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COMMON FIXED POINTS OF COMMUTING HOLOMORPHIC
MAPS IN THE UNIT BALL OF Cn

FILIPPO BRACCI

(Communicated by Steven R. Bell)

Abstract. Let Bn be the unit ball of Cn (n > 1). We prove that if f, g ∈
Hol(Bn, Bn) are holomorphic self-maps of Bn such that f ◦ g = g ◦ f , then f
and g have a common fixed point (possibly at the boundary, in the sense of
K-limits). Furthermore, if f and g have no fixed points in Bn, then they have
the same Wolff point, unless the restrictions of f and g to the one-dimensional
complex affine subset of Bn determined by the Wolff points of f and g are
commuting hyperbolic automorphisms of that subset.

0. Introduction

In their papers [3] and [13], Behan and Shields showed that, except for the
case of two hyperbolic automorphisms of ∆ (the unit disk of C), two non-trivial
commuting holomorphic self-maps of ∆ have the same fixed point in ∆ or the same
“Wolff point” in ∂∆.

In the multi-dimensional case it has been proved (see e.g. [1]) that two commuting
holomorphic self-maps of Bn which are continuous up to the boundary ∂Bn have a
common fixed point in Bn. In [6] we proved that if two holomorphic self-maps of
Bn, f, g ∈ Hol(Bn, Bn), with no fixed points, commute and if there exists a complex
geodesic ϕ : ∆ → Bn such that f(ϕ(∆)) ⊆ ϕ(∆), then there exists τ ∈ ∂Bn such
that K- limz→τ f(z) = τ and g has restricted K-limit τ at τ .

In this paper, under the only hypothesis that f, g ∈ Hol(Bn, Bn) are such that
f ◦g = g◦f , we prove that either there exists z0 ∈ Bn such that f(z0) = g(z0) = z0,
or there exists τ ∈ ∂Bn such that K- limz→τ f(z) = K- limz→τ g(z) = τ . In partic-
ular if f has no fixed points and τ(f) ∈ ∂Bn is its Wolff point, then τ(f) is a fixed
point (in the sense of K-limits) for g. Finally we show that a Behan Shields-type
theorem holds in Bn, that is we prove that two commuting holomorphic maps with
no fixed points either have the same Wolff point or they are conjugated to two com-
muting holomorphic maps whose first components are hyperbolic automorphisms
of ∆.

The plan of this paper is the following. In the first section we establish the
notations and recall some classical theorems from the iteration theory in Bn; then
we define the Wolff point and the boundary dilatation coefficient for holomorphic
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self-maps of Bn. In the second section we state and prove the main theorem (The-
orem 2.1) concerning the common fixed points of commuting holomorphic maps
of Bn and (if the maps have no fixed points) we establish an upper bound for the
boundary dilatation coefficients at the Wolff point. In the third section we deal with
holomorphic maps having no fixed points in Bn. We construct a simple example of
commuting maps with different Wolff points which are not automorphisms of Bn

(if n > 1), but whose first components are indeed hyperbolic automorphisms of ∆.
Then we prove that this is in a certain sense the only case in which two commuting
holomorphic self-maps of Bn may have different Wolff points (see Theorem 3.2).

I would like to thank Graziano Gentili for his advice and constant encouragement,
Marco Abate for some helpful conversations and the referee for useful suggestions
and remarks.

1. Preliminary results and notations

In this section we state some classical theorems and definitions. The books by
Abate [1] and Rudin [12] are suggested as general references. We begin with the
following:

Theorem 1.1 (Hervé [10]). Let h ∈ Hol(Bn, Bn). Then the set of fixed points of
h, Fix(h) := {z ∈ Bn : h(z) = z}, is empty or it is a m-dimensional affine subset of
Bn, i.e. it is the intersection of Bn with an affine m-dimensional complex subspace
of Cn.

Throughout the paper we will say that h has no fixed points to mean that
Fix(h) = ∅.
Theorem 1.2 (MacCluer [11]). Let h ∈ Hol(Bn, Bn) be without fixed points; then
there is a unique x ∈ ∂Bn such that for every z ∈ Bn

|1− 〈h(z), x〉|2
1− ‖h(z)‖2

≤ |1− 〈z, x〉|2
1− ‖z‖2

,

where 〈 , 〉 denotes the hermitian product in Cn.

