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Preface

These are the notes of a PhD course the first named author gave in 2005/06 at Università
di Roma “Tor Vergata”. The main subject of this course was the study of plurisubharmonic
functions and their properties. These are very important tools in complex analysis because
plurisubharmonic functions are pretty much related to holomorphic functions but much more
flexible to handle and to be constructed. However, these notes contain very few applications
of plurisubharmonic functions theory to complex analysis (for instance we included boundary
transversality properties of analytic discs as a consequence of Hopf’s lemma and a few relations
between the pluricomplex Green function and invariant distances).

The present material contains a first part about elementary properties of (pluri-)subharmonic
functions (chapters one, two and three), a second part (chapter four) about elementary prop-
erties of currents (especially positive currents) and a third part (chapter five) about maximal
plurisubharmonic functions and the Monge-Ampère operator. This latter part has been devel-
oped in details for smooth plurisubharmonic functions and only sketched for locally bounded
ones. Also, in this last chapter there are two sections about the pluricomplex Green function in
bounded domains.

The reader—if any—of these notes is assumed to have a basic knowledge of harmonic
functions, analysis and geometry.

The PhD course itself and, as consequence these notes, are mainly based on the wonderful
books by Klimek [16] and Demailly [9]. It may happen that some result is stated here in a more
general form than in those books and other material has been added from different sources.
Some proofs have been completely re-elaborated and might not be contained in the literature in
this form but of course we do not claim any original credit on this material.

We thank the participants of the course for their comments and questions which certainly
improved these notes. We also thank prof. Sandro Silva for the opportunity of publishing these
notes.
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CHAPTER 1

Subharmonic functions

1. The sub-mean property and the maximum principle

DEFINITION 1.1. Let Ω ⊂ Rm be a set. A function u : Ω → [−∞,∞) is upper semicon-
tinuous if for all c ∈ R the set {x ∈ Ω : u(x) < c} is open in Ω.

Notice that an upper semicontinuous function is measurable and is not allowed to assume
the value +∞ (while it may assume the value −∞). It is easy to show that if K ⊂ Rm is a
compact set and u : K → [−∞,∞) is upper semicontinuous then it has a maximum on K, but
in general it may have no minimum (for instance let K = [−1, 1] and define u(x) = log |x| for
x 6= 0 and u(0) = 0. Then u is upper semicontinuous on K but has no minimum).

Another useful property that we will use in the sequel is that if u is upper semicontinu-
ous on a compact set K then there exists a decreasing sequence {uj} ⊂ C0(K) such that
limj→∞ uj(x) = u(x) for all x ∈ K.

Moreover, if K is a compact set, then
∫

K
u is well defined (possibly = −∞) for all up-

per semicontinuous functions u in K, and according to Beppo Levi’s theorem on monotone
convergence,

∫
K

u = limj→∞
∫

K
uj with {uj} ⊂ C0(K) a sequence decreasing to u on K.

THEOREM 1.2. Let Ω ⊂ Rm be a connected domain (not necessarily bounded). Let u :
Ω → [−∞, +∞) be a non-constant upper semicontinuous function. Suppose that for all a ∈ Ω
there exists R(a) > 0 with the following property: for all balls B(a, r) of center a and radius
0 < r ≤ R(a) with B(a, r) ⊂ Ω it holds

(1.1) u(a) ≤ 1

v(B(a, r))

∫

B(a,r)

u(x)dλ(x).

Then for all z ∈ Ω
u(z) < sup

w∈Ω
u(w).

Moreover, if there exists R0 ∈ (0, +∞] such that R(a) > R0 for all a ∈ Ω then u ∈ L1
loc(Ω).

PROOF. Let α := supz∈Ω u(z). By hypothesis u does not assume the value +∞ in Ω, thus,
if α = +∞ the statement is correct. We can assume then that α < +∞. Let us define

Ωα := {z ∈ Ω : u(z) ≥ α}.
Since u is upper semicontinuous then Ωα is closed in Ω and by the very definition of α the set
Ωα coincides with the set {z ∈ Ω : u(z) = α}. The theorem will follow if we can prove that
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Ωα is empty. In order to do that, we show that if Ωα were not empty then it would be open as
well, which, by connectedness of Ω, would imply u ≡ α against our hypothesis that u is not
constant. Let assume then that there exists a ∈ Ωα. Let B(a, r) ⊂ Ω be an open ball relatively
compact in Ω, r ≤ R(a). We want to show that B(a, r) ⊂ Ωα. If this is not the case then there
exists b ∈ B(a, r) such that u(b) < α and, since u is upper semicontinuous, there exists an open
set K ⊂ B(a, r) such that b ∈ K and u(x) < α for all x ∈ K. Then

α = u(a) ≤ 1

v(B(a, r))

∫

B(a,r)

u(x)dλ(x)

=
1

v(B(a, r))

[∫

B(a,r)\K
u(x)dλ(x) +

∫

K

u(x)dλ(x)

]

<
1

v(B(a, r))

[∫

B(a,r)\K
u(x)dλ(x) +

∫

K

αdλ(x)

]

≤ α

v(B(a, r))

[∫

B(a,r)\K
dλ(x) +

∫

K

dλ(x)

]
= α,

that is, α < α, a contradiction. Then B(a, r) ⊂ Ωα and this latter set is open.
Now assume that R(a) ≥ R0 for all a ∈ Ω. Since u is upper semicontinuous, on each

compact subset K ⊂⊂ Ω it has a maximum. Moreover, if u(a) > −∞ and B(a, ρ) with
R(a) ≥ ρ > 0 is relatively compact in Ω, then by (1.1) it follows that u ∈ L1(B(a, r)) for all
r ≤ ρ. Therefore the set W = {x ∈ Ω : ∃U 3 x, u ∈ L1

loc(U)} of points where u is locally
integrable, is a non-empty open subset of Ω. To show that u ∈ L1

loc(Ω) it is enough to prove that
W is closed in Ω. Let x0 ∈ ∂W ∩ Ω. The condition that R(a) ≥ R0 for all a ∈ Ω guarantees
that there exists a point a ∈ W with u(a) > −∞ and a number r > 0, r ≤ R(a), such that
U = B(a, r) is relatively compact in Ω and x0 ∈ B(a, r). Let c = maxz∈U u(z). Then u−c ≤ 0
in U . Therefore for all compact subsets K ⊂ B(a, r)

−∞ < v(B(a, r))(u(a)− c) ≤
∫

B(a,r)

[u(x)− c]dλ(x) ≤
∫

K

[u(x)− c]dλ(x) ≤ 0.

Hence u ∈ L1(K) for all K ⊂⊂ B(a, r) and in particular x0 ∈ W showing that W is closed in
Ω and u ∈ L1

loc(Ω). ¤
REMARK 1.3. The condition on the existence of R0 > 0 which uniformly bounds R(a)

from below for each a ∈ Ω is actually not necessary for the conclusion that u ∈ L1
loc(Ω).

However this will be a consequence of the equivalence between (3) and (4) in Theorem 2.2.

REMARK 1.4. The previous proof shows that Theorem 1.2 holds if one substitutes the balls
B(a, r) in (1.1) with any other basis of open sets.

REMARK 1.5. Let Ω ⊂ Rm be a connected domain and let u : Ω → [−∞,∞) be an
upper semicontinuous function, u 6≡ −∞. Define the function ũ : Ω → [−∞,∞] as follows:
ũ(x) := u(x) for x ∈ Ω and ũ(y) := lim sup

Ω3x→y
u(x) for y ∈ ∂Ω. If ũ(y) < +∞ for all y ∈ ∂Ω
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then ũ is upper semicontinuous. In this case we say that ũ is an upper semicontinuous extension
of u to Ω. Notice that ũ is the minimal upper semicontinuous extension of u to Ω, namely, if v
is another semicontinuous extension of u then ũ ≤ v.

COROLLARY 1.6. Let Ω ⊂ Rm be a connected bounded domain. Let u : Ω → [−∞, +∞)
be a non-constant upper semicontinuous function which satisfies the sub-mean property (1.1).
For y ∈ ∂Ω define u(y) := lim sup

Ω3x→y
u(x). Then for all x ∈ Ω

u(x) < sup
y∈∂Ω

u(y).

In particular, if u extends upper semicontinously on Ω (namely, if u(y) < ∞ for all y ∈ ∂Ω)
then u(z) < maxy∈∂Ω u(y) for all z ∈ Ω.

2. Definition and first properties

Let harm(Ω) be the space of harmonic functions on a domain Ω ⊂ Rm.

DEFINITION 2.1. Let Ω ⊂ Rm be a connected domain. A function u : Ω → [−∞,∞) is
called a subharmonic function, u ∈ subh(Ω) if

(1) u 6= −∞.
(2) u is upper semicontinuous.
(3) For all open set G ⊂⊂ Ω and all v ∈ harm(G) ∩ C0(G) such that u(y) ≤ v(y) for all

y ∈ ∂G it follows that u(x) ≤ v(x) for all x ∈ G.

By the very definition, subh(Ω) is a cone in the space of all real functions on Ω.

THEOREM 2.2. Let Ω ⊂ Rm be a domain. Let u : Ω → [−∞,∞) be an upper semicontin-
uous function, u 6≡ −∞. The following are equivalent:

(1) For all open ball B(a, r) relatively compact in Ω it follows

(2.1) u(a) ≤ 1

µ(∂B(a, r))

∫

∂B(a,r)

u(ζ)dσ(ζ).

(2) For all open ball B(a, r) relatively compact in Ω it follows

(2.2) u(a) ≤ 1

v(B(a, r))

∫

B(a,r)

u(x)dλ(x).

(3) For all a ∈ Ω there exists R(a) > 0 such that for all 0 < r < R(a) and open balls
B(a, r) relatively compact in Ω it follows

(2.3) u(a) ≤ 1

v(B(a, r))

∫

B(a,r)

u(x)dλ(x).

(4) u ∈ subh(Ω).
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PROOF. (1) implies (2) by integration on r and Fubini’s theorem. Obviously (2) implies (3).
Assume (3) holds. Let G ⊂⊂ Ω be open and v ∈ harm(G) ∩ C0(G) be such that u ≤ v

on ∂G. Then u − v has the sub-mean property and, by Theorem 1.6 it satisfies the maximum
principle in G. Thus u−v has maximum on ∂G and then u−v ≤ 0 in G proving that (4) holds.

Finally, assume (4) holds and let B(a, r) be an open ball relatively compact in Ω. Since
∂B(a, r) is compact and u is upper semicontinuous on ∂B(a, r), there exist a decreasing se-
quence {uj} ⊂ C0(∂B(a, r)) such that limj→∞ uj(x) → u(x) for all x ∈ ∂B(a, r). Let
Uj ∈ harm(B(a, r)) ∩ C0(B(a, r)) be such that Uj = uj on ∂B(a, r). Since u ∈ subh(Ω)
and u ≤ Uj on ∂B(a, r) then u ≤ Uj in B(a, r) for all j. Therefore for all j

u(a) ≤ Uj(a) =
1

µ(∂B(a, r))

∫

∂B(a,r)

uj(ζ)dσ(ζ).

Thus, by Beppo Levi’s theorem on monotone convergence

u(a) ≤ lim
j→∞

1

µ(∂B(a, r))

∫

∂B(a,r)

uj(ζ)dσ(ζ) =

1

µ(∂B(a, r))

∫

∂B(a,r)

lim
j→∞

uj(ζ)dσ(ζ) =
1

µ(∂B(a, r))

∫

∂B(a,r)

u(ζ)dσ(ζ)

and (1) holds. ¤
REMARK 2.3. By the equivalence between (2) and (3) in Theorem 2.2 it follows that if

u : Ω → [−∞, +∞) is a non-constant upper semicontinuous function which satisfies (1.1) then
actually R(a) = +∞ for all a ∈ Ω and then u ∈ L1

loc(Ω).

COROLLARY 2.4. Let Ω ⊂ Rm be a connected domain and let {Ωk} ⊂ Rm be a sequence
of connected domains such that Ωk ⊆ Ωk+1 and

⋃
k Ωk = Ω. For each k, let uk ∈ subh(Ωk) be

such that uk(x) ≥ uk+1(x) for all x ∈ Ωk and for all k (that is, {uk} is a decreasing sequence).
Let u(x) := limk→∞ uk(x) for x ∈ Ω. Then either u ≡ −∞ or u ∈ subh(Ω).

PROOF. Assume that u 6≡ −∞. First of all, for c ∈ R and k ∈ N the set {x ∈ Ωk : u(x) ≥
c} =

⋂
s≥k{x ∈ Ωs : us(x) ≥ c} is closed in Ωk and thus u is upper semicontinuous in Ωk for

all k which implies that u is upper semicontinuous in Ω. Next, according to Theorem 2.2 we
just need to prove that u satisfies the sub-mean property. Let a ∈ Ω and let B(a, r) be an open
ball relatively compact in Ω. Then, since the uk’s are subharmonic by Beppo Levi’s theorem
one has

u(a) = lim
k→∞

uk(a) ≤ lim
k→∞

1

v(B(a, r))

∫

B(a,r)

uk(x)dλ(x) =
1

v(B(a, r))

∫

B(a,r)

u(x)dλ(x),

as wished. ¤
Another important consequence of Theorem 2.2 is that subharmonicity is a local property:

PROPOSITION 2.5. Let Ω ⊂ Rm be a connected domain. Then a function u ∈ subh(Ω) if
and only if for all x ∈ Ω there exists an open neighborhood Vx ⊂ Ω of x such that u ∈ subh(Vx).
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Also

COROLLARY 2.6. Let Ω ⊂ Rm be a connected domain. Let u ∈ subh(Ω). Then u ∈
L1

loc(Ω). Moreover, for all x ∈ Ω
u(x) < sup

w∈Ω
u(w).

In particular, if Ω is bounded and u extends upper semi-continuously on Ω then u(x) <
maxy∈∂Ω u(y) for all x ∈ Ω.

REMARK 2.7. Corollary 2.6 says that a subharmonic function satisfies the maximum prin-
ciple, namely, if u ∈ subh(Ω) is not constant then for each G ⊂ Ω open it follows u(z) <
supw∈G u(w). The converse is however not true. For instance consider Ω = {(x, y) ∈ R2 :
x > 0, y > 0}. Let u : Ω → R be given by u(x, y) :=

√
x + y. Then u satisfies the maxi-

mum principle (because u is increasing in Ω with respect to the distance from the origin), but
it is not subharmonic (for instance we see that ∆u < 0 and by Theorem 4.1 then u cannot be
subharmonic).

Also, since harmonic functions are continuous and satisfy the mean-value property, it fol-
lows that

PROPOSITION 2.8. Let Ω ⊂ Rm be a connected domain. Then harm(Ω) ⊂ subh(Ω).
Moreover, if u ∈ subh(Ω) and −u ∈ subh(Ω) then u ∈ harm(Ω).

3. Regularization

Let χ ∈ C∞(Rm) be such that χ ≥ 0, supp(χ) ⊆ B(O, 1), χ(x) = χ(‖x‖) and
∫
Rm χ(x)dλ(x) =

1. Let ε > 0 and define

χε(x) :=
1

εm
χ(x/ε).

Then supp(χε) ⊆ B(O, ε) and
∫
Rm χε(x)dλ(x) = 1.

For an open connected subset Ω ⊂ Rm let

Ωε = {x ∈ Ω : dist(x, ∂Ω) > ε}.
From now on, we assume without further comments that ε is so small that Ωε 6= ∅. If u ∈
L1

loc(Ω) then we let for x ∈ Ωε

uε(x) := u ∗ χε(x) :=

∫

Rm

u(x− y)χε(y)dλ(y) =

∫

Rm

u(y)χε(x− y)dλ(y).

By Lebesgue’s dominated convergence theorem the functions uε ∈ C∞(Ωε) and uε → u in the
L1

loc(Ω)-topology as ε → 0 (and thus uε → u pointwise almost everywhere).

