0\) for \(j + k < \nu(F)\),

(ii) \(p_{j,k} = 0\) for \(j + k < \nu(F)\),

(iii) \(\Re(e^{-i\theta} q_{\nu(F)-1,1}/p_{\nu(F),0}) < 1\).

Note that \(\nu(F)\) is the same as for the starting map. Eventually performing some more transformations \(K_s\) as in (2.1), with \(s = \nu(F), \nu(F) + 1, \nu(F) + 2\), we can assume \(q_{j,0} = 0\) for \(j < \nu(F) + 3\).

Let \(\alpha^{\nu(F)-1} = -p_{\nu(F),0}\) and let \(T\) be the transformation given by \(Z = \alpha z, W = w\). The map \(\tilde{F} = T \circ F \circ T^{-1}\) satisfies (i), (ii) and \(\nu(\tilde{F}) = \nu(F)\). Moreover, denoting with \(\tilde{q}\) the coefficients of \(\tilde{F}\), we have \(\tilde{p}_{\nu(F),0} = -1, \tilde{q}_{j,0} = 0\) for \(j < \nu(F) + 3\) and \(\tilde{q}_{\nu(F)-1,1} = -q_{\nu(F)-1,1}/p_{\nu(F),0}\). In particular property (iii) becomes \(\Re(e^{-i\theta} \tilde{q}_{\nu(F)-1,1}) > -1\).

Now we perform a final blow-up of \(O\). Let \(\pi : \mathbb{C}^2 \rightarrow \mathbb{C}^2\) be the blow-up and \(\tilde{F}\) the blow-up map. In the coordinates \((z, w)\) such that the projection \(\pi(z, w) = (z, zw)\), we have that \(\tilde{F} = (\tilde{F}_1, \tilde{F}_2)\) is given by (3.1), with \(\lambda = -(e^{i\theta} + \tilde{q}_{\nu(F)-1,1})\).

Now we prove that form (3.1) is actually useful.
Lemma 3.2. Let $F \in \text{End}(\mathbb{C}^2, O)$ be given by (3.1), with $\nu(F) \geq 2$ and $\lambda \in \mathbb{C}$ such that $\text{Re}(\lambda e^{-i\theta}) < 0$. Then there exist $\nu(F) - 1$ parabolic curves for F at O tangent to $[1 : 0]$.

Proof. The proof is a modification of that of Theorem 3.1 of [1]. Let $r = \nu(F) - 1$. Let $D_{\delta,r} := \{ \zeta \in \mathbb{C} : |\zeta^r - \delta| < \delta \}$ and let $\mathcal{E}(\delta) := \{ u \in \text{Hol}(D_{\delta,r}, \mathbb{C}) : u(\zeta) = \zeta^r u^0(\zeta), \|u^0\|_{\infty} < \infty \}$. The set $\mathcal{E}(\delta)$ is a Banach space with norm $\|u\|_{\mathcal{E}(\delta)} = \|u^0\|_{\infty}$. For $u \in \mathcal{E}(\delta)$ we let $F^u(\zeta) = F_1(\zeta, u(\zeta))$. The classical Fatou theory for mappings of the form $\zeta - \zeta^{r+1} + O(\zeta^{r+2})$ implies that there exists $\delta_0 = \delta_0(\|u^0\|_{\infty})$ such that if $0 < \delta < \delta_0$ then F^u maps each component of $D_{\delta,r}$ into itself and moreover

$$|(F^u)^n| = O(\frac{1}{n^{1/r}}).$$

Suppose we find $u \in \mathcal{E}(\delta)$ such that $u(F_1(\zeta, u(\zeta)) = F_2(\zeta, u(\zeta))$ for any $\zeta \in D_{\delta,r}$. Thus the map $\varphi^u(\zeta) := (\zeta, u(\zeta))$ restricted to each connected component of $D_{\delta,r}$ is a parabolic curve for F.