In the classical iteration theory for ∆ one usually associates to any holomorphic
self-map a well-defined “fixed point” belonging to ∆, the “Wolff point” of the
function. In the multi-dimensional case there is no chance to do the same since the
set of fixed points contains in general more than one point. But when the fixed
points set is empty, then Theorem 1.2 ensures a situation similar to the classical
one-dimensional setting. So we introduce the following:

Definition 1.3. If h is a holomorphic self-map of Bn without fixed points, we call
the Wolff point of h the unique x ∈ ∂Bn defined by Theorem 1.2.

In this setting, we can state a Wolff Denjoy-type theorem as follows:

Theorem 1.4 (Hervé [10], MacCluer [11]). Let h ∈ Hol(Bn, Bn). The sequence of
iterates of h, {hk}, is not compactly divergent if and only if Fix(h) 6= ∅. In the case
that h has no fixed points then {hk} converges to the Wolff point of h.

Another non-standard definition, well-motivated by the comparison with the
one-dimensional case, is the following:

Definition 1.5. Let h ∈ Hol(Bn, Bn) and let x ∈ ∂Bn. The boundary dilatation
coefficient of h at x is the value lim infz→x(1− ‖h(z)‖) · (1− ‖z‖)−1.
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Remark 1.6. As in the one-dimensional case, the boundary dilatation coefficient
is strictly positive (one can check this directly or by means of Julia’s lemma). In
particular it is easy to show (or see [6]) that if h ∈ Hol(Bn, Bn) has no fixed points
and x ∈ ∂Bn is its Wolff point, then the boundary dilatation coefficient α(h) of h
at x is such that 0 < α(h) ≤ 1.

We recall that a Korányi region of vertex x ∈ ∂Bn and amplitude M > 1 is
defined as

K(x, M) :=
{

z ∈ Bn :
| 1− 〈z, x〉 |

1− ‖z‖ < M

}
.

If h ∈ Hol(Bn, Bn), we say that h has K-limit y at x ∈ ∂Bn (in short K- limz→x h(z)
= y) if, for each M > 1 and for each sequence {zm} ⊂ K(x, M) such that
limm→∞ zm = x, we get limm→∞ h(zm) = y.

For x ∈ ∂Bn, a x-curve is a continuous curve γ : [0, 1) → Bn such that γ(t) → x
as t → 1. To every x-curve we associate its orthogonal projection γx = 〈γ, x〉x on
Cx. A x-curve is said to be special if limt→1(‖γ(t)− γx(t)‖2) · (1−‖γx(t)‖2)−1 = 0,
and restricted if it is special and moreover there is A < ∞ such that (‖γx(t)− x‖) ·
(1 − ‖γx(t)‖)−1 ≤ A for all t ∈ [0, 1). We say that a holomorphic self-map h of
Bn has restricted K-limit y at x ∈ ∂Bn if h(γ(t)) → y as t → 1 for any restricted
x-curve γ. The relationship between restricted curves and Korányi regions is stated
in the following lemma (see, [12], p.170, or [1], p.171).

Lemma 1.7. Let x ∈ ∂Bn and let γ : [0, 1) → Bn be a x-curve. Suppose γ is
special. Then γ is restricted if and only if it lies in K(x, M) for some M > 1.

Now we can state the classical Julia-Wolff-Carathéodory type theorem for Bn:

Theorem 1.8 (Rudin [12], p.177). Let h ∈ Hol(Bn, Bn) and let x ∈ ∂Bn be such
that

lim inf
z→x

1− ‖h(z)‖
1− ‖z‖ = C < ∞.

Then there exists a unique y ∈ ∂Bn such that h has K-limit y at x and the following
functions are bounded in every Korányi region:

1)
1− 〈h(z), y〉
1− 〈z, x〉 ,

2)
h(z)− 〈h(z), y〉y

(1− 〈z, x〉) 1
2

.