THEOREM 3.1. Let Ω ⊂ Rm be a connected domain. Let u ∈ subh(Ω). Then uε ∈
C∞(Ωε) ∩ subh(Ωε). Moreover, {uε} is decreasing as ε → 0+ and for all x ∈ Ω it follows
limε→0 uε(x) = u(x).
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PROOF. Let a ∈ Ω and B(a, r) an open ball relatively compact in Ωε. By Fubini’s theorem
and since u is subharmonic

1

v(B(a, r))

∫

B(a,r)

uε(x)dλ(x) =

∫

Rm

χε(y)

(
1

v(B(a, r))

∫

B(a,r)

u(x− y)dλ(x)

)
dλ(y)

≥
∫

Rm

χε(y)u(a− y)dλ(y) = uε(a),

(3.1)

and thus by Theorem 2.2, uε ∈ subh(Ωε).
Next we show that uε is decreasing in ε. To this aim, for a ∈ Ω and r > 0 such that

B(a, r) ⊂⊂ Ω we let

L(u, a, r) :=
1

µ(∂B(a, r)

∫

∂B(a,r)

u(ζ)dσ(ζ).

We claim that r 7→ L(u, a, r) is increasing. Indeed, let r1 < r2 and let {uj} ⊂ C0(∂B(a, r2))
be a decreasing sequence whose limit is u on ∂B(a, r2) (such a sequence exists because u is
upper semicontinuous on the compact set ∂B(a, r2)). Let Uj ∈ harm(B(a, r2)) ∩ C0(B(a, r2))
be such that Uj = uj on ∂B(a, r2). Since u ≤ uj on ∂B(a, r2) then u ≤ Uj in B(a, r2) for all j.
Therefore

L(u, a, r1) ≤ L(Uj, a, r1) = Uj(a) = L(Uj, a, r2) = L(uj, a, r2)

for all j. Thus by Beppo Levi’s theorem, L(u, a, r1) ≤ limj→∞ L(uj, a, r2) = L(u, a, r2)
proving that r 7→ L(u, a, r) is increasing. Now, a direct computation from the very definition
shows that

(3.2) uε(x) = µ(∂B(O, 1))

∫ 1

0

χ(r)rm−1L(u, x, εr)dr

and since r 7→ L(u, a, r) is increasing (and thus decreasing as r → 0+), ε 7→ uε(x) is decreas-
ing for each fixed x ∈ Ω.

We have to show that uε → u pointwise as ε → 0. From (3.2), since u(x) ≤ L(u, x, εr) for
all ε > 0, it follows that u(x) ≤ uε(x) for all x ∈ Ωε. Let first assume that u(x) 6= −∞ and let
C > 0. Since u is upper semicontinuous there exists ε1 > 0 such that u(y) < u(x) + C for all
y ∈ B(x, ε1). For ε < ε1, since χε is supported in B(O, ε), we have

uε(x) =

∫

Rm

u(x− y)χε(y)dλ(y) =

∫

B(O,ε)

u(x− y)χε(y)dλ(y)

≤ (u(x) + C)

∫

B(O,ε)

χε(y)dλ(y) = u(x) + C

(3.3)

and thus u(x) ≤ uε(x) ≤ u(x) + C. Therefore limε→0 uε(x) = u(x). Assume now that u(x) =
−∞. Then, since lim supw→x u(x) ≤ u(x) = −∞, for all C > 0 there exists ε1 > 0 such that
u(y) ≤ −C for all y ∈ B(x, ε) and ε < ε1. Arguing as in (3.3) we find that uε(x) ≤ −C for
ε < ε1 and therefore uε(x) → −∞ as ε → 0. ¤
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COROLLARY 3.2. Let Ω ⊂ Rm be a connected domain. If u, v ∈ subh(Ω) and u = v almost
everywhere then u ≡ v.

PROOF. Since u = v almost everywhere, then uε ≡ vε. Thus, by Theorem 3.1, u(x) =
limε→0 uε(x) = limε→0 vε(x) = v(x) for all x ∈ Ω. ¤

REMARK 3.3. Let Ω ⊂ Rm. Let u ∈ subh(Ω). Let B(x, r) be an open ball relatively
compact in Ω. Consider the function

A(x, u, r) :=
1

v(B(x, r))

∫

B(x,r)

udλ.

Then A(x, u, r) is increasing in r > 0. Indeed, in the proof of Theorem 3.1 we proved that
L(x, u, r) is increasing in r > 0 and

A(x, u, r) = m

∫ 1

0

tmL(x, u, tr)dt.

PROPOSITION 3.4. Let Ω ⊂ Rm be a connected domain. Let {uj} ⊂ subh(Ω) be a sequence
of subharmonic functions which are uniformly bounded from above on compacta of Ω. Let

S({uj}) := {x ∈ Ω : ∃U open neighborhood of x, ∃CU > 0 : sup
j

∫

U

|uj|dλ ≤ CU}.

Then, either S({uj}) = ∅ or S({uj}) = Ω.

PROOF. The set S({uj}) is clearly open. Since Ω is connected, it is enough to show that it is
also closed in Ω. Assume that S({uj}) 6= ∅ and let y ∈ S({uj}) ∩ Ω. There exist x ∈ S({uj})
and r > 0 such that B(x, r) is relatively compact in Ω and y ∈ B(x, r). In order to show that
y ∈ S({uj}) (proving that Ω is closed) it is enough to show that there exists M > 0 such that

(3.4) sup
j

∫

B(x,r)

|uj|dλ ≤ M.

Since {uj} are uniformly bounded on compacta, there exists C ≥ 0 such that uj(z) − C ≤ 0
for all j ∈ N and z ∈ B(x, r). Thus, we can assume that uj ≤ 0 on B(x, r). By hypothesis,
x ∈ S({uj}). Therefore, there exist 0 < r′ ≤ r and M ′ > 0 such that

sup
j

∫

B(x,r′)
|uj|dλ = sup

j

(
−

∫

B(x,r′)
ujdλ

)
≤ M ′.

According to Remark 3.3, for all j ∈ N,
1

v(B(x, r))

∫

B(x,r)

|uj|dλ = −A(x, uj, r) ≤ −A(x, uj, r
′)

=
1

v(B(x, r′))

∫

B(x,r′)
|uj|dλ ≤ M ′

v(B(x, r′))
,

and we are done. ¤
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4. Subharmonic functions and distributions

THEOREM 4.1. Let Ω ⊂ Rm be a connected domain. If u ∈ subh(Ω) then ∆u ≥ 0 in the
sense of distribution. Conversely, if u ∈ L1

loc(Ω) and ∆u ≥ 0 in the sense of distributions, then
there exists v ∈ subh(Ω) such that v = u almost everywhere.

PROOF. First of all, we assume u ∈ C2(Ω). Suppose ∆u ≥ 0. Let G ⊂⊂ Ω and h ∈
harm(G) ∩ C0(G) be such that u ≤ h on ∂G. Fix ε > 0. Let R := max{‖z‖2 : z ∈ G},
0 < δ < ε/R and

v(z) := u(z)− ε + δ‖z‖2.

Notice that v < u in G and therefore v < h on ∂G. Let w(z) := v(z) − h(z). Then w(z) < 0
on ∂G. We claim that w ≤ 0 in G. Let a ∈ G be such that w(a) = maxz∈G w(z). Assume
by contradiction that w(a) > 0. Since a ∈ G, then there exists s > 0 such that (−s, s) 3 t 7→
w(a + tej) has a maximum in t = 0. Thus

∂2

∂x2
j

w(a) =
d2

dt2
w(a + tej)|t=0 ≤ 0.

Therefore ∆w(a) ≤ 0. But

∆w(a) = ∆u(a) + δ∆‖z‖2|z=a −∆h(a) = ∆u(a) + δ > 0,

contradiction. Thus v ≤ h in G. Hence, u ≤ h+ ε− δ‖z‖2 < h+2ε on G. By the arbitrariness
of ε we obtain u ≤ h in G and thus u ∈ subh(Ω). Now, if u ∈ C2(Ω)∩ subh(Ω) and ∆u(a) < 0
then there exists an open ball B(a, r) ⊂ Ω such that ∆u(x) ≤ 0 for all x ∈ B(a, r). Therefore
∆(−u) ≥ 0 in B(a, r) which, by the previous part, implies that −u ∈ subh(B(a, r)). There-
fore u,−u ∈ subh(B(a, r)) and then u ∈ harm(B(a, r)). But then ∆u(a) = 0, contradicting
∆u(a) < 0. Thus the theorem holds for C2 functions.

Now assume u ∈ subh(Ω) (with no regularity assumptions). Let uε be the regularization
sequence given by Theorem 3.1. Then ∆uε ≥ 0 for all ε > 0. If ϕ ∈ C∞

0 (Ω), ϕ ≥ 0, then by
the Lebesgue theorem and integration by parts∫

Ω

u∆ϕ = lim
ε→0

∫

Ω

uε∆ϕ = lim
ε→0

∫

Ω

(∆uε)ϕ ≥ 0,

and thus ∆u ≥ 0 in the sense of distributions.
Conversely, let u ∈ L1

loc be such that ∆u ≥ 0 in the sense of distributions. Let uε := u ∗ χε.
Recall that uε → u in L1

loc(Ω)—and thus uε → u almost everywhere. For small ε, test function
ϕ ∈ C∞

0 (Ω) with ϕ ≥ 0 and by Fubini’s theorem we have
∫

Ω

uε(x)∆ϕ(x)dλ(x) =

∫

Rm

χε(y)

(∫

Ω

u(x− y)∆ϕ(x)dλ(x)

)
dλ(y) ≥ 0,

therefore ∆uε ≥ 0 (this is true in the sense of distributions and, since uε ∈ C2(Ωε), integrating
by parts it is true for all x ∈ Ωε). Hence uε ∈ subh(Ωε). If we show that {uε} is decreasing
in ε, then by Corollary 2.4 the limit is subharmonic (and, as we already noticed, it coincides
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with u out of a zero-measure set). In order to see that {uε} is decreasing in ε, let ε1 < ε2. Then
uε2 = limδ→0 uε2 ∗ χδ. By Fubini’s theorem uε2 ∗ χδ = (u ∗ χε2) ∗ χδ = (u ∗ χδ) ∗ χε2 . The
function u ∗ χδ is subharmonic and by Theorem 3.1 the regularizing sequence approximating it
is decreasing in ε, namely (u ∗ χδ) ∗ χε2 ≥ (u ∗ χδ) ∗ χε1 . Thus

(4.1) uε2 = lim
δ→0

uε2 ∗ χδ ≥ lim
δ→0

uε1 ∗ χδ = uε1

as needed. ¤

5. Construction of subharmonic functions

PROPOSITION 5.1. Let Ω ⊂ Rm be a domain. Let V ⊂ Ω be an open subset. Let u ∈
subh(Ω) and let v ∈ subh(V ) be such that lim supz→y v(z) ≤ u(y) for all y ∈ ∂V ∩ Ω. Then
the function

w :=

{
max{u, v} in V

u in Ω \ V

is subharmonic in Ω. In particular, if V = Ω, namely if u, v ∈ subh(Ω), then max{u, v} ∈
subh(Ω).

PROOF. Clearly w : Ω → [−∞,∞). We want to prove that w is upper semicontinuous in
Ω. By the very definition, w is upper semicontinuous in Ω \ V . Let x ∈ V ∩ Ω. If x ∈ V then

lim sup
Ω3z→x

w(z) ≤ max{u(x), v(x)} = w(x),

while, if x ∈ ∂V ∩ Ω then
lim sup
Ω3z→x

w(z) ≤ u(x) = w(x),

because lim supz→y v(z) ≤ u(y) for all y ∈ ∂V ∩ Ω. Thus w is upper semicontinuous in Ω.
Now, let a ∈ Ω. If w(a) = u(a) then

1

v(B(a, r))

∫

B(a,r)

w(x)dλ(x) ≥ 1

v(B(a, r))

∫

B(a,r)

u(x)dλ(x) ≥ u(a) = w(a).

If w(a) = v(a) > u(a) (and then necessarily a ∈ V ) then we can find R(a) > 0 such that
B(a, r) ⊂ V for all 0 < r ≤ R(a). Thus

1

v(B(a, r))

∫

B(a,r)

w(x)dλ(x) ≥ 1

v(B(a, r))

∫

B(a,r)

v(x)dλ(x) ≥ v(a) = v(a),

and by Theorem 2.2, w ∈ subh(Ω). ¤
A simple argument shows that

PROPOSITION 5.2. Let Ω ⊂ Rm be a connected domain. Let {uj} ⊂ subh(Ω) be a sequence
converging uniformly on compacta. Then the limit u ∈ subh(Ω).
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PROPOSITION 5.3. Let Ω ⊂ Rm be a connected domain. Let {uα}α∈J be a family of
subharmonic functions on Ω. Let u(x) = supα∈J uα(x). Assume that u is locally bounded from
above. Let u∗ be the upper semicontinuous regularization of u, namely

u∗(x) := max{u(x), lim sup
Ω3w→x

u(w)}.

Then u∗ ∈ subh(Ω) and u = u∗ almost everywhere in Ω. Also, u∗ = limε→0 u ∗ χε.

PROOF. By the very definition u∗ : Ω → [−∞,∞) and, since lim supΩ3w→x u∗(w) = u∗(x)
it is upper semicontinuous. Notice that

u∗ = inf{v upper semicontinuous : v ≥ u}.
In particular if v is upper semicontinuous and v ≥ u then v ≥ u∗. Let G ⊂⊂ Ω be an open set
and let v ∈ harm(G) ∩ C0(∂G) be such that v ≥ u∗ on ∂G. Thus v ≥ u∗ ≥ u ≥ uα on ∂G for
all α ∈ J . Since uα ∈ subh(Ω), v ≥ uα on G for all α ∈ J . Thus v ≥ u on G. But v is (upper
semi-)continuous and therefore v ≥ u∗ in G, proving that u∗ ∈ subh(Ω).

Now consider the convolutions uε := u ∗ χε ∈ C∞(Ωε). We know that uε → u almost
everywhere in Ω. Let B(a, r) be an open ball relatively compact in Ω. Since for all α ∈ J

uα(a) ≤ 1

v((B(a, r))

∫

B(a,r)

uα(x)dλ(x) ≤ 1

v((B(a, r))

∫

B(a,r)

u(x)dλ(x)

then it follows that u(a) ≤ 1
v((B(a,r))

∫
B(a,r)

u(x)dλ(x). Arguing as in (3.1) we find then that
the uε’s have the sub-mean property and then uε ∈ subh(Ω). Moreover, by Theorem 3.1,
uα ≤ uα ∗ χε and then uα ≤ uα ∗ χε ≤ u ∗ χε = uε for all α, showing that u ≤ uε for all ε and
thus u∗ ≤ uε (since uε are C∞). Arguing as in (4.1) we see that uε is decreasing in ε. Thus by
Corollary 2.4 the limit v := limε→0 uε is subharmonic in Ω. Since v = u almost everywhere in
Ω, and u ≤ u∗ ≤ v then u = u∗ almost everywhere in Ω and u∗ = v by Corollary 3.2. ¤

DEFINITION 5.4. Let Ω ⊂ Rm be a domain. A subset E ⊂ Ω is a polar set if for each x ∈ E
there exists an open set Vx ⊂ Ω with x ∈ Vx and v ∈ subh(Vx) such that E∩Vx ⊆ {v = −∞}.

Since subharmonic functions are L1
loc, then every polar set E ⊂ Ω has zero Lebesgue mea-

sure and its complementary Ω \ E is dense in Ω.

COROLLARY 5.5. Let Ω ⊂ Rm be a domain. Let v ∈ subh(Ω) and let E be a closed polar
set. Let u ∈ subh(Ω \ E) (respectively u ∈ harm(Ω \ E)) and assume that u is bounded from
above. Let

(5.1) U(x) =





u(x) if x ∈ Ω \ E

lim sup
Ω\E3y→x

u(y) if x ∈ E

Then U is subharmonic (respectively harmonic) in Ω.
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PROOF. Assume u ∈ subh(Ω \ E). Since u is bounded from above, then U is upper semi-
continuous on Ω. Let x ∈ E and let Vx ⊂ Ω be an open neighborhood of x such that there exists
v ∈ subh(Vx) with E ∩ Vx ⊂ {v = −∞}. We are going to show that U ∈ subh(Vx) and then,
by arbitrariness of x ∈ E and by Proposition 2.5 it will follow that U ∈ subh(Ω).