For $(z, w) \in \mathbb{C}^2$ let $z_1 := F_1(z, w)$ and $w_1 := F_2(z, w)$. Suppose z, z_1 belong to the same connected component of $D_{\delta,r}$. Let $\mu := \lambda e^{-i\theta}$ and define

$$H(z, w) := w - e^{-i\theta} \frac{z^\mu}{z_1^\mu} w_1.$$

Thus a direct computation shows that

$$H(z, w) = w - z^\mu w - \mu z^r w + O(wz^{r+1}, w^2 z^r, z^{r+3})$$

$$= w - [w - \mu z^r w + O(wz^{r+1}, w^2 z^r, z^{r+3})][1 + \mu z^r + O(z^{r+1}, z^r w)]$$

$$= O(z^{r+1} w, z^r w^2, z^{r+3}).$$

Now $F_2(z, w) = w_1 = e^{i\theta} \frac{z^\mu}{z_1^\mu} (w - H(z, w))$ and therefore we are left to solve the following functional equation:

$$u(z_1(\zeta, u(\zeta)) = e^{i\theta} \frac{z^\mu}{\zeta^\mu} u(\zeta) - H(z, u(\zeta)).$$

For $\zeta_0 \in D_{\delta,r}$ let $\zeta_n := (F^n)^u(\zeta_0)$. For $u \in \mathcal{E}(\delta)$ let

$$Tu(\zeta_0) := \zeta^\mu_0 \sum_{n=0}^{\infty} e^{-in\theta} \frac{z^\mu}{\zeta^\mu_n} H(z_n, u(z_n)).$$

If n is such that $\|u^n\| < c_0$ and $\delta \leq \delta_0(c_0)$, then $H(z_n, u(z_n))$ is defined for any $\zeta_0 \in D_{\delta,r}$. Moreover one can show exactly as in [1] and [10] that the series
converges normally and $Tu \in \mathcal{E}(\delta)$ (essentially because $|e^{i\theta}| = 1$ and thus all the estimates for the parabolic case in [1] go through in this case as well).

Now suppose u is a fixed point for T. Then φ^μ is a parabolic curve for F. indeed if

$$u(\zeta_0) = Tu(\zeta_0) = \zeta_0^\mu \sum_{n=0}^{\infty} e^{-in\theta} \zeta_n^{-\mu} H(\zeta_n, u(\zeta_n)),$$

then

$$u(\zeta_1) = \zeta_1^\mu \sum_{n=0}^{\infty} e^{-in\theta} \zeta_{n+1}^{-\mu} H(\zeta_{n+1}, u(\zeta_{n+1})) = e^{i\theta} \zeta_1^\mu \sum_{n=1}^{\infty} e^{-in\theta} \zeta_n^{-\mu} H(\zeta_n, u(\zeta_n))$$

$$= \frac{\zeta_1^\mu}{\zeta_0} e^{i\theta} \left(\zeta_0^\mu \sum_{n=0}^{\infty} e^{-in\theta} \zeta_n^{-\mu} H(\zeta_n, u(\zeta_n)) - H(\zeta_0, u(\zeta_0)) \right)$$

$$= \frac{\zeta_1^\mu}{\zeta_0} e^{i\theta} (u(\zeta_0) - H(\zeta_0, u(\zeta_0))),$$

solving thus (3.4).

It remains to show that T does have a fixed point. For doing this we only need to show that T is a contraction on a suitable closed convex subset of $\mathcal{E}(\delta)$. This can be done arguing exactly as in Theorem 3.1 of [1], for all the estimates holding in there actually hold in this case, and we are done.

Now we are in a good shape to prove our main theorem.

Proof of Theorem 1.4 Since having parabolic curves is obviously a property invariant under changes of coordinates and by Remark 2.8, we can assume F to be in ultra-resonant normal form. By definition of dynamically separating map, $\Theta(F) \leq 0$ and we can thus apply Lemma 3.1 to F and Lemma 3.2 to its blow-up \tilde{F} in order to produce $\nu(F) - 1$ parabolic curves for \tilde{F} at some point of the exceptional divisor. These parabolic curves blow down to $\nu(F) - 1$ parabolic curves for F tangent to the eigenspace of 1 and we are done.