Moreover the function 1) has restricted K-limit C at x and the function 2) has
restricted K-limit 0 at x.

We recall that the point y ∈ ∂Bn in Theorem 1.8 is the unique point of ∂Bn such
that

| 1− 〈h(z), y〉 |2
1− ‖h(z)‖2

≤ C
| 1− 〈z, x〉 |2

1− ‖z‖2

for every z ∈ Bn.
Keeping in mind this remark and using the uniqueness statement of Theorem 1.2

and the estimate in Remark 1.6, one can easily prove this useful characterization of
the Wolff point of a map with no fixed points (for other characterizations see [6]):
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Proposition 1.9. Let h ∈ Hol(Bn, Bn) have no fixed points. Then a point x ∈ ∂Bn

is the Wolff point of h if and only if

• K- lim
z→x

h(z) = x and

• lim inf
z→x

1− ‖h(z)‖
1− ‖z‖ ≤ 1.

In what follows we need this geometric version of the Julia’s lemma:

Lemma 1.10. Let h ∈ Hol(Bn, Bn) and x ∈ ∂Bn. If lim infz→x
1−‖h(z)‖

1−‖z‖ < +∞,
then there exists y ∈ ∂Bn such that h maps Korányi regions with vertex x into
Korányi regions with vertex y.

Proof (see also [12], p. 176). Let C := lim infz→x
1−‖h(z)‖

1−‖z‖ . By Remark 1.6, C > 0.
Let y ∈ ∂Bn be the point defined by Theorem 1.8. Fixing M > 1 we claim that
h(K(x, M)) ⊆ K(y, R) for some R > 1. To show this, it suffices to show that
(|1− 〈h(z), y〉|) · (1 − ‖h(z)‖)−1 is bounded uniformly in z ∈ K(x, M). Write as
follows:

|1− 〈h(z), y〉|
1− ‖h(z)‖ =

1− ‖z‖
1− ‖h(z)‖ ·

|1− 〈z, x〉|
1− ‖z‖ · |1− 〈h(z), y〉|

|1− 〈z, x〉| .(1.1)

Now lim supz→x(1 − ‖z‖) · (1 − ‖h(z)‖)−1 = C−1, (|1− 〈z, x〉|) · (1 − ‖z‖)−1 ≤ M
since z ∈ K(x, M) and (|1− 〈h(z), y〉|) · (|1− 〈z, x〉|)−1 is bounded in K(x, M) by
Theorem 1.8. Then the assertion follows.

2. Common fixed points

Now we are ready to prove that two commuting holomorphic self-maps of Bn

have a common fixed point (possibly at the boundary in the sense of K-limits):

Theorem 2.1. Let f, g ∈ Hol(Bn, Bn) and f ◦ g = g ◦ f .

1) If Fix(f) 6= ∅ and Fix(g) 6= ∅, then Fix(f) ∩ Fix(g) 6= ∅.
2) If Fix(f) = ∅, then there exists τ ∈ ∂Bn such that K- lim

z→τ
f(z) = K- lim

z→τ
g(z)

= τ .

Statement 1) is actually a known fact since its proof is the same as in the case in
which f and g extend continuously to the boundary. So we only sketch the proof,
referring the interested reader to [1], p.186, or [2] for the case of convex domains.
Both to prove Theorem 2.1 and for the results of the next section, we need two
technical lemmas.

Lemma 2.2. Let h ∈ Hol(Bn, Bn) and x ∈ ∂Bn be such that lim infz→x(1−‖h(z)‖)·
(1− ‖z‖)−1 = C < ∞, and let y ∈ ∂Bn be such that K- limz→x h(z) = y. Then the
curve r 7→ h(rx) is a restricted y-curve.