Let define Uε := u + εv (here we consider Uε(x) = −∞ if v(x) = −∞) in Vx. Then Uε ∈
subh(Ω). Let Ũ = supε Uε on Vx \ E. According to Proposition 5.3 the upper semicontinuous
regularization Ũ∗ of Ũ is subharmonic in Vx. By construction U = Ũ∗ on Vx and thus U ∈
subh(Vx).

If u ∈ harm(Ω \ E), let V denotes the function defined as in (5.1) for −u. Then U, V ∈
subh(Ω) and U + V = 0 in Ω \ E which is a set of full Lebesgue measure. By Corollary 3.2 it
follows that U + V ≡ 0 and thus U,−U ∈ subh(Ω) which implies that U ∈ harm(Ω). ¤

THEOREM 5.6. Let Ω ⊂ Rm be an open set. Assume that one of the following conditions is
satisfied:

(1) u, v ∈ harm(Ω) with v > 0 and φ : R→ R is a convex function;
(2) u ∈ subh(Ω), v ∈ harm(Ω) with v > 0 and φ : R → R is an increasing convex

function;
(3) u,−v ∈ subh(Ω), with u ≥ 0, v > 0 and φ : R → R+ is a positive convex function

with φ(0) = 0;

then vφ(u/v) ∈ subh(Ω).

PROOF. We only give a proof of (2), the others being similar. First, being φ increasing and
convex, for x ∈ R, the tangent line to φ(x) is given by y = ax + b with a ≥ 0 and b ∈ R. Let

Fa,b(x) := {ax + b : a ≥ 0, b ∈ R, at + b ≤ φ(t) ∀t ∈ R}.
By convexity φ(x) = supa≥0,bFa,b(x). Now, v(au

v
+ b) = au+ bv ∈ subh(Ω) for a ≥ 0 and b ∈

R. Thus the upper semicontinuous regularization of vφ(u/v)(x) = supa≥0,bFa,b(au(x)+bv(x))
is subharmonic by Proposition 5.3. To have the result we only need to show that vφ(u/v) is
upper semicontinuous. But φ is increasing and u/v is upper semicontinuous, thus

lim sup
x→x0

φ(u(x)/v(x)) ≤ φ(u(x0)/v(x0)).

¤

COROLLARY 5.7. Let Ω ⊂ Rm be an open set. If u ∈ subh(Ω) then eu ∈ subh(Ω).

PROOF. By Theorem 5.6 with φ(x) = ex and v ≡ 1. ¤

6. Boundary behavior: the Hopf lemma

THEOREM 6.1 (Hopf’s lemma). Let Ω ⊂ Rm be a domain. Let p ∈ ∂Ω and suppose that ∂Ω
has the inner ball property at p (for instance, if ∂Ω is C2 at p). Let U be an open neighborhood
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of p and let u ∈ subh(Ω ∩ U) be such that limΩ3x→p u(x) = u(p) and u < u(p) in U ∩ Ω. Let
ν ∈ Rm be a non-zero vector which does not belong to Tp∂Ω and pointing outward. Then

lim sup
h→0

u(p− hν)− u(p)

h
< 0.

PROOF. Since Ω has the inner ball property at p, there exists a ball B ⊂ Ω ∩ U such that
∂B is tangent to ∂Ω at p. We can assume with no loss of generality that B = B(O, 1) and that
u(p) = 0 and u < 0 in B \ {p}. Let v(x) := e−α‖x‖2 − e−α for α > 2m. A direct computation
shows that ∆v = e−α‖x‖2(4‖x‖2α2 − 2mα) and v = 0 on ∂B. Thus, since α > 2m, v is
subharmonic in {z : ‖z‖ > 1/2}. Moreover,

∂v

∂ν
|x=p = grad[v(p)] · ν = −2αe−αp · ν < 0,

since ν points outward, that is p ·ν > 0. Fix ε > 0. Let M be such that u ≤ −M on ‖x‖ = 1/2.
Now v > 0 in B, but, since e−α/4 − e−α → 0 as α → ∞, there exists α >> 1 such that
v(x) < M/2ε for ‖x‖ = 1/2. Let V = B \ {x ∈ Rm : ‖x‖2 ≤ 1/2}. Then u + εv ∈ subh(V ).
Moreover, by construction u + εv ≤ 0 on ∂V . By the maximum principle, u + εv ≤ 0 in V
and p ∈ ∂B is a maximum since u(p) + εv(p) = 0. Let t0 > 0 be such that p − tν ∈ V for
0 < t ≤ t0. Then

lim sup
t→0+

(u + εv)(p− tν)

t
≤ 0.

Now let {tk}, tk > 0, be any sequence converging to 0. Then for all k

0 ≥ (u + εv)(p− tkν)

tk
=

u(p− tkν)

tk
+ ε

v(p− tkν)

tk

and since limk→∞0
v(p−tkν)

tk
= −∂v

∂ν
(p) > 0 we obtain

lim sup
k→∞

u(p− tkν)

tk
≤ ε

∂v

∂ν
(p) < 0,

proving the statement. ¤
Hopf’s lemma can be used in analysis to prove uniqueness for the solution of von Neumann-

type problems. As a matter of example, we give the following:

PROPOSITION 6.2. Let Ω ⊂ Rm be a bounded domain with C2 boundary. If u ∈ harm(Ω)∩
C2(Ω) is such that ∂u

∂np
(p) = 0 for all p ∈ ∂Ω (here np is the outer normal vector) then u =

const.

PROOF. Assume that u is not constant. By the maximum principle it has a strict maximum
at some p ∈ ∂Ω. Thus Hopf’s lemma implies that ∂u

∂np
(p) > 0, against the hypothesis. ¤
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CHAPTER 2

Pluriharmonic functions

1. Interlude on holomorphic functions

Consider the complex space Cn as a 2n-dimensional real space R2n. The multiplication by
i in Cn determines a complex structure J on R2n, called the standard complex structure of R2n.
More explicitly, if v ∈ Cn and we denote by vR its image in R2n, then J(vR) := (iv)R. Let
Ω ⊂ Cn be an open set. Then TΩ = Ω × Cn and one can consider the real structure Ω × R2n

with the standard complex structure on each fiber which, being independent of z ∈ Ω, we still
denote by J . If we consider (TΩ)R ⊗R C ≈ Ω×C2n the operator J determines an operator JC

on (TΩ)R ⊗R C which has the property that (JC)2 = −I and thus one has the decomposition
(TΩ)R ⊗R C = T 1,0Ω ⊕ T 0,1Ω in terms of the eigenspaces of JC. Namely, JCX = iX
for all X ∈ T 1,0Ω and JCX = −iX for all X ∈ T 0,1Ω. Accordingly, one can decompose
the cotangent space (T ∗Ω)R ⊗ C = (T ∗Ω)1,0 ⊕ (T ∗Ω)0,1. In general, given an R-linear map
L : (TΩ)R → TC, then L is C-linear (namely there exists a C-linear map l : TΩ → TC such
that lR = L) if and only if L◦J = iL, that is, L commutes with the complex structures on Ω and
C respectively, while L is C-antilinear if L ◦ J = −iL. Notice that L is C-linear (respectively
C-antilinear) if and only if LC ∈ (T 1,0Ω)∗ (respectively LC ∈ (T 0,1Ω)∗).

Now, let u ∈ C1(Ω,R). Considering R ⊂ C we can think of u : Ω → C as a function such
that u = u. Thus du : (TΩ)R = Ω× R2n −→ TR ⊂ TC = C× C is an R-linear morphism.

LEMMA 1.1. Let Ω ⊂ R2m be an open set and let u ∈ C2(Ω,R).
(1) The C-linear part of du is given by ∂u := 1

2
(du− idu ◦ J).

(2) The C-antilinear part of du is given by ∂u := 1
2
(du + idu ◦ J).

The decomposition du = ∂u + ∂u is the unique decomposition in C-linear and C-antilinear
parts.

PROOF. Clearly du = ∂u + ∂u. Since

(du− idu ◦ J) ◦ J = (du ◦ J + idu) = i(du− idu ◦ J)

then ∂u is C-linear. Similarly one can prove that ∂u is C-antilinear. Finally, if du = A + B is
another decomposition in C-linear and C-antilinear parts, then ∂u− A = ∂u−B and thus

i(∂u− A) = (∂u− A) ◦ J = (∂u−B) ◦ J = −i(∂u−B) = −i(∂u− A)

forcing ∂u = A and ∂u = B. ¤
19
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In local coordinates zj = xj + iyj in Cn, we define dzj = dxj + idyj and dzj = dxj − idyj .
Also, we let ∂

∂zj
= 1

2
( ∂

∂xj
− i ∂

∂yj
) and ∂

∂zj
= 1

2
( ∂

∂xj
+ i ∂

∂yj
). A direct computation shows that

∂u =
n∑

j=1

∂u

∂zj

dzj, ∂u =
n∑

j=1

∂u

∂zj

dzj.

Let us define
dc := i(∂ − ∂).

LEMMA 1.2. Let Ω ⊂ Cn be a domain. Let u ∈ C1(Ω,R). Then dcu = −du ◦ J .

PROOF. We have

dcu = i∂u− i∂u = −∂u ◦ J − ∂u ◦ J = −du ◦ J.

¤
The classical Cauchy-Riemann equations can be read in terms of d, dc as follows:

THEOREM 1.3. Let Ω ⊂ Cn be a domain. A function f = u+iv ∈ C1(Ω,C) is holomorphic
in Ω if and only if dcu = dv in Ω.

PROOF. Let fix coordinates {xj, yj} in Ω. The function f is holomorphic in Ω if and only
if the Cauchy-Riemann equations {

∂u
∂xj

= ∂v
∂yj

∂u
∂yj

= − ∂v
∂xj

are satisfied. Now, writing ∂u
∂x

:= ( ∂u
∂x1

, . . . , ∂u
∂xn

) (and similarly for ∂u
∂y

) we have

du ◦ J = (
∂u

∂x
,
∂u

∂y
) ·

(
0 −I
I 0

)
= (

∂u

∂y
,−∂u

∂x
).

Thus Cauchy-Riemann equations become −du ◦ J = dv. By Lemma 1.2 Cauchy-Riemann
equations are then equivalent to dcu = dv, proving the statement. ¤

2. Pluriharmonic functions

DEFINITION 2.1. Let Ω ⊂ Cn be a domain. A function u ∈ C2(Ω,R) is pluriharmonic,
u ∈ Ph(Ω), if for all p ∈ Ω and v ∈ Cn the function C 3 ζ 7→ u(p + ζv) is harmonic for
|ζ| << 1.

For a C2-real function u we define the complex Hessian (or the Levi form) as the following
(0, 2)-tensor:

(2.1) L(u) :=
n∑

j,k=1

∂2u

∂zj∂zk

dzj ⊗ dzk

Notice that, since u = u then the matrix ( ∂2u
∂zj∂zk

) is Hermitian.
We have the following characterization of pluriharmonic functions in terms of Levi form:
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PROPOSITION 2.2. Let Ω ⊂ Cn be a domain. A function u ∈ C2(Ω,R) is pluriharmonic if
and only if L(u) ≡ 0. Namely, u ∈ Ph(Ω) if and only if ∂2u

∂zj∂zk
(x) = 0 for all j, k = 1, . . . , n

and x ∈ Ω.

PROOF. Recall that in C with ζ-coordinate, ∆ = 4 ∂
∂ζ

∂
∂ζ

. Therefore

(2.2)
1

4
∆u(p + ζv)|ζ=0 =

∂2u(p + ζv)

∂ζ∂ζ
|ζ=0 =

n∑

j,k=1

∂2u

∂zj∂zk

(p)vjvk = L(u)(v; v).

Thus ∆u(p + ζv)|ζ=0 = 0 for all p ∈ Ω and v ∈ Cn if and only if L(u) = 0. ¤
COROLLARY 2.3. Let Ω ⊂ Cn be a domain. Then Ph(Ω) ⊂ harm(Ω). If n > 1 the

inclusion is proper.

PROOF. By Proposition 2.2 it follows that if u ∈ Ph(Ω) then L(u) = 0 which implies
∆u = 0 and then u ∈ harm(Ω). For n > 1 let z0 6∈ Ω and consider the function u(z) =
‖z − z0‖−2(n−1). Then ∆u = 0 but ζ 7→ u(p + ζe1) is not harmonic. ¤

COROLLARY 2.4. Let Ω ⊂ Cn be a domain. Let Ω′ ⊂ Cm be another domain and let
f : Ω′ → Ω be a holomorphic map. If u ∈ Ph(Ω) then u ◦ f ∈ Ph(Ω′).

PROOF. In view of Theorem 2.2 it is enough to prove that L(u ◦ f) = 0. By the chain rule,
since df = ∂f

L(u ◦ f) = L(u) ◦ (df ⊗ df) = 0,

because L(u) = 0. ¤
Summarizing these last two corollary, we can say that a harmonic function is pluriharmonic

if and only if it is harmonic under holomorphic changes of coordinates.

THEOREM 2.5. Let Ω ⊂ Cn be a domain.
(1) If f is holomorphic in Ω then Re f, Im f ∈ Ph(Ω).
(2) Suppose H1(Ω,R) = 0. If u ∈ Ph(Ω) then there exists v ∈ Ph(Ω) such that u + iv is

holomorphic in Ω.

PROOF. (1) If f : Ω → C is holomorphic then for all p ∈ Ω the functionC 3 ζ 7→ f(p+ζv)
is holomorphic for |ζ| << 1. Thus its real and imaginary parts are harmonic and then Re f, Im f
are pluriharmonic.

(2) Let ω := dcu. Then dω = 0 and since H1(Ω,R) = 0, Poincaré lemma implies that ω is
exact. Thus, there exists v ∈ C1(Ω) such that dv = ω. Hence dcu = dv and the function u + iv
is holomorphic in view of Theorem 1.3. ¤

REMARK 2.6. The previous theorem says that locally every pluriharmonic function is the
real part of a holomorphic function.
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CHAPTER 3

Plurisubharmonic functions

1. Definition and first properties

DEFINITION 1.1. Let Ω ⊂ Cn be a connected domain. A function u : Ω → [−∞,∞) is
plurisubharmonic, u ∈ Psh(Ω), if

(1) u 6≡ −∞.
(2) u is upper semicontinuous.
(3) For all p ∈ Ω and v ∈ Cn the function C 3 ζ 7→ u(p + ζv) is either subharmonic or

≡ −∞ for |ζ| << 1.

PROPOSITION 1.2. Let Ω ⊂ Cn be a domain. Let u ∈ C2(Ω). Then u ∈ Psh(Ω) if and only
if for all v ∈ Cn it follows

(1.1) L(u)(v; v) ≥ 0.

PROOF. By Theorem 4.1, u ∈ Psh(Ω) if and only if ∆u(p + ζv)|ζ=0 ≥ 0 for all v ∈ Cn.
By (II.2.2) it follows that ∆u(p + ζv)|ζ=0 ≥ 0 if and only if L(u)(v; v) ≥ 0. ¤

COROLLARY 1.3. Let Ω ⊂ Cn be a domain. Then
(1) Ph(Ω) ⊂ Psh(Ω).
(2) Psh(Ω) ∩ C2(Ω) ⊂ subh(Ω).

PROOF. (1) By Proposition II.2.2, if u ∈ Ph(Ω) it follows that L(u) = 0, thus by Proposi-
tion 1.2 we have u ∈ Psh(Ω).

(2) Let u ∈ C2(Ω). If u ∈ Psh(Ω) then by Proposition 1.2 it follows that L(u)(v; v) ≥ 0 for
all v ∈ Cn, namely the matrix ( ∂2u

∂zj∂zk
) is positive semi-definite. In particular its trace is ≥ 0.