4. Final remarks.

1. Let $F \in \text{End}(\mathbb{C}^2, O)$ and suppose O is a quasi-parabolic fixed point for F. In case $e^{i\theta_s} = 1$ for some $s \geq 2$ one can try to apply Hakim and Abate’s theory to produce parabolic curves for F^s. If F is dynamically separating one always obtains $\nu(F) - 1$ parabolic curves for F by Theorem 1.4 and these are obviously parabolic curves for F^s as well. The question is whether these parabolic curves are the ones predicted by Hakim’s and Abate’s theory for F^s (if such a theory applies). To give an appropriate answer we need some tools from [10] and [1]. For the reader’s convenience we quickly recall them here.
Let $G \in \text{End}(\mathbb{C}^2, O)$ be such that $dG_O = \text{id}$. Let $G = \text{id} + \sum_{m \geq 2} G_m$ be the homogeneous expansion of G. Then the order of G, which we denote by $\nu(G)$, is the first m such that $G_m \neq 0$. A vector $v \in \mathbb{C}^2 \setminus \{O\}$ is called a characteristic direction for G if $G_t(v) = \lambda v$ for some $\lambda \in \mathbb{C}$. Moreover if $\lambda \neq 0$ the vector v is called a nondegenerate characteristic direction while it is called degenerate in case $\lambda = 0$. Hakim’s theory [10] predicts the existence of at least $\nu(G) - 1$ parabolic curves tangent to each nondegenerate characteristic direction.

We have the following relations:

Proposition 4.1. Let $F \in \text{End}(\mathbb{C}^2, O)$ and assume O is a quasi-parabolic fixed point for F. Suppose F is given by (1.1) and $e^{i0s} = 1$ for some $s \geq 2$. Let $G := F^s$ and assume F is dynamically separating. Then:

1. $G \neq \text{id}$ and $\nu(G) \leq \nu(F)$.
2. $[1 : 0]$ is a characteristic direction for G. Moreover $[1 : 0]$ is a nondegenerate characteristic direction for G if and only if $\nu(F) = t(G)$.
3. The $\nu(F) - 1$ parabolic curves tangent to $[1 : 0]$ at O given by Theorem 1.4 for G can be found applying Hakim’s and Abate’s theory to G after a finite number of blow-ups.

Proof. Since F is dynamically separating then there exist parabolic curves for F by Theorem 1.4 which are obviously parabolic curves for G. Thus $G \neq \text{id}$. It is then clear that $\nu(F) \geq t(G)$. To prove the other statements we notice that everything involved is invariant under conjugation and thus, using transformations as (2.1) we can assume that $q_{j,0} = 0$ for $j \leq \nu(F)$. Therefore for $F = (F_1, F_2)$ we can write

$$F(z, w) = \begin{cases} F_1(z, w) = z + p_{\nu(F),0}z^{\nu(F)} + O(z^{\nu(F)+1}, zw, w^2) \\ F_2(z, w) = e^{i\theta}w + O(z^{\nu(F)-1}w, w^2, z^{\nu(F)+1}) \end{cases}.$$

Iterating we find that $F^s = G = (G_1, G_2)$ is given by

$$G(z, w) = \begin{cases} G_1(z, w) = z + sp_{\nu(F),0}z^{\nu(F)} + O(z^{\nu(F)+1}, zw, w^2) \\ G_2(z, w) = w + O(z^{\nu(F)-1}w, w^2, z^{\nu(F)+1}) \end{cases}. \tag{4.1}$$

From this it follows that $[1 : 0]$ is a characteristic direction for G. Moreover it is nondegenerate if and only if $t(G) = \nu(F)$ for in that case $G_{t(G)} = (p_{\nu(F),0}z^{\nu(F)} + wQ(z, w), wQ'(z, w))$ with Q, Q' suitable homogeneous polynomials of degree $t(G) - 1$.