Proof (see also [7], p.184). By Theorem 1.8, the curve r 7→ h(rx) is a y-curve and
it lies in a suitable Korányi region of vertex y (by Lemma 1.10). So, if we prove
that it is special, then Lemma 1.7 implies that it is restricted. The x-curve r 7→ rx
is obviously restricted, so Theorem 1.8 implies

‖h(rx)− 〈h(rx), y〉y‖√
1− r

→ 0 as r → 1.
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Moreover the function r 7→ (1 − r) · (1− |〈h(rx), y〉|2)−1 is bounded because

lim sup
r→1

1− r

1− |〈h(rx), y〉|2 =
1
2

(
lim inf

r→1

1− |〈h(rx), y〉|
1− r

)−1

≤ 1
2C

,

and C > 0 by Remark 1.6. Thus

lim
r→1

‖h(rx) − 〈h(rx), y〉y‖2

1− |〈h(rx), y〉|2

= lim
r→1

(‖h(rx) − 〈h(rx), y〉y‖√
1− r

)2

· 1− r

1− |〈h(rx), y〉|2 = 0,

and the curve is special.

Lemma 2.3 (Estimate at the Wolff point). Suppose f, g ∈ Hol(Bn, Bn) have no
fixed points and f ◦ g = g ◦ f . Let τ ∈ ∂Bn be the Wolff point of f , let δ ∈ ∂Bn

be the Wolff point of g and let L := lim infz→δ(1− ‖g(z)‖) · (1− ‖z‖)−1 denote the
boundary dilatation coefficient of g at its Wolff point. Then K- lim

z→τ
g(z) = τ and

lim inf
z→τ

1− ‖g(z)‖
1− ‖z‖ ≤ 1

L
.(2.1)

Proof. Let α := lim infz→τ
1−‖f(z)‖

1−‖z‖ and let β := lim infz→τ
1−‖g(z)‖
1−‖z‖ . By Re-

mark 1.6 we obtain 0 < α ≤ 1, 0 < L ≤ 1 and β > 0. Fix z ∈ Bn and consider
the sequence of iterates of f , {fk(z)}. By Theorem 1.4 it follows that fk(z) → τ
as k →∞. Moreover∣∣∣∣log

1− ‖g(fk(z))‖
1− ‖fk(z)‖

∣∣∣∣
≤

∣∣∣∣log
1 + ‖fk(z)‖
1− ‖fk(z)‖ − log

1 + ‖g(fk(z))‖
1− ‖g(fk(z))‖

∣∣∣∣ +
∣∣∣∣log

1 + ‖g(fk(z))‖
1 + ‖fk(z)‖

∣∣∣∣
= 2

∣∣kn(0, fk(z))− kn(0, g(fk(z)))
∣∣ +

∣∣∣∣log
1 + ‖g(fk(z))‖
1 + ‖fk(z)‖

∣∣∣∣ ,

where kn is the Bergman distance on Bn (see Bergman [4], [5]). Let us recall how
kn is defined. Let Φa(z) be the automorphism of Bn given by

Φa(z) :=
a− 〈z,a〉

〈a,a〉a−
√

1− |a|2(z − 〈z,a〉
〈a,a〉a)

1− 〈z, a〉 .(2.2)

A straightforward computation shows that Φa(a) = 0 and Φa(0) = a. The Bergman
metric dk2 on Bn is given by dk2

0 := ds2 (with ds2 the hermitian metric on Cn)
and, for all a ∈ Bn and u, v ∈ Cn, by (here we are identifying Cn with the tangent
space of Bn at a):

dk2
a(u, v) :=

[
(Φa)∗ds2

]
(u, v).

The distance associated to dk2 is the Bergman distance kn. One of the main
properties of kn is that it is contracted by holomorphic self-maps of Bn and it is
invariant under the action of automorphisms of Bn (see, e.g., [1], p.163-164, or [12],
p.163). Moreover it is easy to see that

kn(0, w) =
1
2

log
1 + ‖w‖
1− ‖w‖ for all w ∈ Bn.
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Then, using the aforementioned properties of kn and because f ◦ g = g ◦ f , we get:

2
∣∣kn(0, fk(z))− kn(0, g(fk(z)))

∣∣ +
∣∣∣∣log

1 + ‖g(fk(z))‖
1 + ‖fk(z)‖

∣∣∣∣
≤ 2kn(z, g(z)) +

∣∣∣∣log
1 + ‖fk(g(z))‖
1 + ‖fk(z)‖

∣∣∣∣
= 2kn(0, Φz(g(z))) +

∣∣∣∣log
1 + ‖fk(g(z))‖
1 + ‖fk(z)‖

∣∣∣∣ .