Since a direct computation shows that

∆u = 4tr(
∂2u

∂zj∂zk

) ≥ 0

it follows that u ∈ subh(Ω) in view of Proposition I.4.1. ¤
DEFINITION 1.4. Let Ω ⊂ Cn be a domain. Let u ∈ C2(Ω). We say that u is strictly

plurisubharmonic if for all v ∈ Cn \ {O} it follows L(u)(v; v) > 0.

REMARK 1.5. One could define strictly plurisubharmonic functions without the require-
ment of C2-regularity. Namely, one can say that a function u ∈ Psh(Ω) is strictly plurisub-
harmonic in the weak sense if for each p ∈ Ω there exists c > 0 such that z 7→ u(z) − c‖z‖2
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is plurisubharmonic near p. Note that u ∈ C2(Ω) is strictly plurisubharmonic in the weak
sense if and only if it is strictly plurisubharmonic in the sense of Definition 1.4. This follows
easily from the fact that (z, v) 7→ L(u)(v; v) is continuous and thus it has a minimum for
(z, v) ∈ B(p, r)× ∂B(O, 1), where B(p, r) ⊂⊂ Ω is any open ball.

LEMMA 1.6. Let Ω ⊂ Cn be a domain. If u ∈ Psh(Ω) then for all a ∈ Ω and b ∈ Cn such
that {a + ζb : |ζ| ≤ 1} ⊂ Ω it holds

(1.2) u(a) ≤ 1

2π

∫ 2π

0

u(a + eiθb)dθ.

Conversely, if u : Ω → [−∞,∞) is upper semicontinuous, u 6≡ −∞ and (1.2) holds, then
u ∈ Psh(Ω).

In particular a plurisubharmonic functions has the sub-mean property with respect to poly-
discs.

PROOF. If u ∈ Psh(Ω) then ζ 7→ u(a + ζb) is subharmonic and then (1.2) follows from
Theorem 2.2. Conversely, again by Theorem 2.2, if (1.2) holds then ζ 7→ u(a + ζb) is either
≡ −∞ or it is subharmonic and thus u ∈ Psh(Ω).

Finally, assume u ∈ Psh(Ω). Let P (a, r) ⊂⊂ Ω be a polydisc with multiradius r =
(r1, . . . , rn) be relatively compact in Ω. Let ρj ∈ (0, rj) for j = 1, . . . , n. By (1.2) we have

1

(2π)n

∫ 2π

0

. . .

∫ 2π

0

u(a1 + ρ1e
iθ1 , . . . , an + ρne

iθn))dθ1 . . . dθn

≥ 1

(2π)n−1

∫ 2π

0

. . .

∫ 2π

0

u(a1, a2 + ρ2e
iθ2 , . . . , an + ρneiθn))dθ2 . . . dθn

≥ u(a).

Now we multiply both sides of the previous inequality by ρ1 · · · ρn and integrate for ρj ∈ (0, rj)
obtaining

1

v(P (a, r)

∫

P (a,r)

u(z)dλ(z) ≥ u(a).

Thus u has the sub-mean property with respect to polydiscs. ¤
REMARK 1.7. Again, it should be remarked that being plurisubharmonic is a local property

(which follows directly from the fact that being subharmonic is a local property).

PROPOSITION 1.8. Let Ω ⊂ Cn be a domain. Then Psh(Ω) ⊂ subh(Ω), and for n > 1 the
inclusion is proper.

PROOF. Let B(a, r) ⊂⊂ Ω be an open ball. Then (1.2) holds for all ‖b‖ = r. Consider
π : ∂B(a, r) → CPn−1 the Hopf fibration with fiber S1 given by π(z) = [z]. For any real
2n − 1 form ω on ∂B(a, r) with upper semicontinuous coefficients it is possible to define a
real 2n− 2 form π∗(ω) on CPn−1 obtained by integration along the fibers (see [4, p.61-63] for
the continuous case, the semi-continuous is analogous). In our case we set ω = udσ and then
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in local coordinates (θ, b) ∈ (0, 2π) × R2n−2 which trivialize the Hopf fibration and for which
dσ = dθ∧dσ′(b) with dσ′(b) a 2n−2 form, it follows that π∗(udσ) :=

∫ 2π

0
u(a+eiθb)dθ∧dσ′(b).

Thus, by the projection formula [4, Proposition 6.15 p. 63] and by (1.2) it follows that∫

∂B(a,r)

udσ =

∫

CPn−1

π∗(udσ) ≥ u(a)2π

∫

CPn−1

dσ′.

Repeating the argument with u ≡ 1 it follows that

µ(∂B(a, r)) =

∫

∂B(a,r)

dσ =

∫

CPn−1

π∗(dσ) = 2π

∫

CPn−1

dσ′.

Putting these two inequalities together we obtain

µ(∂B(a, r))u(a) ≤
∫

∂B(a,r)

u(ζ)dσ(ζ),

by Theorem 2.2 it follows that u ∈ subh(Ω).
To see that for n > 1 the inclusion is proper, we exhibit an example. Let u(x1, x2) =

4(x2
1 − x2

2). Then ∆u = 0 and hence u ∈ harm(C2) ⊂ subh(C2). Now, u(x1, x2) = z2
1 − z2

2 +
z2

1 − z2
2 − 2z1z1 + 2z2z2 and a direct computation shows that L(u)(v; v) = −2|v1|2 + 2|v2|2

proving that u 6∈ Psh(Ω). ¤
REMARK 1.9. Proposition 1.8 can be proved straightly using the regularization sequence to

be constructed in Theorem 2.1 and the fact that smooth plurisubharmonic functions are subhar-
monic in view of Corollary 1.3. Of course, proceeding this way, the proof of Theorem 2.1 is
more complicated (for this way of arguing see[16]).

In view of Proposition 1.8, plurisubharmonic functions enjoy all properties of subharmonic
functions such as being L1

loc, the maximum principle and Hopf’s lemma.

LEMMA 1.10. Let Ω ⊂ Cn be a domain and let {Ωk} ⊂ Cn be a sequence of connected
domains such that Ωk ⊆ Ωk+1 and

⋃
k Ωk = Ω. For each k, let uk ∈ Psh(Ωk) be such that

uk(x) ≥ uk+1(x) for all x ∈ Ωk and for all k (that is, {uk} is a decreasing sequence). Let
u(x) = limj→∞ uj(x). Then either u ≡ −∞ or u ∈ Psh(Ω).

PROOF. Assume that u 6≡ −∞. According to Corollary I.2.4, the limit u ∈ subh(Ω). Then
the result follows by Lemma 1.6, since for all (suitably chosen) a, b and j >> 1

u(a) ≤ uj(a) ≤ 1

2π

∫ 2π

0

uj(a + eiθb)dθ

and the latter integral converges to 1
2π

∫ 2π

0
u(a+eiθb)dθ by Beppo Levi’s monotone convergence

theorem. ¤
COROLLARY 1.11. Let Ω ⊂ Cn be a domain. Then u ∈ Ph(Ω) if and only if u,−u ∈

Psh(Ω).
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PROOF. If u ∈ Ph(Ω) then by Proposition II.2.2 then L(u) = 0 and then L(u),L(−u) = 0
which implies u,−u ∈ Psh(Ω) by Proposition 1.2. Conversely, let u,−u ∈ Psh(Ω). By
Proposition 1.8 and Proposition I.2.8 it follows that u ∈ harm(Ω). In particular u ∈ C∞(Ω).
By Proposition 1.2 and since both u and −u are plurisubharmonic, then L(u)(v; v) ≥ 0 and
L(−u)(v; v) ≥ 0 implying that L(u) = 0 and, by Proposition II.2.2, u ∈ Ph(Ω). ¤

2. Regularization of plurisubharmonic functions

THEOREM 2.1. Let Ω ⊂ Cn be a domain. Let u ∈ Psh(Ω). Let uε := χε ∗ u. Then
uε ∈ Psh(Ωε) ∩ C∞(Ωε). Moreover {uε} is decreasing in ε and converges pointwise to u.

PROOF. Since plurisubharmonic functions are subharmonic by Proposition 1.8 and in view
of Theorem I.3.1 we have only to prove that uε ∈ Psh(Ω). By Fubini’s theorem, if {a + ζb :
|ζ| ≤ 1} ⊂ Ωε, we have

uε(a) =

∫

Cn

u(a− y)χε(y)dλ(y) ≤
∫

Cn

1

2π

∫ 2π

0

u(a + eiθb− y)χε(y)dθdλ(y)

=
1

2π

∫ 2π

0

∫

Cn

u(a + eiθb− y)χε(y)dλ(y)dθ =
1

2π

∫ 2π

0

uε(a + eiθb)dθ,

and thus by Lemma 1.6, uε ∈ Psh(Ωε). ¤

COROLLARY 2.2. Let Ω ⊂ Cn be a domain. Let u ∈ Psh(Ω). Then there exists {vε} ⊂
C∞(Ωε) strictly plurisubharmonic in Ωε such that {vε} is decreasing in ε and converges point-
wise to u.

PROOF. Let {uε} be given by Theorem 2.1. Let vε(z) := uε(z)+ ε‖z‖2. Then for Cn 3 b 6=
O,

L(vε)(b; b) = L(uε)(b; b) + εL(‖z‖2)(b; b) > 0

hence vε is strongly plurisubharmonic in Ωε and the remaining properties follow from the prop-
erties of the uε’s. ¤

As a consequence, arguing as in Theorem I.4.1, one can prove the following

PROPOSITION 2.3. Let Ω ⊂ Cn be a domain. If u ∈ Psh(Ω) then L(u)(v; v) ≥ 0 in the
sense of distribution for all v ∈ Cn. Conversely, if u ∈ L1

loc(Ω) and L(u)(v; v) ≥ 0 in the sense
of distribution for all v ∈ Cn, then there exists v ∈ Psh(Ω) such that v = u almost everywhere.

Also, the arguments in the proofs of results in section 5 of Chapter I work with only minor
changes for plurisubharmonic functions allowing to construct new plurisubharmonic functions
starting from given plurisubharmonic functions. We leave details to the reader.

We end up this section with an application of Hopf’s lemma for plurisubharmonic functions
to analytic discs attached to pseudoconvex domains:
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PROPOSITION 2.4. Let Ω ⊂ Cn be a domain. Assume there exists a neighborhood U of Ω
and ρ ∈ Psh(U) ∩ C1(U) such that Ω = {z ∈ U : ρ(z) < 0} and dρx 6= 0 for all x ∈ ∂Ω.
Let ϕ : D → Ω be a holomorphic disc such that ϕ ∈ C1(D) and ϕ(∂D) ⊂ ∂Ω. Then ϕ(∂D) is
transverse to ∂Ω at every point.

PROOF. By hypothesis ρ(ϕ(ζ)) < 0 for all ζ ∈ D and ρ(ϕ(ζ)) = 0 for all ζ ∈ ∂D. Then
Hopf’s Lemma implies that for all ζ ∈ ∂D

dρϕ(ζ)(ϕ
′(ζ)) = lim

R3t→1−

−ρ(ϕ(tζ))

1− t
6= 0.

Therefore ϕ′(ζ) 6∈ Tϕ(ζ)∂D and hence ϕ(∂D) is transverse to ∂Ω at every point. ¤

3. Plurisubharmonic and subharmonic functions under changes of coordinates

We begin with the following example:

EXAMPLE 3.1. Let (x, y) ∈ R2 and let u(x, y) = x2 − y2. Then ∆u(x, y) = 0 and
u ∈ harm(R2). Consider the following linear change of coordinates: x = X, y = X − Y .
Then u(X,Y ) = −Y 2 + 2XY and thus ∆u(X, Y ) = −2 which implies that u(X,Y ) is not
subharmonic in the new coordinates.

Very roughly, the reason why subharmonic functions do not behave well under changes of
coordinates is that in general a change of coordinates is not conformal, thus it does not preserve
balls and spheres and the sub-mean property is no longer true.

Contrarily, not degenerate holomorphic mappings are conformal in C and thus one might
expect some better behavior for plurisubharmonic functions. Indeed we have

PROPOSITION 3.2. Let Ω ⊂ Cn be a domain. Let u : Ω → [−∞,∞). Then u ∈ Psh(Ω)
if and only if for all f : Ω′ → Ω holomorphic (with Ω′ a domain of Cm) it follows that either
u ◦ f ∈ subh(Ω′) or u ◦ f ≡ −∞.

PROOF. First assume that u ∈ Psh(Ω) ∩ C2(Ω) and let f : Ω′ → Ω be holomorphic. Then
for all v ∈ Cm

L(u ◦ f)(v; v) = L(u)(df(v); df(v)) ≥ 0,

proving that u ◦ f ∈ Psh(Ω′). If u ∈ Psh(Ω) (no regularity assumptions) let {uε} be the
sequence given by Theorem 2.1. Then uε ◦ f ∈ Psh(f−1(Ωε)) and since the sequence {uε ◦ f}
is decreasing in ε, it follows that the limit (which is u ◦ f ) is either ≡ −∞ or plurisubharmonic
(and thus subharmonic) in Ω by Lemma 1.10.

Conversely, if u ◦ f is subharmonic or ≡ −∞ for all holomorphic mappings f : Ω′ → Ω
then it is so also for holomorphic map C 3 ζ 7→ a + ζb (for a ∈ Ω, b ∈ Cn and |ζ| << 1) and
this is exactly the definition of plurisubharmonic function. ¤

REMARK 3.3. With some more effort it can be proven that u ∈ Psh(Ω) if and only if for
all C-linear isomorphism T : Cn → Cn it follows that u ◦ T ∈ subh(T−1(Ω)) (see, e.g., [16,
Theorem 2.9.12 p. 68].
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As an application we have the following result:

THEOREM 3.4. Let u ∈ subh(R2). If there exists M < ∞ such that u(x) ≤ M for all
x ∈ R2 then u is constant.

PROOF. We consider u : C → [−∞,∞) with complex variable z. If u is not constant
we can assume that u(0) < u(1). Let v(z) := u(1/z). By Proposition 3.2 the function v ∈
subh(C \ {0}) and v(z) ≤ M for all z ∈ C \ {0}. By construction

lim sup
|z|→∞

v(z) = lim sup
|z|→∞

u(1/z) = lim sup
|w|→0

u(w) ≤ u(0) < u(1) = v(1).

Thus there exists R > 0 such that

(3.1) sup
z∈C\{0}

v(z) = sup
z∈B(0,R)\{0}

v(z).

Let define v(0) := lim supz→0 v(z). Since v is bounded, then Corollary I.5.5 implies that
v ∈ subh(R2). By (3.1) it follows that there exists z ∈ B(0, R) such that v(z) = supw∈R2 v(w),
but this contradicts the maximum principle in Corollary I.2.6. ¤

As a corollary:

COROLLARY 3.5. Let u ∈ Psh(Cn). If there exists M < ∞ such that u(z) ≤ M for all
z ∈ Cn then u is constant.

PROOF. Apply Theorem 3.4 to all complex lines passing through O. ¤
Notice that the previous result would be false for subharmonic functions (which are not

plurisubharmonic):

EXAMPLE 3.6. In R3 let u(x) = −1/‖x‖. Then ∆u(x) = 0 for x 6= O and u(0) = −∞,
therefore u ∈ subh(R3). However u(x) ≤ 0 for all x ∈ R3 and it is not constant.

REMARK 3.7. Proposition 3.2 allows to define the sheaf of plurisubharmonic functions on
complex manifolds. In other words, if M is a complex manifold and U ⊂ M is an open set,
then u : U → [−∞,∞) is plurisubharmonic if for all x ∈ U there exists a local chart (V, ϕ)
such that x ∈ V and u ◦ ϕ−1 ∈ Psh(ϕ(V )). Proposition 3.2 guarantees that such a definition
does not depend on the (holomorphic) local chart chosen to define it.