To prove part (3), we make some preliminary observations. If $\pi : \tilde{\mathbb{C}}^2 \to \mathbb{C}^2$ is a blow-up at O and \tilde{F} is the blow-up of F, since $\pi \circ \tilde{F}^s = F^s \circ \pi$ and π is a biholomorphism outside the exceptional divisor then $\tilde{G} = \tilde{F}^s$. Notice that while $\nu(F) = \nu(\tilde{F})$, in general $t(G) \leq t(\tilde{G})$ (see Lemma 2.1(ii) and (2.1) in [1]). We may assume that after finitely many blow-ups and changes of coordinates F is
that in such a case, if \(p_j \) and we are done.

in such a class then they must be the ones given by Hakim’s and Abate’s theory, (see p. 201–203 in [1]). Since the parabolic curves produced in Lemma 3.2 are \(G \) characteristic direction for \(F \) case \(\in End \ O \) has therefore 4 parabolic curves tangent to \([1 : 0]\) at \(f \) curves are provided by the following construction. Let \(\nu \) point for \(F \) then

\[
\begin{align*}
\nu(F) &= 5 \text{ and thus it has 4 parabolic curves tangent to } [1 : 0] \text{ at } O \text{ by Theorem 1.4. The map } G(z, w) = F^2(z, w) = (z^2 + 2z^5 + O(z^6), w - 2w^3 + O(w^4, z^7, w^2z^5)) \text{ has therefore 4 parabolic curves tangent to } [1 : 0] \text{ at } O. \text{ Moreover } \nu(G) = 3 \text{ and the vector } [1 : 0] \text{ is a degenerate characteristic direction for } G. \text{ However } \tilde{G} \text{ has order 5 at } [1 : 0] \text{ and has } [1 : 0] \text{ as a nondegenerate characteristic direction as a simple computation shows. Notice that } [0 : 1] \text{ is a nondegenerate characteristic direction for } G \text{ and Hakim’s results give 2 parabolic curves for } G \text{ tangent to } [0 : 1] \text{ at } O. \text{ These are contained into } \{z = 0\} \text{ and are exchanged into each other by } F.
\end{align*}
\]

\[\text{Example 4.2. The map } F(z, w) = (z + z^5, -w + w^3 + z^5) \text{ is dynamically separating, } \nu(F) = 5 \text{ and thus it has 4 parabolic curves tangent to } [1 : 0] \text{ at } O \text{ by Theorem 1.4. The map } G(z, w) = F^2(z, w) = (z + 2z^5 + O(z^6), w - 2w^3 + O(w^4, z^7, w^2z^5)) \text{ has therefore 4 parabolic curves tangent to } [1 : 0] \text{ at } O. \text{ Moreover } \nu(G) = 3 \text{ and the vector } [1 : 0] \text{ is a degenerate characteristic direction for } G. \text{ However } \tilde{G} \text{ has order 5 at } [1 : 0] \text{ and has } [1 : 0] \text{ as a nondegenerate characteristic direction as a simple computation shows. Notice that } [0 : 1] \text{ is a nondegenerate characteristic direction for } G \text{ and Hakim’s results give 2 parabolic curves for } G \text{ tangent to } [0 : 1] \text{ at } O. \text{ These are contained into } \{z = 0\} \text{ and are exchanged into each other by } F.\]

\[\text{Remark 4.3. Let } F \in End(\mathbb{C}^2, O), \text{ and assume } O \text{ is a quasi-parabolic fixed point for } F \text{ and } e^{i\theta_s} = 1 \text{ for some } s \geq 2. \text{ Suppose } F \text{ is not dynamically separating. A calculation similar to the one performed in the proof of Proposition 4.1 shows that } [1 : 0] \text{ is always a degenerate characteristic direction for } F^s, \text{ providing } F^s \neq \text{id.}\]

2. Let \(F \in End(\mathbb{C}^2, O) \) and assume \(O \) is a quasi-parabolic fixed point. In case \(F \) is not dynamically separating, there might be no parabolic curves tangent to the eigenspace of 1. A first simple example is when \(F^s = \text{id} \). However note that in such a case, if \(p_j : \mathbb{C}^2 \rightarrow \mathbb{C} \) is the projection on the \(j \)th component, setting

\[
\sigma(z, w) = \left(\sum_{m=0}^{s-1} p_1 \circ F^m(z, w), \sum_{m=0}^{s-1} e^{-i\theta m} p_2 \circ F^m(z, w) \right)
\]

then \(\sigma \circ F \circ \sigma^{-1}(z, w) = (z, e^{i\theta} w) \), thus \(F_1(z, w) = z \), and in particular \(\nu(F) = \infty. \)