By Theorem 1.4 it follows that limk→∞ fk(w) = τ for each w ∈ Bn. Then∣∣∣∣log
1 + ‖fk(g(z))‖
1 + ‖fk(z)‖

∣∣∣∣ → 0 as k →∞

and, since 2kn(0, Φz(g(z))) = log
1 + ‖Φz(g(z))‖
1− ‖Φz(g(z))‖ , taking the limit for k → ∞ we

obtain

lim inf
k→∞

1− ‖g(fk(z))‖
1− ‖fk(z)‖ ≤ 1 + ‖Φz(g(z))‖

1− ‖Φz(g(z))‖ .(2.3)

In particular (2.3) implies β < +∞. Then by Theorem 1.8 there exists σ ∈ ∂Bn

such that K- limz→τ g(z) = σ. Notice that if fk(z) converges to τ in a Korányi
region, then σ = τ (but in general {fk(z)} doesn’t lie in any Korányi region: check
the convergence of the iterates of a parabolic automorphism of Bn).

Moreover since β and α are bounded, it follows from Lemma 2.2 that the curves
r 7→ f(rτ) and r 7→ g(rτ) are, respectively, a restricted τ -curve and a restricted
σ-curve. Therefore, since limr→1 f(g(rτ)) = limr→1 g(f(rτ)) = σ, it follows that,
if f has K-limit at σ, it has to be σ. So if we prove that lim infz→σ

1−‖f(z)‖
1−‖z‖ ≤

1, then Proposition 1.9 will yield σ = τ . To this aim it suffices to show that
lim infr→1

1−‖f(g(rτ))‖
1−‖g(rτ)‖ ≤ 1. We can write

1− ‖f(g(rτ))‖
1− ‖g(rτ)‖ =

1− ‖f(g(rτ))‖
|1− 〈f(rτ), τ〉| ·

|1− 〈f(rτ), τ〉|
1− r

· 1− r

1− ‖g(rτ)‖ .(2.4)

Now we shall estimate the factors on the right-hand side of equality (2.4). Since
β < ∞, since r 7→ f(rτ) is a restricted τ -curve and since f and g commute, then
by Theorem 1.8 we obtain

1− ‖f(g(rτ))‖
|1− 〈f(rτ), τ〉| ≤

|1− 〈g(f(rτ)), σ〉|
|1− 〈f(rτ), τ〉| → β as r → 1.

In the same way (taking into account that r 7→ rτ is a restricted τ -curve) we get

|1− 〈f(rτ), τ〉|
1− r

→ α as r → 1.

Moreover

lim sup
r→1

1− r

1− ‖g(rτ)‖ =
(

lim inf
r→1

1− ‖g(rτ)‖
1− r

)−1

≤ 1
β

.

Then taking the limit for r → 1 in equation (2.4) we have:

lim inf
r→1

1− ‖f(g(rτ))‖
1− ‖g(rτ)‖ ≤ β · α · 1

β
= α ≤ 1.
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It remains to prove that β ≤ L−1. From formula (2.3) it follows that β ≤
1+‖Φz(g(z))‖
1−‖Φz(g(z))‖ for each z ∈ Bn. Choose z := rδ, with 0 ≤ r < 1. It suffices to
show that

‖Φrδ(g(rδ))‖ → 1− L

1 + L
as r → 1.

From the definition of Φrδ(g(rδ))—see (2.2)—we obtain

Φrδ(g(rδ)) =
(

(1 − 〈g(rδ), δ〉)δ
1− r

+
(r − 1)δ
1− r

−√
1 + r

g(rδ)− 〈g(rδ), δ〉δ√
1− r

)
· 1− r

1− 〈g(rδ), rδ〉 .
(2.5)

By Theorem 1.8, since the curve r 7→ rδ is δ-restricted, the first factor on the right-
hand side of equality (2.5) tends to (L − 1)δ as r → 1. As for the second factor of
equality (2.5), using again Theorem 1.8, we get for r → 1

1− r

1− 〈g(rδ), rδ〉 =
1− r

1− 〈g(rδ), δ〉 ·
1

r + 1−r
1−〈g(rδ),δ〉

→ 1
L
· 1
1 + 1

L

=
1

1 + L
.