The maximum principle (as well as the previous results on plurisubharmonic functions)
extends easily to plurisubharmonic functions on complex manifolds. For instance, this implies
that Psh(CP1) = R. With this, we have a simple alternative proof of Theorem 3.4 as follows:
if u ∈ subh(C) is bounded from above, then its extension to CP1 given by defining u(∞) =
lim sup|z|→∞ u(z) is subharmonic on CP1 (by the analogous of Corollary I.5.5 for complex
manifolds) thus it is constant.
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CHAPTER 4

Currents

1. Distributions

Let Ω ⊂ Rm be a domain. We write f ∈ Ck
0 (Ω) if f : Ω → C is such that f ∈ Ck(Ω) and

supp(f) ⊂⊂ Ω. For a multi-index α = (α1, . . . , αm) ∈ Nm we denote by |α| =
∑m

j=1 αj and

by Dαf = ∂f |α|

∂x
α1
1 ...∂xαm

m
. We let C0(Ω) := C0

0(Ω).

DEFINITION 1.1. Fix p ≤ k. Given f ∈ Ck
0 (Ω) and K a compact subset of Ω such that

supp(f) ⊆ K and ε > 0, the sets

Vp(f, ε, K) = {g ∈ Ck
0 (Ω) : supp(g) ⊆ K, sup

x∈Ω
|Dα(f − g)(x)| < ε, ∀α ∈ Nm, |α| ≤ p}

form a basis of open neighborhoods of f . We call the Cp-topology on Ck
0 (Ω) the topology

defined by Vp(f, ε, K) when f, ε,K (with supp(f) ⊂ K) vary.

Notice that a sequence {gj} ⊂ Ck
0 (Ω) converges to f ∈ Ck

0 (Ω) in the Cp-topology provided
that

(1) ∪jsupp(gj) ∪ supp(f) is relatively compact in Ω and
(2) Dαgj converges uniformly in Ω to Dαf for all α ∈ Nm with |α| ≤ p.

The space Ck(Ω) endowed with the topology of uniform convergence (on Ω) is a Banach
space. We can thus consider the induced topology, denoted by C̃p, on Ck

0 (Ω). More in details,
a basis of open neighborhoods for such a topology is provided by

Ṽp(f, ε) = {g ∈ Ck
0 (Ω) : sup

x∈Ω
|Dα(f − g)(x)| < ε,∀α ∈ Nm, |α| ≤ p}

when f ∈ Ck
0 (Ω), ε > 0 vary. Thus a sequence {gj} ⊂ Ck

0 (Ω) converges to f ∈ Ck
0 (Ω) in

the C̃p-topology if and only if the sequence {Dαgj} converges uniformly in Ω to Dαf for all
α ∈ Nm with |α| ≤ p.

Notice that the topology Cp is finer then the C̃p-topology on Ck
0 (Ω), that is, an open set in

C̃p is open also in Cp because, clearly, Vp(f, ε, K) ⊂ Ṽp(f, ε) for all K compact sets which
contain the support of f . However the Cp-topology does not coincide with the C̃p-topology.
For instance, consider a sequence {gj} defined as follows: let {aj} ⊂ Ω be a sequence with no
accumulation points in Ω. For each j let B(aj, rj) be an open ball relatively compact in Ω with
rj < 1. Let gj be a function with compact support in B(aj, rj) such that max |Dαgj| ≤ 1/j for

29
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α ∈ Nn, |α| ≤ p. Then gj → 0 uniformly in Ω (and thus in the C̃p-topology). However, since
∪supp(gj) is not relatively compact in Ω, then gj does not converge to 0 in the Cp-topology
(indeed {gj} does not eventually belong to any open neighborhood of the form Vp(0, ε,K)).

As a consequence, the identity map I : (Ck
0 (Ω), Cp) −→ (Ck

0 (Ω), C̃p) is continuous but not
open. Thus, a continuous linear functional T on (Ck

0 (Ω), C̃p) gives rise to a continuous linear
functional T ◦ I on (Ck

0 (Ω), Cp) (but not all continuous linear functionals on (Ck
0 (Ω), Cp) are

of this form).

DEFINITION 1.2. Let p ≤ k. A distribution of order p is a linear functional T : Ck
0 (Ω) → C

which is continuous with respect to the Cp-topology of Ck
0 (Ω). We denote by Disk

p(Ω) the
space of distributions of order p on Ck

0 (Ω). We omit to write the subindex p in case p = k, that
is, Disk(Ω) := Disk

k(Ω).

Clearly, Disk
p−1(Ω) ⊂ Disk

p(Ω) for all p ≤ k and Disk
p(Ω) ⊂ Disk−1

p (Ω) for all k ≥ 1 and
p ≤ k − 1.

The elements of Dis0(Ω) are called Radon measures. This is justified by the following
version of Riesz’ representation theorem:

THEOREM 1.3. Let Ω ⊂ Rm be a domain. To any Radon measure T there corresponds a
unique (generalized) complex Borel measure µT such that

T (ϕ) =

∫

Ω

ϕdµT ,

for all ϕ ∈ C0(Ω). Moreover, any positive linear functional T on C0(Ω) (namely, T (ϕ) ≥ 0
for all ϕ ≥ 0 with ϕ ∈ C0(Ω)) is necessarily continuous and µT is a real positive measure.
Conversely, if µT is a real positive measure then T ≥ 0.

REMARK 1.4. Let B be the σ-algebra of Borel subsets of Ω and let Mes(C) be the space of
regular finite complex measure. Let Bc = {E ∈ B : E ⊂⊂ Ω}. The (generalized) complex
Borel measure µT as defined in Theorem 1.3 is a function µT : Bc → Mes(C) such that for any
E ∈ Bc the measure µT (E) (also denoted by µT |E) is a finite regular complex Borel measure,
namely, µT |E is σ-addictive, regular and with finite total variation. Moreover, if E ⊂ E ′ then
µT |E = (µT |E′)|E . Since Ω is union of compact subsets, by the Radon-Nicodym theorem
there exists a positive measure νT on Ω (possibly with νT (Ω) = ∞) and a complex function
h : Ω → C with |h| ≡ 1 such that µT (E) =

∫
E

hdνT for all Borel sets E ⊂⊂ Ω. Moreover
νT equals the total variation of µT on each relatively compact Borel set E ⊂ Ω. Thus νT can
be defined as the total variation |T | of T . If νT is a finite measure on Ω, then the corresponding
µT is a regular finite complex Borel measure. Moreover, if the Radon measure T defines a
continuous linear functional on (C0(Ω), C̃0) (that is on C0(Ω) with the induced topology of
uniform convergence) then µT is a regular finite complex Borel measure on Ω, and conversely,
to any regular finite complex Borel measure on Ω there corresponds a unique Radon measure
which is continuous on (C0(Ω), C̃0) (see, e.g., [18]).
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From now on, we will consider Disk
p(Ω) endowed with the weak∗ topology. Note that, a

sequence {Tj} ⊂ Disk
p(Ω) (weakly∗-)converges to T ∈ Disk

p(Ω) if and only if for all f ∈
Ck

0 (Ω) it follows that limj→∞ Tj(f) = T (f). In particular, by the Banach-Alaoglu theorem, the
open ball in Disk

p(Ω) is relatively compact in the weak∗-topology.
We collect here a few useful and known facts about distributions:

LEMMA 1.5. Let Ω ⊂ Rm be a domain. Then
(1) Let Tj, T ∈ Dis0(Ω). Then Tj → T (in the weak∗ topology) if and only if Tj(ϕ) →

T (ϕ) for all ϕ ∈ C∞
0 (Ω) and supj{|dTj|(K)} < ∞ for all compact subset K ⊂ Ω

(here dTj denotes the complex Borel measure given by Riesz’ Theorem 1.3 and |dTj|
is its total variation). Moreover the condition supj{|dTj|(K)} < ∞ is not necessary
if Tj, T ≥ 0.

(2) If T ∈ Dis∞(Ω) and T ≥ 0, then T ∈ Dis0(Ω).

At this point, it is worth to mention two results about subharmonic functions when con-
sidering their Laplacian as a measure. We state them for C, referring to [16, Section 4.1] for
generalizations to Rm and proofs. Let Ω ⊂ C be an open set and let u ∈ subh(Ω). By Theo-
rem I.4.1 and Lemma 1.5.(2), ∆u is a positive linear functional on C0(Ω). By Theorem 1.3, ∆u
is thus a Radon measure and there exists a complex Borel measure µu such that

∆u(ϕ) =

∫

Ω

ϕdµu

for all ϕ ∈ C0(Ω). For each open subset U ⊂⊂ Ω let µU
u be the finite complex measure in C

obtained by extending with 0 on C \U the restriction of µu to U . The measure µU
u has compact

support contained in U . We define the potential of u

PU
u (z) =

1

2π

∫

C
log |z − ζ|dµU

u (ζ).

Since µU
u is a finite complex measure compactly supported in U , it follows that PU

u ∈ L1
loc(C).

Moreover the following result (known as the Riesz decomposition theorem) holds:

THEOREM 1.6. Let Ω ⊂ C be a domain. Let u ∈ subh(Ω). If U is an open set relatively
compact in Ω, then there exists hu ∈ harm(U) such that

u(z) = PU
u (z) + hu(z)

for all z ∈ U .

PROOF. The key point is to prove the following equality:

(1.1) ∆PU
u = µU

u in Dis0(C).

Once this is obtained, we have that ∆(u − PU
u ) = ∆u − ∆PU

u = µU
u − ∆PU

u = 0. By
Theorem I.4.1 there exist h, g ∈ subh(U) such that h = u − PU

u almost everywhere and g =
−(u−PU

u ) almost everywhere. In particular h+g = 0 almost everywhere and by Corollary I.3.2
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then h = −g everywhere and thus h ∈ harm(U). By the same token, h = u− PU
u everywhere

as required. We are left to prove (1.1). First, we recall the well known fact

1

2π
∆ζ log |z − ζ| = δz in Dis0(C),

where δz here denotes the Dirac delta defined by δz(ϕ) = ϕ(z) for all ϕ ∈ C0(C). From this
and from Fubini’s theorem we have for all ϕ ∈ C∞

0 (C)

∆PU
u (ϕ) =

∫

C
PU

u (z)∆ϕ(z)dλ(z) =

∫

C

1

2π

∫

C
log |z − ζ|dµU

u (ζ)∆ϕ(z)dλ(z)

=

∫

C

1

2π

∫

C
log |z − ζ|∆ϕ(z)dλ(z)dµU

u (ζ) =

∫

C
ϕ(ζ)dµU

u (ζ),

and (1.1) follows. ¤

Using the Riesz decomposition theorem one can prove the following Poisson-Jensen for-
mula:

THEOREM 1.7. Let Ω ⊂ C be a domain. Let u ∈ subh(Ω) and let B(a, r) is an open ball
relatively compact in Ω. If u(a) > −∞ then

u(a) =
1

2πr

∫

∂B(a,r)

u(ζ)dσ(ζ)− 1

2π

∫ r

0

µu(B(a, s))

s
ds.

1.1. Regularization and plurisubharmonic functions. Let Ω ⊂ Cn be a domain and let
{χε} be the sequence of smoothing kernels defined in Section I.3. If T ∈ Dis∞(Ω) one can
define a sequence of C∞ functions

Tε(x) := T ∗ χε(x) := Ty(χε(x− y))

such that Tε → T in Dis∞(Ω). We have the following generalization of (one side implication
of) Proposition III.2.3:

PROPOSITION 1.8. Let Ω ⊂ Cn be a domain. Let T ∈ Dis∞(Ω) be a distribution such that
L(T ) ≥ 0 (namely T (L(ϕ)(v; v)) ≥ 0 for all ϕ ∈ C∞

0 (Ω), ϕ ≥ 0 and v ∈ Cn) then there exists
u ∈ Psh(Ω) such that u = T in Dis∞(Ω) (namely, T (ϕ) =

∫
Ω

ϕudλ for all ϕ ∈ C∞
0 (Ω)).

PROOF. Let uε := T ∗ χε ∈ C∞(Ωε). Then uε → T in Dis(Ω) as ε → 0. By Fubini’s
theorem L(uε) = L(T ) ∗χε as distributions. Thus L(uε) ≥ 0 and then uε ∈ Psh(Ωε)∩C∞(Ωε)
by Proposition III.1.2. Now, arguing as at the end of Theorem I.4.1 we see that uε is decreasing
in ε and thus, by Lemma III.1.10, it follows that u(z) = limε→0 uε(z) ∈ Psh(Ω). By Beppo
Levi’s theorem uε → u also in the sense of distributions and therefore T = u in the sense of
distributions, proving the statement. ¤
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1.2. Sequences of L1
loc-bounded plurisubharmonic functions. The aim of this section is

to show that a sequence of plurisubharmonic functions which is bounded in the L1 norm on
compacta is actually uniformly bounded from above on compacta and admits a subsequence
converging in L1

loc to a plurisubharmonic function. To start with, we prove the following result:

THEOREM 1.9. Let Ω ⊂ Cn be a domain. Let {uj} ⊂ Psh(Ω) be a sequence which is
locally bounded from above on compacta of Ω. Assume that there exists T ∈ Dis∞(Ω) such
that uj → T in Dis∞(Ω). Then there exists u ∈ Psh(Ω) such that u = T in Dis∞(Ω) and
uj → u in L1

loc(Ω).

PROOF. Since L(uj) ≥ 0 for all j, then L(T ) ≥ 0. Thus, by Proposition 1.8 there exists
u ∈ Psh(Ω) such that u = T in Dis∞(Ω).

It remains to show that uj → u in L1
loc(Ω). First, since {uj} is locally bounded from above,

for any fixed compact subset K ⊂ Ω, there exists C = C(K) > 0 such that uj − C ≤ 0 in K
for all j ∈ N. We can thus assume that uj ≤ 0 on a fixed compact set K.

Since uj → T in Dis∞(Ω) then {uj} cannot converge uniformly on compacta to the con-
stant function −∞. Therefore, there exist a sequence {xk} ⊂ Ω such that xk → x0 ∈ Ω and
a subsequence {ujk

} of {uj} such that |ujk
(xk)| = −ujk

(xk) is bounded from above by some
constant C > 0. Let B := B(x0, r) be a small ball centered at x0 such that B(x0, 2r) ⊂ Ω.
For k >> 0 there exists rk > 0 such that Bk := B(xk, rk) has the property that B ⊂ Bk ⊂
B(x0, 2r) ⊂ Ω. Thus, since uj, u ∈ subh(Ω),

∫

B
|ujk

|dλ ≤
∫

Bk

|ujk
|dλ = −

∫

Bk

ujk
dλ ≤ −v(Bk)ujk

(xk)

= v(Bk)|ujk
(xk)| ≤ Cv(B(x0, 2r)).

Hence, {ujk
} is uniformly bounded in L1(B). By Proposition I.3.4, {ujk

} is actually uniformly
bounded in L1

loc(Ω). Hence, if {χε} is the sequence of smoothing kernels defined in Section I.3
(which are clearly bounded on compacta together with their first derivatives) it follows that for
a fixed ε > 0, the sequence {ujk

∗ χε} is equicontinuous and uniformly bounded on compacta
of Ω. Therefore—since uj → u in Dis∞(Ω) and hence ujk

∗χε → u ∗χε pointwise—it follows
from Arzelà-Ascoli’s theorem that actually ujk

∗ χε → u ∗ χε uniformly on compacta.
In order to prove that ujk

→ u in L1
loc(Ω), let K ⊂ Ω be an open set whose closure is

compact in Ω and let Ψ ≥ 0 be a smooth function which is compactly supported in Ω and such
that Ψ|K ≡ 1. By Theorem I.3.1, the sequence {ujk

∗ χε} (respectively {u ∗ χε}) decreases to
ujk

(respect. u) as ε → 0+. In particular, u ∗ χε − u ≥ 0. For ε, δ > 0 small,

lim
k→∞

∫

Ω

(u ∗ χε + δ − ujk
)Ψdλ =

∫

Ω

(u ∗ χε + δ − u)Ψdλ > 0.
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Thus

lim sup
k→∞

∫

K

|u− ujk
|dλ ≤ lim sup

k→∞

∫

Ω

|u− ujk
|Ψdλ

≤ lim sup
k→∞

[∫

Ω

|u ∗ φε + δ − u|Ψdλ +

∫

Ω

| − (u ∗ φε + δ − ujk
)|Ψdλ

]

≤ 2

∫

Ω

|u ∗ φε + δ − u|Ψdλ = 2

∫

Ω

(u ∗ φε + δ − u)Ψdλ,

and the last term goes to zero as ε, δ → 0. Therefore ujk
→ u in L1(K) and, by arbitrariness of

K, ujk
→ u in L1

loc(Ω).
Repeating the above argument for all subsequences of {uj}, the statement follows. ¤

COROLLARY 1.10. Let Ω ⊂ Cn be a domain. Let {uj} ⊂ Psh(Ω) be a sequence which
is locally bounded from above on compacta of Ω. Then either {uj} converges uniformly on
compacta to the constant function −∞ or there exist a subsequence {ujk

} and a function u ∈
Psh(Ω) such that ujk

→ u in L1
loc(Ω).