Less trivial examples of nondynamically separating map without parabolic curves are provided by the following construction. Let \(f(u, v) = (f_1(u, v), f_2(u, v)) \in End(\mathbb{C}^2, O) \) be given by

\[
\begin{align*}
f_1(u, v) &= e^{i\theta} u + (a_{20} u^2 + a_{11} u v + a_{02} v^2) + \cdots \\
f_2(u, v) &= e^{i\theta} v + (b_{20} u^2 + b_{11} u v + b_{02} v^2) + \cdots
\end{align*}
\]

(4.2)
with $e^{i\theta}$ satisfying the Bryuno condition

$$|e^{im\theta} - 1| \geq cm^{-N}, \ m \in \mathbb{N}$$

for some $c > 0$ and some large N. Note that the set of points on the circle satisfying such a condition has full measure. It is a classical result (see, e.g., [3] and [12]) that such a germ f is linearizable, and in particular there cannot exist parabolic curves for f. Now suppose that $a_{02} = 0$ in (4.2). Blow up the point O in \mathbb{C}^2 and consider the blow up map F of f at the point $[0 : 1]$ of the exceptional divisor. If the projection $\pi : \mathbb{C}^2 \to \mathbb{C}^2$ is given by $(u, v) = \pi(z, w) = (zw, w)$ then

$$F = (F_1, F_2)$$

is given by

$$\begin{align*}
F_1(z, w) &= z + e^{-i\theta}w^{(a_{11}-b_{02})z+b_{03}w+\ldots} \\
F_2(z, w) &= e^{i\theta}w + w[b_{02}w + (b_{11}zw + b_{03}w^2 + \ldots)].
\end{align*}$$

Then $[0 : 1]$ is a quasi-parabolic point for F but there cannot exist parabolic curves tangent to the eigenspace of 1 for otherwise these would be parabolic curves for f at O. Note that even in this case $\nu(F) = \infty$.

We have to say that at the present we do not have any example of a nondynamically separating mapping F with $\nu(F) < \infty$ and without parabolic curves, even if we believe such a map should exist.

We conclude this work by mentioning a simple family of nondynamically separating maps for which nothing is known, but the understanding of which might unlock the general theory. Let $F_a = (F_{1,a}, F_{2,a})$ be given by

$$F_a(z, w) = \begin{cases}
F_{1,a}(z, w) = z + z^3 + aw^2 \\
F_{2,a}(z, w) = e^{i\theta}w + zw + z^3,
\end{cases}$$

with $a \in \mathbb{C}$. If $a = 0$, then $\{z = 0\}$ is invariant by F_0. Moreover, once fixed $w \in \mathbb{C}$, by the classical Leau-Fatou theory there exist two petals $P_1, P_2 \subset \mathbb{C}$ for $z \mapsto F_{1,0}(z, w)$ at $z = 0$. Then the two open sets $D_j = P_j \times \mathbb{C}$, $j = 1, 2$ are invariant by F_0. However we do not know whether there exist parabolic curves contained in D_1 or D_2.

If $a \neq 0$ and $e^{i\theta}$ is not a root of unity we do not even know whether there exists $P \in \mathbb{C}^2$ such that $F_{1,a}^n(P) \neq O$ for any n but $F_{1,a}^n(P) \to O$ as $n \to \infty$.

Notice that in case $e^{i\theta s} = 1$ for some $s \geq 2$ then Theorem 1.2 provides some parabolic curves for F^s. A direct computation shows that these curves are not tangent to $[1 : 0]$. In fact the known techniques for the parabolic case are not applicable to F^s along the direction $[1 : 0]$, not even after blow-ups.

DIPARTIMENTO DI MATEMATICA, UNIVERSITÀ DI ROMA “TOR Vergata”,
VIA DELLA RICERCA SCIENTIFICA 1, 00133 ROMA, ITALY
E-mail: fbracci@mat.uniroma2.it, molino@mat.uniroma2.it
REFERENCES