Therefore ‖Φrδ(g(rδ))‖ → (1− L)(1 + L)−1.

Proof of Theorem 2.1. 1) Since f ◦ g = g ◦ f , then

f(z) = f(g(z)) = g(f(z)) for any z ∈ Fix(g).(2.6)

Then f(Fix(g)) ⊆ Fix(g) and by Theorem 1.1 it follows that Fix(g) ' Bm for some
m ∈ N. Hence f has a fixed point in Fix(g) since, otherwise, we could find a
compactly divergent sequence fk(z), but this is impossible because of Theorem 1.4.

2) Suppose Fix(g) 6= ∅. Take z ∈ Fix(g). If f̂ denotes the restriction of f to
Fix(g), by equation (2.6) it follows that f̂ is a well-defined holomorphic self-map of
Fix(g) with no fixed points (and then Fix(g) has dimension at least one). Let τ be
the Wolff point of f . Since the Wolff point of f̂ coincides with the Wolff point of f ,
then τ ∈ ∂Fix(g). Now, using a sequence which lies in Fix(g) and converges to τ ,
it follows that the boundary dilatation coefficient of g at τ is less than or equal to
1 and thus, by Theorem 1.8, K- limz→τ g(z) = τ . Then the assertion holds because
τ is the Wolff point of f and by Proposition 1.9 it follows that K- limz→τ f(z) = τ .

The remaining case, that is when f and g are without fixed points, follows
directly from Lemma 2.3.

3. On the Wolff points of commuting maps

In the previous section we proved that two commuting holomorphic maps f, g ∈
Hol(Bn, Bn) always have a common fixed point which can lie in Bn, or in ∂Bn in the
sense of K-limits. In the case that one of the maps—say f—has no fixed points,
then in the proof of assertion 2) of Theorem 2.1 we showed that the Wolff point
of f has to be a “boundary fixed point” (in the sense of K-limits) also for g. So
if g has no fixed points either, f and g have two boundary fixed points, the Wolff
point of f and the Wolff point of g, which can even coincide. If the boundary
dilatation coefficient of g at its Wolff point is equal to 1, it follows from Lemma 2.3
and Proposition 1.9 that f and g have the same Wolff point. But, what happens
in general? Let us examine the following example:
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Example. Let F (z) := (γ(z1), 0, . . . , 0) and let G(z) := (γ−1(z1), 0, . . . , 0), where
γ is a hyperbolic automorphism of ∆, e.g.

γ(ξ) := (cosht ξ + sinht) · (sinht ξ + cosht)−1 with t ∈ R− {0}.
Then F and G have no fixed points and commute; furthermore the Wolff point of
F is e1 and the Wolff point of G is −e1. The boundary dilatation coefficient of G
at e1 is exactly the inverse of its boundary dilatation coefficient at −e1.

So in general, if n > 1, we can find commuting holomorphic maps with no
fixed points and with different Wolff points, which are not automorphisms of Bn.
Nevertheless the previous example gives us an idea of how things work in dimension
greater than one. Before going ahead, let us recall the following:

Lemma 3.1 (Behan [3]). Let η ∈ Hol(∆, ∆) be such that limr→1 η(r) = 1,
limr→−1 η(r) = −1. If dη(x) is the boundary dilatation coefficient of η at x ∈ ∂∆,
dη(x) := lim infξ→x

1−|η(ξ)|
1−|ξ| , we have

dη(1) · dη(−1) ≥ 1.(3.1)

Moreover the equality holds in (3.1) if and only if η is a (hyperbolic) automorphism
of ∆.