PROOF. If {uj} is not uniformly convergent on compacta to the constant function −∞,
then, as in the proof of Theorem 1.9 we see that there exists a subsequence {ujk

} which has
L1-norm uniformly bounded on compacta. By the Banach-Alaoglu compactness theorem, up
to extracting another subsequence, {ujk

} is weak∗ converging to a distribution T . Then Theo-
rem 1.9 applies. ¤

COROLLARY 1.11. Let Ω ⊂ Cn be a domain. Let {uj} ⊂ Psh(Ω) be a sequence which is
bounded in L1

loc(Ω). Then {uj} is uniformly bounded from above on compacta of Ω and there
exist a subsequence {ujk

} and a function u ∈ Psh(Ω) such that ujk
→ u in L1

loc(Ω).

PROOF. Arguing by contradiction, assume that {uj} is not uniformly bounded from above
on compacta. Thus, up to extracting subsequences, there exists a compact set K such that

(1.2) lim
j→∞

max
z∈K

uj(z) = +∞.

By the Banach-Alaoglu theorem there exists a subsequence {ujk
} which is weak∗ converging

to some distribution T . Arguing as in the proof of Theorem 1.9, we see that there exists u ∈
Psh(Ω) such that ujk

→ u in Dis∞(Ω). Using the same notations as in the proof of Theorem
1.9, it follows that ujk

≤ ujk
∗ χε and ujk

∗ χε → u ∗ χε uniformly on compacta as k → ∞.
Thus, for each compact set K ⊂ Ω, the sequence {ujk

} is uniformly bounded from above,
which contradicts (1.2).

The second part of the statement follows from Corollary 1.10 since, being L1
loc(Ω) bounded,

{uj} cannot converges uniformly on compacta to the constant function −∞. ¤

THEOREM 1.12. Let Ω ⊂ Cn be a domain.
(1) The real cone Psh(Ω) is closed in L1

loc(Ω).
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(2) A subset U ⊂ Psh(Ω) is compact in Psh(Ω) (with respect to the L1
loc(Ω) topology) if

and only if it is bounded and closed in L1
loc(Ω).

PROOF. (1) Let {uj} ⊂ Psh(Ω) be a sequence which converges in L1
loc(Ω) to a function

u ∈ L1
loc(Ω). In particular {uj} is uniformly bounded in L1

loc(Ω) and by Corollary 1.11, up
to subsequences, it converges in L1

loc(Ω) to a function v ∈ Psh(Ω). Hence u = v almost
everywhere and Psh(Ω) is closed in L1

loc(Ω).
(2) One direction is clear. Conversely, assume U ⊂ Psh(Ω) is bounded and closed in

L1
loc(Ω). Since Psh(Ω) is closed in L1

loc(Ω) then U is closed in Psh(Ω). Let {uj} ⊂ U be a
sequence. Since it is bounded in L1

loc(Ω), by Corollary 1.11, up to subsequences, it is converging
in L1

loc(Ω) and therefore U is compact in Psh(Ω). ¤

2. Currents. Definition and first properties

Let Ω ⊂ Cn be a domain. We denote by Ck
0 (Ω, Λp,q) the space of (complex) (p, q)-forms

having Ck coefficients with compact support in Ω. Given

ω =
∑

aj1,...,kq
dzj1 ∧ . . . dzjp ∧ dzk1 ∧ . . . ∧ dzkq ∈ Ck

0 (Ω, Λp,q)

we write |ω|Cs < ε if supΩ |Dαaj1,...,kq
| < ε for all α ∈ Nn such that |α| ≤ s.

DEFINITION 2.1. Let ε > 0 and let ω ∈ Ck
0 (Ω, Λp,q). Let K be a compact set in Ω such that

supp(ω) ⊆ K. For s ≤ k, we denote by Cs the topology on Ck
0 (Ω, Λp,q) obtained by declaring

open neighborhoods of ω the following sets

V (ω,K, ε) = {η ∈ Ck
0 (Ω, Λp,q) : supp(η) ⊆ K, |ω − η|Cs < ε}

as ε > 0 and K (with supp(ω) ⊆ K) vary.

Thus a sequence {ωl} ⊂ Ck
0 (Ω, Λp,q) converges to ω ∈ Ck

0 (Ω, Λp,q) in the Cs-topology if
and only if

(1) ∪supp(ωl) ∪ supp(ω) is contained in a compact set in Ω and
(2) {Dαal

j1,...,kq
}l converges uniformly in Ω to Dαaj1,...,kq

for all |α| ≤ s.

DEFINITION 2.2. A current of order k and bidegree (n − p, n − q) is a continuous linear
functional on Ck

0 (Ω, Λp,q) (endowed with the Cs-topology). We denote by D(n−p,n−q)
k (Ω) the

space of currents of order k and bidegree (n− p, n− q) in Ω.

In what follows we will always consider only the Ck-topology on Ck
0 (Ω, Λp,q). Also, we

will consider D(n−p,n−q)
k (Ω) endowed with the weak∗-topology.

When the underlying complex structure has no relevance, we will consider the space of
currents of order k and degree m given by

Dm
k (Ω) =

∑
s+t=m

D(s,t)
k (Ω).
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DEFINITION 2.3. The support, supp(T ), of a current T ∈ D(n−p,n−q)
k (Ω) is the complement

in D of the union of all open sets U ⊂ D such that for all ϕ ∈ Ck
0 (Ω, Λp,q) with supp(ϕ) ⊂⊂ U

it follows that T (ϕ) = 0.

There are two main examples of currents to be kept in mind:

EXAMPLE 2.4. Let Z ⊂ Ω be a closed and orientable C1-submanifold of dimension p. The
current of integration [Z] ∈ Dn−p

0 (Ω) is given by

[Z](ϕ) :=

∫

Z

i∗(ϕ),

for ϕ ∈ C0(Ω, Λp) and i : Z ↪→ Ω the natural embedding. It is clear that supp[Z] = Z. If Z is a
complex submanifold of complex dimension p, then [Z] ∈ D(n−p,n−p)

0 (Ω) for i∗(ϕ) = 0 for all
2p-form such that ϕ 6∈ C0(Ω, Λp,p).

EXAMPLE 2.5. Let ψ ∈ L1
loc(Ω, Λp,q). Define

Tψ(ϕ) :=

∫

Ω

ψ ∧ ϕ,

for ϕ ∈ C0(Ω, Λn−p,n−q). Then Tψ ∈ D(p,q)
0 (Ω).

Let

(2.1) dV = dx1 ∧ . . . ∧ dx2n =

(
i

2

)n

dz1 ∧ dz1 ∧ . . . ∧ dzn ∧ dzn

be the standard volume form on Ω ⊂ Cn. Let η ∈ Ck
0 (Ω, Λ2n). Then there exists a ∈ Ck

0 (Ω)
such that η = adV . This allows to define a homeomorphism W : D0

k(Ω) → D2n
k (Ω) given by

W(T )(a) := T (adV )

for T ∈ D0
k(Ω) and a ∈ Ck

0 (Ω). The inverse is

W−1(S)(η) = S(a),

for S ∈ D2n
k (Ω), η ∈ Ck

0 (Ω, Λ2n) and η = adV (notice that W ,W−1 are linear isomorphisms
and are continuous in the weak∗ topology).

Let us denote by Qp(m) the set of all multi-indices I = (i1, . . . , ip) with 1 ≤ i1 < . . . <
ip ≤ m.

THEOREM 2.6. Let Ω ⊂ Cn. Let T ∈ Dp
k(Ω). For each multi-index I ∈ Qp(2n) there exists

a unique TI ∈ Disk(Ω) such that

T =
∑

I∈Qp(2n)

TIdxi1 ∧ . . . ∧ dxip .
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In other words, for ϕ ∈ Ck
0 (Ω, Λ2n−p) it follows

T (ϕ) =
∑

I∈Qp(2n)

W−1(TI)(dxi1 ∧ . . . ∧ dxip ∧ ϕ).

PROOF. Let I = {i1, . . . , ip} ∈ Qp(2n) and let Ic = (j1, . . . , j2n−p) ∈ Q2n−p(2n) be its
complementary. Let us write dxI := dxi1∧. . .∧dxjp . Then dxI∧dxIc = σIdV , where σI = ±1
and dV is the standard volume form in Cn. For a ∈ Ck

0 (Ω), let us define

TI(a) := σIT (adxIc).

Let now ϕ ∈ Ck
0 (Ω, Λ2n−p). Then ϕ =

∑
J∈Q2n−p(2n) aJdxJ for some aJ ∈ Ck

0 (Ω). Thus

T (ϕ) =
∑

J∈Q2n−p(2n)

T (aJdxJ) =
∑

I∈Qp(2n)

σITI(aIc)

=
∑

I∈Qp(2n)

W−1(TI)(σIaIcdV ) =
∑

I∈Qp(2n)

W−1(TI)(dxi1 ∧ . . . ∧ dxip ∧ ϕ),

as wanted. ¤
According to Theorem 2.6 a current of degree p and order k is a p-form with distributional

coefficients of order k. An analogue of Theorem 2.6 holds in the complex category, namely, if
T ∈ D(p,q)

k (Ω) (and, say, q ≥ p) then

(2.2) T = (i/2)p
∑

I∈Qp(n),J∈Qq(n)

TI,Jdzi1 ∧ dzj1 ∧ . . . dzip ∧ dzjp ∧ . . . ∧ dzjq ,

with TI,J distribution of order k on Ω. The TI,J are called coefficients of T .
Be aware: the term (i/2)p in (2.2) is clearly asymmetric in (p, q). However, it really makes

sense only in case p = q (when discussing positive currents).

3. Operations with currents

Here we consider only few operations among those that can be operated on currents. We
refer to [12] or [9] for the general theory.

3.1. Exterior derivatives. Let Ω ⊂ Cn. Let T ∈ Dp
k(Ω). We define dT ∈ Dp+1

k+1(Ω) as
follows:

dT (ϕ) := (−1)p+1T (dϕ) ∀ϕ ∈ Ck+1
0 (Ω, Λ2n−(p+1)).

Since the operator d : Ck+1
0 (Ω, Λ2n−(p+1)) → Ck

0 (Ω, Λ2n−p) is continuous (with respect to the
Ck+1 and Ck-topologies) then d : Dp

k(Ω) → Dp+1
k+1(Ω) is continuous (with respect to the weak∗-

topology).
Similarly, in the complex case, one can define the operators ∂ : Dp,q

k (Ω) → D(p+1,q)
k+1 (Ω) and

∂ : Dp,q
k (Ω) → D(p,q+1)

k+1 (Ω).
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PROPOSITION 3.1. Let Ω ⊂ Cn be a domain. Let ψ ∈ Ck
0 (Ω, Λp). Then dTψ = Tdψ.

Similarly, ∂Tψ = T∂ψ and ∂Tψ = T∂ψ.

PROOF. By definition, integrating by parts and by Stokes’ theorem it follows

dTψ(ϕ) = (−1)p+1Tψ(dϕ) = (−1)p+1

∫

Ω

ψ ∧ dϕ =

∫

Ω

dψ ∧ ϕ = Tdψ(ϕ),

for all ϕ ∈ Ck+1
0 (Ω, Λ2n−p−1). In case of ∂ (and ∂) the argument is similar because d(ψ ∧

ϕ) = ∂(ψ ∧ ϕ) for ψ ∈ Ck
0 (Ω, Λp,q) and ϕ ∈ Ck+1

0 (Ω, Λn−p−1,n−q) and thus Stokes’ theorem
applies. ¤

3.2. Wedge product. . Let Ω ⊂ Cn. Let T ∈ Dp
k(Ω) and ψ ∈ Ck

0 (Ω, Λq) with p + q ≤ 2n.
We define T ∧ ψ ∈ Dp+q

k (Ω) as follows:

(T ∧ ψ)(ϕ) := T (ψ ∧ ϕ), ∀ϕ ∈ Ck
0 (Ω, Λ2n−p−q).

Be aware: The wedge product is defined (here) only between currents and (smooth) forms and
not between two currents, that is

∧ : Dp
k(Ω)× Ck

0 (Ω, Λq) −→ Dp+q
k (Ω).

It can be easily proved that d(T ∧ ψ) = dT ∧ ψ + (−1)degT T ∧ dψ.

4. Positive forms and positive currents

4.1. Positive forms. We recall that a distribution T is said to be positive provided T (ϕ) ≥ 0
for all test functions ϕ ≥ 0. In order to define positive currents, we first define positive forms.

DEFINITION 4.1. Let Ω ⊂ Cn be a domain. A form ω ∈ Ck(Ω, Λ2p) is real if ω(X) ∈ R
for all X ∈ (TΩR)⊗p.

Notice that ω is real if and only if ω = ω. In particular if a (p, q)-form is real then p = q.

PROPOSITION 4.2. Let Ω ⊂ Cn be a domain. A (1, 1)-form ω is real if and only if

ω =
i

2

n∑

j,k=1

hjkdzj ∧ dzk

with (hjk(x)) being a n× n Hermitian matrix for all x ∈ Ω.

PROOF. It is a direct computation from ω = ω. ¤
DEFINITION 4.3. Let Ω ⊂ Cn be a domain. A 2n-form ω is positive if ω = fdV with

f ≥ 0 and dV the standard volume form (2.1). If ω is a positive 2n-form we write ω ≥ 0.

DEFINITION 4.4. A (p, p)-form ω is elementary strongly positive if ω(x) 6= 0 for all x ∈ Ω
and there exist ωj ∈ Ck(Ω, Λ(1,0)), j = 1, . . . , p such that

(4.1) ω =

(
i

2

)p

ω1 ∧ ω1 ∧ . . . ωp ∧ ωp.
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Notice that ω1, . . . , ωp as in the previous definition are linearly independent at each point of
Ω since ω is nowhere zero in Ω.

Let SP (p,p)(Ω) be the real cone in Ck(Ω, Λ(p,p)) generated by the elementary strongly posi-
tive forms (that is, η ∈ SP (p,p)(Ω) if there exist λj ∈ Ck(Ω,R) with λj ≥ 0 and ηj elementary
strongly positive forms such that η =

∑
λjηj). A form ω ∈ SP (p,p)(Ω) is said strongly positive.

PROPOSITION 4.5. The Ck(Ω,R)-module Ck(Ω, Λ
(p,p)
R ) of real (p, p)-forms has a basis of

strongly positive (p, p)-forms. In particular SP (p,p)(Ω) has non-empty interior.

PROOF. First of all we notice that the complex space of (p, p)-forms has a basis of strongly
positive forms. To this aim, notice that

dzj1 ∧ dzk1 ∧ . . . ∧ dzjp ∧ dzkp = ±
p∧

l=1

dzjl
∧ dzkl

and

dzj ∧ dzk =
i

4
{−i(dzj + dzk) ∧ (dzj + dzk)− i(dzj − dzk) ∧ (dzj − dzk)

+ (dzj + idzk) ∧ (dzj − idzk)− (dzj − idzk) ∧ (dzj + idzk)}.
Now let ω be a real (p, p)-form. Write ω as linear combination of strongly positive (p, p)-forms
(with complex coefficients a priori). Since strongly positive forms are real, it follows that the
coefficients in such a linear combination are real, proving the statement. ¤

The cone of strongly positive forms is invariant under holomorphic changes of coordinates:

PROPOSITION 4.6. Let Ω ⊂ Cn be a domain. Let f : Ω′ → Ω be a biholomorphism. Then
f ∗(SP (p,p)(Ω)) = SP (p,p)(Ω′).

PROOF. First of all notice that if η1, . . . , ηr are (1, 0)-forms linearly independent at each
z ∈ Ω then f ∗(η1), . . . , f

∗(ηr) are (1, 0)-forms linearly independent at each x ∈ Ω′ and then
f ∗(η) is elementary strongly positive if and only if η is elementary strongly positive. Therefore
f ∗(SP (p,p)(Ω)) = SP (p,p)(Ω′). ¤

DEFINITION 4.7. A (p, p)-form ω ∈ Ck(Ω, Λ(p,p)) is positive, and we write ω ≥ 0, if for all
ψ ∈ SP (n−p,n−p)(Ω) it follows ω ∧ ψ ≥ 0.

REMARK 4.8. Since η ∈ SP (n−p,n−p)(Ω) is of the form
∑

λjηj with λj ≥ 0 and ηj elemen-
tary strongly positive, then a (p, p)-form ω is positive if and only if ω∧η ≥ 0 for all elementary
strongly positive (n− p, n− p)-forms.

Clearly, one can localize the notions of elementary strongly positivity, strongly positivity
and positivity to each fiber of the bundle Λ(p,p) on Ω. In other words, a form α ∈ Λ

(p,p)
x (here

α is an element of the fiber of Λ(p,p) at x) is positive if for all elementary strongly positive
(n− p, n− p)-form β ∈ Λ

(n−p,n−p)
x it follows α ∧ β = λdV (x) with λ ≥ 0.
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LEMMA 4.9. Let Ω ⊂ Cn be a domain. Let ω ∈ Ck(Ω, Λ(p,p)). Then ω ≥ 0 if and only if
ω(x) ≥ 0 for all x ∈ Ω.

PROOF. If ω(x) ≥ 0 for all x ∈ Ω then ω ≥ 0 because if it were ω ∧ η = fdV 6≥ 0 for
some elementary strongly positive (n− p, n− p)-form that there would exists x ∈ Ω such that
f(x) < 0 and thus ω(x) ∧ η(x) = f(x)dV (x) < 0 contrarily to our hypothesis.

Conversely, if ω(x) ∧ ηx = λdV (x) with λ < 0 and ηx ∈ Λ(n−p,n−p) elementary strongly
positive, then there exists η ∈ Ck(Ω, Λ(n−p,n−p)) elementary strongly positive such that η(x) =
ηx and then ω ∧ η 6≥ 0. ¤

Lemma 4.9 allows to check pointwise if a given form is positive. Next result says that
positivity is a notion compatible with holomorphic maps:

PROPOSITION 4.10. Let Ω ⊂ Cn be a domain. Let ω ∈ Ck(Ω, Λ(p,p)).
(1) If ω ≥ 0 then for all σ : U → Ω holomorphic from a domain U ⊂ Cs (with s ≤ n) to

Ω it follows σ∗(ω) ≥ 0.
(2) If for all σ : U → Ω holomorphic from a domain U ⊂ Cp to Ω it follows σ∗(ω) ≥ 0

then ω ≥ 0.

PROOF. (1) First of all notice that if σ : U → Ω with U ⊂ Cn is a biholomorphism then
σ∗(SP (p,p)(Ω)) = SP (p,p)(U) by Proposition 4.6. Let η ∈ SP (p,p)(Ω). By Cauchy-Riemann
equations, σ∗(dV ) = | det(∂σk

∂zj
)|2dV and then σ∗(ω ∧ η) ≥ 0 if and only if ω ∧ η ≥ 0, namely,

ω ≥ 0 if and only if σ∗(ω) ≥ 0.
Assume now that ω ≥ 0. Let σ : U → Ω be holomorphic with U ⊂ Cs. If s < p then

σ∗(ω) = 0 and there is nothing to prove. Assume that s ≥ p. Let ψ = (i/2)s−pψp+1 ∧ ψp+1 ∧
. . . ψs ∧ ψs be an elementary strongly positive (s − p, s − p)-form in U (here we take ψ ≡ 1
if s = p). We have to show that σ∗(ω) ∧ ψ ≥ 0. According to Lemma 4.9, it is enough
to check that σ∗(ω)(x) ∧ ψ(x) ≥ 0 for all x ∈ U . Moreover, for what we already proved
at the beginning, we can compose with biholomorphisms. Thus we can choose holomorphic
coordinates {z1, . . . , zs} in U near x such that ψj(x) = dzj(x) for j = p+1, . . . , s (if s = p we
do not need this change of coordinates). In such coordinates, we need to show that σ∗(ω)(x) ∧
(i/2)s−pdzp+1 ∧ dzp+1 ∧ . . . dzs ∧ dzs ≥ 0.

Let Ej = dσx(
∂

∂zj
) for j = 1, . . . , s. We can assume that E1, . . . , Er are linearly indepen-

dent (with r ≤ s) and generate dσx(TxU). Notice that if r < p then σ∗(ω)(x) = 0 and there
is nothing to prove. We can thus assume that r ≥ p. Let {Er+1, . . . , En} be a completion of
{E1, . . . , Er} to a basis of Tσ(x)Ω = Cn. Let

T (z1, . . . , zn) = σ(z1, . . . , zs) +
s∑

j=p+1

Ej(zj − xj) +
n∑

j=s+1

Ejzj.

Then there exist V ∈ Cn−s an open neighborhood of O and U ′ ⊂ U an open neighborhood of
x such that T : U ′ × V → Ω is holomorphic and T (x, O) = σ(x). Notice that by construction
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dT(x,O)(
∂

∂zj
) = εjEj with εj = 2 if j = p + 1, . . . , r and εj = 1 otherwise. Thus dTx,O is

invertible and, up to shrink U ′, V , we can assume that T is a biholomorphism on its image. Let
η be an elementary strongly positive (n−p, n−p)-form. Then T ∗(ω∧η) ≥ 0. For j = 1, . . . , n,
let ηj be (1, 0)-forms such that ηj(σ(x))(Ek) = δk

j . By construction

T ∗(ηj)(x,O) = εjdzj

with εj = 2 if j = p + 1, . . . , r and εj = 1 otherwise.
Let η = (i/2)n−pηp+1 ∧ ηp+1 ∧ . . . ∧ ηn ∧ ηn. Then η is an elementary strongly positive

(n− p, n− p)-form near x. Thus
0 ≤ T ∗(ω ∧ η)(x,O) = T ∗ω(x, O) ∧ T ∗η(x,O)

= T ∗ω(x, O) ∧ (i/2)(n−p)2r−pdzp+1 ∧ dzp+1 ∧ . . . ∧ dzn ∧ dzn

= 2r−pσ∗(ω)(x) ∧ (i/2)(n−p)dzp+1 ∧ dzp+1 ∧ . . . ∧ dzn ∧ dzn,

which implies that σ∗(ω)(x) ∧ (i/2)(s−p)dzp+1 ∧ dzp+1 ∧ . . . ∧ dzs ∧ dzs ≥ 0.
(2) Assume that for all σ : U → Ω holomorphic it follows σ∗(ω) ≥ 0. Let η be an

elementary strongly positive (n − p, n − p)-form. We have to show that ω ∧ η(x) ≥ 0 for all
x ∈ Ω. Fix x ∈ Ω. Write x = (x′, x′′) ∈ Cp × Cn−p. By (1) we can choose local holomorphic
coordinates near x such that

η(x) = (i/2)n−pdzp+1 ∧ dzp+1 ∧ . . . ∧ dzn ∧ dzn.

Now let U = Ω ∩ (Cp × {x′′}) and let σ : U → Ω be given by

σ(z1, . . . , zp) = (z1, . . . , zp, x
′′).

By hypothesis σ∗(ω)(x′) = λ(i/2)pdz1∧dz1∧. . .∧dzp∧dzp with λ ≥ 0 and σ∗(ω)(x′)∧η(x′′) =
ω ∧ η(x), from which ω ∧ η(x) = λdV proving that ω ≥ 0. ¤

LEMMA 4.11. Let Ω ⊂ Cn be a domain. If ω ∈ SP (p,p)(Ω) then ω ≥ 0.

PROOF. Let x ∈ Ω. According to Lemma 4.9 and Proposition 4.10 we can prove that ω is
positive using any local holomorphic coordinates change. We can thus choose local holomor-
phic coordinates at x such that ω(x) = (i/2)pdz1 ∧ dz1 ∧ . . . ∧ dzp ∧ dzp. From this it follows
easily that ω(x) ≥ 0. ¤

THEOREM 4.12. Let Ω ⊂ Cn be a domain. Let ω = i/2
∑

hjkdzj ∧ dzk ∈ Ck(Ω, Λ(1,1)).
Then the following are equivalent:

(1) ω ≥ 0.
(2) (hjk(x)) is a semi-positive definite hermitian matrix for all x ∈ Ω.
(3) ω ∈ SP (1,1)(Ω).

PROOF. Assume (1). By Proposition 4.2 it follows that (hjk) is an hermitian matrix if and
only if ω is real. Let x ∈ Ω and w ∈ Cn and define σ(ζ) := x + ζw for |ζ| << 1. Then

σ∗(ω)(0) = i/2
∑

hjk(x)dσj(0) ∧ dσk(0) = i/2
∑

hjk(x)wjwkdζ ∧ dζ
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and by Proposition 4.10.(1), ω ≥ 0 implies σ∗(ω)(0) ≥ 0 and then (hjk(x)) ≥ 0, proving (2).
Assume (2). Then H = (hjk(x)) ≥ 0. Let W = (ujk) be a unitary (n×n)-matrix such that

W ∗HW = D with D a diagonal matrix with entries λj ≥ 0 on the diagonal. Let us consider
the following change of coordinates z = Wz̃. Then

ω(x) =
i

2

∑

j,k

hjkdzj ∧ dzk =
i

2

∑

j,k

hjkd(Wz̃)j ∧ d(Wz̃)k

=
∑

j,k,l,m

hjkujlukmdz̃l ∧ dz̃m =
∑

m,l

λlδ
m
l dz̃l ∧ dz̃m =

∑
m

λmdz̃m ∧ dz̃m.

Thus ω ∈ SP (1,1)(Ω) by Proposition 4.6, and this proves (3).
Finally, if (3) holds, then (1) follows from Lemma 4.11. ¤
4.2. Positive currents. Now we are in the good shape to define positive currents.

DEFINITION 4.13. Let Ω ⊂ Cn be a domain. A current T ∈ D(p,p)
k (Ω) is a positive current

of degree p, and we write T ≥ 0, if T (ω) ≥ 0 for all ω ∈ SP (n−p,n−p)(Ω).

Notice that a positive (p, p)-current T is real in the sense that for all real (n−p, n−p)-form
ω with compact support it follows T (ω) ∈ R. Indeed, by Proposition 4.5 it is enough to prove
it for strongly positive elementary forms. But if ω ∈ SP (p,p)(Ω) then T (ω) ≥ 0.

Let x ∈ Ω be a given point and consider the natural bilinear map Λ
(p,p)
R,x × Λ

(n−p,n−p)
R,x −→

Λ
(n,n)
R,x given by (η, ϕ) 7→ η ∧ ϕ. It is a non-degenerate bilinear application which defines a du-

ality between Λ
(p,p)
R,x and Λ

(n−p,n−p)
R,x . In other words, it defines a R-linear isomorphism between

Λ
(p,p)
R,x and (Λ

(n−p,n−p)
R,x )∗ (and in particular Λ

(p,p)
R,x and Λ

(n−p,n−p)
R,x have the same dimension). Thus,

if {ηJ} is a basis for Λ
(p,p)
R,x , we say that {ϕJ} is a dual basis for Λ

(n−p,n−p)
R,x if ηJ ∧ ϕI = 0 for

I 6= J and ηI ∧ ϕI = dV .

THEOREM 4.14. Let Ω ⊂ Cn be a domain. Let T ∈ D(p,p)
∞ (Ω), T ≥ 0. Then T ∈ D(p,p)

0 (Ω).
In particular the coefficients of T are positive Radon measures with respect to any basis which
is dual for a basis of strongly positive forms of C∞(Ω, Λ

(n−p,n−p)
R ).

PROOF. By Proposition 4.5 the space of (real) (n− p, n− p)-forms has a basis of strongly
positive forms, say {ϕ1, . . . , ϕM}. Let {η1, . . . , ηM} be a basis of real (p, p)-forms, dual for
{ϕ1, . . . , ϕM}. According to Theorem 2.6 we can write

T =
M∑

j=1

Tjηj,

with Tj ∈ Dis∞(Ω). Fix t ∈ {1, . . . , M}. Then

0 ≤ T (ϕt) =
M∑

j=1

W−1(Tj)(ηj ∧ ϕt) = W−1(Tt)(ηt ∧ ϕt).
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Since clearly the isomorphism W maps positive distributions to positive (n, n)-forms, then Tt

is a positive functional on C∞
0 (Ω) and by Lemma 1.5 it follows that Tt is a positive Radon

measure. Another application of Theorem 2.6 implies that T ∈ D(p,p)
0 (Ω). ¤

Now we can relate plurisubharmonic functions to positive currents:

THEOREM 4.15. Let Ω ⊂ Cn be a domain. Let u ∈ L1
loc(Ω). The following are equivalent:

(1) There exists v ∈ Psh(Ω) such that u = v almost everywhere in Ω.
(2) The matrix ( ∂2u

∂zj∂zk
) is positive semidefinite in the sense of distributions.

(3) ddcu is a positive (1, 1)-current.

PROOF. By Proposition III.2.3 (1) is equivalent to (2). Now assume that u ∈ C2(Ω). Then
ddcu = 4(i/2)∂∂u and thus u ∈ Psh(Ω) if and only if ddcu is a positive (1, 1)-current.

If u ∈ Psh(Ω) (no further regularity), let uε ∈ C∞(Ωε) ∩ Psh(Ωε) be such that {uε} point-
wise decreases to u (see Theorem III.2.1). Then ddcuε ≥ 0. Let ϕ ∈ SP (n−1,n−1)(Ω). By
Beppo Levi’s theorem it follows

ddcu(ϕ) :=

∫

Ω

u ddcϕ = lim
ε→0

∫

Ω

uε ddcϕ = lim
ε→0

ddcuε(ϕ) ≥ 0,

thus ddcu ≥ 0 showing that (1) implies (3). Conversely, assume ddcu ≥ 0. Let uε = u ∗ χε ∈
C∞(Ωε). Then uε converges to u in L1

loc(Ω) (and almost everywhere). In particular for all
f ∈ C∞

0 (Ω) we have
∫

Ω

∂2u

∂zj∂zk

fdV :=

∫

Ω

u
∂2f

∂zj∂zk

dV = lim
ε→0

∫

Ω

uε
∂2f

∂zj∂zk

dV.

Therefore ddcu ≥ 0 implies that ddcuε ≥ 0 and then uε ∈ Psh(Ωε) for all ε. Now, arguing as at
the end of Theorem I.4.1 we see that uε is decreasing in ε and thus, by Lemma III.1.10, it follows
that v(z) = limε→0 uε(z) ∈ Psh(Ω). Since u = v almost everywhere then (1) follows. ¤

REMARK 4.16. By the previous theorem, if u ∈ Psh(Ω) then ddcu is a d-closed positive
(1, 1)-current, namely, d(ddcu) = 0.

REMARK 4.17. According to Theorem 4.15 and Theorem 4.12, if u ∈ Psh(Ω) ∩ C∞(Ω)
then ddc(u) ∈ SP (1,1)(Ω).

Conversely we state and sketch a proof of the following result which says that locally every
(1, 1)-positive current has a potential.