Now, suppose that f, g ∈ Hol(Bn, Bn) have no fixed points and that f ◦g = g ◦f .
If f and g do not have the same Wolff point, then both f and g have two boundary
fixed points and the product of the boundary dilatation coefficients of f (and g)
at the fixed points is less than or equal to 1 (by Lemma 2.3). So we can hope to
use estimate (3.1) and prove that the restriction of f to a suitable subset Γ of Bn

(biholomorphic to ∆) is a hyperbolic automorphism of Γ. Well, that is what we
shall do:

Theorem 3.2. If f, g ∈ Hol(Bn, Bn) have no fixed points and f ◦ g = g ◦ f , then:
• either f and g have the same Wolff point or
• there exists ϕ ∈ Aut(Bn) such that, by setting f̃ := ϕ−1 ◦ f ◦ ϕ and g̃ :=

ϕ−1 ◦ g ◦ ϕ, it follows that:
1. The maps z1 7→ f̃1(z1, 0, . . . , 0) and z1 7→ g̃1(z1, 0, . . . , 0) are two com-

muting hyperbolic automorphisms of ∆,
2. f̃2(z1, 0, . . . , 0) = . . . = f̃n(z1, 0, . . . , 0) = 0 and g̃2(z1, 0, . . . , 0) = . . . =

g̃n(z1, 0, . . . , 0) = 0.

We recall that a complex geodesic of Bn is a injective holomorphic map ϕ : ∆ →
Bn such that ϕ(∆) is a one-dimensional affine subset of Bn. We can now rephrase
Theorem 3.2 in the following equivalent way:

Theorem 3.3. Suppose f, g ∈ Hol(Bn, Bn) have no fixed points and f ◦ g = g ◦ f .
Suppose that the Wolff point of f is different from the Wolff point of g and let
ϕ : ∆ → Bn be the complex geodesic whose closure contains the Wolff points of f
and g. Then f(ϕ(∆)) = ϕ(∆), g(ϕ(∆)) = ϕ(∆) and f |ϕ(∆), g|ϕ(∆) are commuting
hyperbolic automorphisms of ϕ(∆).

Proof of Theorem 3.2. Since the group of automorphisms of Bn acts doubly tran-
sitively on ∂Bn, if the Wolff point of g does not coincide with the Wolff point of f ,
then we can suppose that, up to a conjugation in Aut(Bn), e1 is the Wolff point
of g and −e1 is the Wolff point of f . If L is the boundary dilatation coefficient
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of g at e1 (0 < L ≤ 1), then by estimate (2.1) the boundary dilatation coefficient
of g at −e1 is less than or equal to L−1. Consider the map η : ∆ → ∆ defined
by η(ξ) := g1(ξ, 0, . . . , 0). Then η ∈ Hol(∆, ∆) and since g has K-limit e1 at e1

and −e1 at −e1, it follows that limr→1 η(r) = 1 and limr→−1 η(r) = −1. More-
over, using the notation of Lemma 3.1, dη(1) ≤ L and dη(−1) ≤ L−1 because, by
Theorem 1.8:

dη(1) = lim inf
ξ→1

1− |η(ξ)|
1− |ξ| ≤ lim inf

r→1

1− |g1(re1)|
1− r

≤ lim
r→1

|1− g1(re1)|
1− r

= L.

The same holds for dη(−1). Therefore dη(1) · dη(−1) ≤ 1, and by estimate (3.1) we
get dη(1)·dη(−1) = 1 so that, by Lemma 3.1, η—and hence g1(ξe1)—is a hyperbolic
automorphism.

It remains to prove that g2(ξe1) = . . . = gn(ξe1) = 0. To do this, notice that

for each θ ∈ [0, 2π] we have lim infz→eiθe1

1−‖g(z)‖
1−‖z‖ ≤ lim infr→1

1−|g1(reiθ)|
1−r < +∞,

since g1(ξe1) is an automorphism. Now Theorem 1.8 implies that for each θ and
for each j = 2, . . . , n we have limr→1 gj(reiθ) = 0, since

∣∣g1(eiθ)
∣∣ ≡ 1. Then

gj(ξe1) ≡ 0 for j = 2, . . . , n. Since the same holds for f and f ◦ g = g ◦ f , we get
the assertion.
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4. S. Bergman, Über die Kernfunktion eines Bereiches und ihr Verhalten am Rande, I, J. Reine
Angew. Math. 169 (1933), 1-42.
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