THEOREM 4.18. Let Ω ⊂ Cn be a domain. Let T ∈ D(1,1)(Ω) be a positive current such
that dT = 0. For any z ∈ Ω there exist an open neighborhood Uz ⊂ Ω, z ∈ Uz and u ∈
Psh(Uz) such that T = ddcu in D(1,1)(Uz). Moreover, if T = Tω is the current associated to
ω ∈ C∞(Ω, Λ(1,1)) then u ∈ C∞(Uz) for all z.
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PROOF. One can define a cohomology on Ω given by d-closed currents over d-exact cur-
rents. As in the smooth case, such a cohomology is locally exact, in the sense that an analogue of
Poincaré’s Lemma holds for currents (see [12], [9]). Namely, since dT = 0, for any z ∈ Ω there
exist a convex open neighborhood U ⊂ Ω, z ∈ U and S ∈ D1(U), S real, such that dS = T in
D2(U). Now S = S(1,0) + S(0,1) with S(1,0) ∈ D(1,0)(U) and S(0,1) = S(1,0) ∈ D(0,1)(U). Now,

dS = ∂S + ∂S = ∂S(1,0) + ∂S(0,1) + ∂S(1,0) + ∂S(0,1)

and because T is of bidegree (1, 1) it follows that ∂S(1,0) = ∂S(0,1) = 0. By the Dolbeault
lemma for currents (similar to the one for smooth forms, see [9]) there exists ϕ ∈ D0(U) '
Dis(U) such that ∂ϕ = S(0,1). Therefore S = ∂ϕ + ∂ϕ = ∂ϕ + ∂ϕ and

T = dS = d(∂ϕ + ∂ϕ) = ∂∂ϕ + ∂∂ϕ = ∂∂(ϕ− ϕ) = 2i∂∂v = ddcv,

where v = −i(ϕ − ϕ)/2 is a real distribution. Thus we have a real distribution v such that
T = ddcv. If T ≥ 0 then ddcv ≥ 0, which implies that L(v) ≥ 0, and by Proposition 1.8 it
follows that v is associated to a function u ∈ Psh(U).

Finally, assume that ω is a smooth (1, 1)-form and T = Tω. Then T = −2i∂(∂u). Since T
is C∞ then ∂u ∈ C∞(U, Λ(1,0)) because ∂ is a hypoelliptic operator in degree (p, 0). Indeed,
∂ω = 0 because ∂T = 0 and ∂T = T∂ω and thus (by the Poincaré lemma for the ∂ operator—
recall that U is convex and thus pseudoconvex) there exists θ ∈ C∞(U, Λ(1,0)) such that ∂θ = ω.
Therefore (identifying forms with currents as usual) ∂(θ + 2i∂u) = 0 and then θ + 2i∂u is
holomorphic which implies that ∂u ∈ C∞(U, Λ(1,0)) and, since ∂u = ∂u because u is real,
du ∈ C∞(U, Λ1). From this it follows that u ∈ C∞(U). ¤

EXAMPLE 4.19. Let Z ⊂ Ω be a complex submanifold of (complex) dimension p (with no
boundary in Ω). Then the integration current [Z] is a (n − p, n − p)-positive d-closed current.
Indeed, let i : Z ↪→ Ω be the natural holomorphic embedding. If ϕ ∈ SP (p,p)(Ω) then i∗(ϕ) ≥ 0
by Proposition 4.10 and thus [Z](ϕ) :=

∫
Z

i∗(ϕ) ≥ 0. Finally, for ϕ ∈ C0(Ω, Λ2n−2p−1) and by
Stokes’ theorem

d[Z](ϕ) := [Z](dϕ) =

∫

Z

i∗(dϕ) = ±
∫

∂Z

i∗(ϕ) = 0.

5. Integration over analytic sets

In this section we sketch how to define currents of integration along analytic subsets of
Ω ⊂ Cn. We refer to [9] for details.

Let T ∈ D(p,q)
0 (Ω) be a (p, q)-currents in Ω. According to Theorem 2.6 we can write T as

in (2.2), with TI,J Radon measure. Let us define the mass ‖T‖ of T as

‖T‖ :=
∑
I,J

|TI,J |,

where |TI,J | is the measure total variation of TI,J (see Remark 1.4). Since by construction
TI,J is absolutely continuous with respect to ‖T‖ then the Radon-Nykodim theorem implies
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that there exists a locally ‖T‖-measurable complex function fI,J ∈ L1
loc(Ω, ‖T‖) such that

TI,J = fI,J‖T‖ (according to Remark 1.4, such a function fI,J is defined on a relatively compact
Borel subset E of Ω by applying the Radon-Nykodim theorem to TI,J |E). Since

‖T‖ =
∑

|TI,J | =
∑

|fI,J |‖T‖,
it follows that

∑ |fI,J | = 1. Thus if we set f := (i/2)p
∑

fI,Jdzi1 ∧ dzj1 ∧ . . . it follows that

T = ‖T‖f.

LEMMA 5.1. The current T ∈ D(p,p)
0 (Ω) is positive if and only if the form f is positive at

‖T‖-almost all points of Ω.

PROOF. If f ≥ 0 (for ‖T‖-almost everywhere) then for all ϕ ∈ SP (n−p,n−p)(Ω), we have

T (ϕ) = ‖T‖f(ϕ) :=

∫

Ω

f ∧ ϕ‖T‖ ≥ 0.

Conversely, if T ≥ 0 then for all ϕ ∈ SP (n−p,n−p)(Ω) we have

0 ≤ T (ϕ) = ‖T‖f(ϕ) :=

∫

Ω

f ∧ ϕ‖T‖

thus f ∧ ϕ ≥ 0 but at most zero ‖T‖-measure sets. Letting ϕ varying, we see that f ≥ 0 for
‖T‖-almost all points. ¤

DEFINITION 5.2. A complete pluripolar set E ⊂ Ω is a subset such that for each x ∈ E
there exists an open neighborhood Vx ⊂ Ω and a function v ∈ Psh(Vx) such that E ∩ Vx =
{v = −∞}.

The following theorem is due to Skoda and El Mir:

THEOREM 5.3. Let Ω ⊂ Cn be a domain. Let E ⊂ Ω be a closed complete pluripolar set.
Let T ∈ D(p,p)(Ω \ E) be a positive (p, p)-current, dT = 0. Suppose that ‖T‖ is bounded near
each point of E. Let T̃ be the trivial extension of T to E obtained by extending TI,J to zero on
E. Then T̃ is positive and closed on Ω.

Now let X ⊂ Ω be a (possibly singular) complex subvariety (with no boundary) of pure
dimension p. Then X defines an element of (H2n−2p(Ω,R))∗ as follows. Given any (2n− 2p)-
form ϕ such that dϕ = 0, one can define

∫
X

ϕ by taking any C∞-smooth submanifold X ′ ⊂ Ω
which is homologous to X and defining

∫
X

ϕ =
∫

X′ i
∗
X′(ϕ), with iX′ : X ′ ↪→ Ω the natural

embedding. Since dϕ = 0, Stokes theorem implies that such a definition is independent of the
cycle X ′ homologous to X which has been chosen (see, e.g., [13]).

However, this definition does not allow to define a current of integration on X (the problem
being how to defining integration of non-closed test forms).
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We can thus try to define the current of integration [X] by integrating over the regular part
Xr of X:

[Xr](ϕ) :=

∫

Xr

i∗(ϕ)

where i : X ↪→ Ω is the natural embedding (and ϕ ∈ C0(Ω, Λ(p,p)). It can be proved that [Xr]
is a current of bidegree (n − p, n − p) on Ω \ Sing(X). It is also clearly positive and, suitably
using Stokes theorem for subvariety, one can even shows that it is closed. The following result
of Lelong implies that such a definition is the good one:

THEOREM 5.4. Let Ω ⊂ Cn be a domain. Let X ⊂ Ω be a complex subvariety (with no
boundary) of pure dimension p. The current [Xr] has finite mass near every point of Sing(X).
Thus its trivial extension [X] is a closed positive (n− p, n− p)-current of order 0 on Ω.

Notice that, by the previous theorem and since Sing(X) has zero measure in X , the current
[X] defined as extension of the current of integration [Xr], coincides on closed test forms with
the integration on cycles homologous to X .
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CHAPTER 5

The Complex Monge-Ampère operator

1. Maximal plurisubharmonic functions

Consider the unit ball B ⊂ Rm and let ϕ ∈ C0(∂B). The unique solution u ∈ C0(B) ∩
harm(B) to the Dirichlet problem

(1.1)

{
∆u = 0 in B
u|∂B = ϕ

can be characterized as

(1.2) u(x) = sup{v(x) : v ∈ subh(B), lim sup
B3x→p

v(x) ≤ ϕ(p)∀p ∈ ∂B}.

Thus, harmonic functions can be characterized as the maximal functions among subharmonic
functions. In other words:

PROPOSITION 1.1. Let Ω ⊂ Rm be a domain and let u ∈ C0(Ω) ∩ subh(Ω). Then u ∈
harm(Ω) if and only if for all G ⊂⊂ Ω open and v ∈ subh(G) such that lim supx→p v(x) ≤ u(p)
for all p ∈ ∂G it follows that v ≤ u in G.

PROOF. The necessity of the condition follows from the maximum principle. Conversely,
suppose that G ⊂⊂ Ω is an open ball. Let v ∈ harm(G) ∩ C0(G) be such that v(p) = u(p) for
all p ∈ ∂G. Then by the subharmonicity u ≤ v in G and by hypothesis v ≤ u which implies
that u = v and thus u ∈ harm(G), proving that u ∈ harm(Ω). ¤

Since pluriharmonic functions are harmonic, and plurisubharmonic functions are subhar-
monic, pluriharmonic functions are maximal among plurisubharmonic functions. However,
considering the unit ball B ⊂ Cn and given ϕ ∈ C0(∂B), there is, in general, no u ∈
Ph(B) ∩ C0(B) such that u|∂B = ϕ and maximal plurisubharmonic functions are not neces-
sarily pluriharmonic.

EXAMPLE 1.2. Let us consider the unit ball B ⊂ C2. Let f : D → (−∞,∞) be any
continuous subharmonic function which is not C1 at some points of D. Let ϕ(z) = f(z1) for
z ∈ ∂B. Then ϕ ∈ C0(∂B). Let us define u(z) := f(z1) for z ∈ B. Then D 3 ζ 7→ u(a+ζb) =
f(a1+ζb1) is subharmonic for all {a+ζb : ζ ∈ D} ⊂⊂ B. Hence u ∈ Psh(B)∩C0(B). Since u
is not C∞ by construction, u 6∈ Ph(B). However, if v ∈ Psh(B) is such that lim supz→p v(z) ≤
ϕ(p) for all p ∈ ∂B then v(z) ≤ u(z) for all z ∈ B because u is harmonic on z1 = constant.

47
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This implies that there are no V ∈ C0(B) ∩ Ph(B) such that V |∂B = ϕ, because otherwise the
maximum principle would imply V = u forcing u to be of class C∞.

DEFINITION 1.3. Let Ω ⊂ Cn be a domain. A function u ∈ Psh(Ω) is said to be maximal
(according to Sadullaev) if for any open set G ⊂⊂ Ω and v ∈ Psh(G) such that lim supz→p v(z) ≤
u(p) for all p ∈ ∂G it follows that v ≤ u in G.

The function u in Example 1.2 is an example of maximal plurisubharmonic function which
is not pluriharmonic. More generally:

PROPOSITION 1.4. Let Ω ⊂ Cn be a domain. Let u ∈ Psh(Ω). Suppose that for all z ∈ Ω
there exists a proper holomorphic map ϕ : D → Ω such that z ∈ ϕ(D) and u ◦ ϕ ∈ harm(D).
Then u is maximal.

PROOF. Let G ⊂⊂ Ω be an open set. Let v ∈ Psh(G) be such that lim supz→p v(z) ≤ u(p)
for all p ∈ ∂G. Let z ∈ G and let ϕ : D → Ω holomorphic and proper such that ϕ(ζ) = z
for some ζ ∈ D and u ◦ ϕ ∈ harm(D). Since ϕ is proper then ϕ−1(G) is an open set relatively
compact in D and we can assume, without loss of generality, that it is connected. Now, u ◦ ϕ is
harmonic in D. Also, by Proposition III.3.2 either v ◦ϕ ≡ −∞ or v ◦ϕ ∈ subh(ϕ−1(G)). In the
latter case, since by hypothesis the upper semicontinuous extension of v ◦ ϕ to the boundary of
ϕ−1(G) is less then or equal to u◦ϕ on ϕ−1(∂G) it follows by the very definition of subharmonic
functions that u ◦ ϕ ≥ v ◦ ϕ on ϕ−1(G) and hence u(z) ≥ v(z) proving that u is maximal. ¤

Proposition 1.4 gives a geometric criterion for maximality. In particular one can use such
a criterion to construct a maximal plurisubharmonic function by giving a foliation on Ω whose
leaves are properly embedded holomorphic discs and a plurisubharmonic function on Ω whose
restriction on each leaf is harmonic.

PROPOSITION 1.5. Let Ω ⊂ Cn be a domain. Let u ∈ Psh(Ω). The following are equiva-
lent:

(1) u is maximal.
(2) For each open set G ⊂⊂ Ω and v ∈ Psh(G) such that lim infz→p[u(z)− v(z)] ≥ 0 for

all p ∈ ∂G it follows u ≥ v in G.
(3) For each open set G ⊂⊂ Ω and v ∈ Psh(Ω) such that lim infG3z→p[u(z)− v(z)] ≥ 0

for all p ∈ ∂G it follows u ≥ v in G.
(4) For each v ∈ Psh(Ω) which has the property that for each ε > 0 there exists a compact

set K ⊂ Ω such that u− v ≥ −ε in Ω \K then u ≥ v in Ω.
(5) For each open set G ⊂⊂ Ω and v ∈ Psh(Ω) such that v(p) ≤ u(p) for all p ∈ ∂G it

follows u ≥ v in G.

PROOF. Assume (1) and let v,G as in (2). Then lim supz→p v(z) ≤ u(p) for all p ∈ ∂G.
Indeed, let {zk} ⊂ G be such that zk → p and L := lim supz→p v(z) = limk→∞ v(zk). Then

0 ≤ lim inf
z→p

[u(z)− v(z)] ≤ lim inf
k→∞

[u(zk)− v(zk)] ≤ lim sup
k→∞

u(zk)− L ≤ u(p)− L.
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Thus lim supz→p v(z) ≤ u(p) for all p ∈ ∂G and by (1) v ≤ u in G, which proves (2).
Clearly (2) implies (3) because Psh(Ω)|G ⊂ Psh(G).
Now assume (3) holds. Let v ∈ Psh(Ω) with the property that for each ε > 0 there exists a

compact set K ⊂ Ω such that u − v ≥ −ε in Ω \ K. Seeking for a contradiction, we assume
that there exists a ∈ Ω such that u(a) < v(a)− δ for some δ > 0. By hypothesis, there exists a
compact set K ⊂ Ω such that u(z) − v(z) ≥ −δ/2 for all z ∈ Ω \K. Notice that a ∈ K. Let
G ⊂⊂ Ω be an open set such that K ⊂ G. Then lim infG3z→p[u(z) − v(z) + δ/2] ≥ 0 for all
p ∈ ∂G. Since (v − δ/2) ∈ Psh(Ω) then (3) implies that u ≥ v − δ/2 in G and in particular
then u(a) ≥ v(a)− δ/2, absurd. Thus (3) implies (4).

Assume (4) holds. Let G ⊂⊂ Ω be an open set and let v ∈ Psh(Ω) be such such v(p) ≤ u(p)
for all p ∈ ∂G. Let us define

(1.3) w(z) :=

{
u(z) for z ∈ Ω \G

max{u(z), v(z)} for z ∈ G

By the analogous of Proposition I.5.1 for plurisubharmonic functions, w ∈ Psh(Ω). By con-
struction, for all ε > 0 it follows that 0 = u(z)−w(z) ≥ −ε for all z ∈ Ω \G. By (4) it follows
that u ≥ w in Ω and thus u ≥ v in G, proving (5).

Finally, if (5) holds, given G ⊂⊂ Ω an open set and v ∈ Psh(G) such that lim supz→p v(z) ≤
u(p) for all p ∈ ∂G we define w has in (1.3). Then w ∈ Psh(Ω), w ≤ u on ∂G and by (5) it
follows that w ≤ u in G, proving that v ≤ u in G and then (1). ¤

2. Characterization of maximal plurisubharmonic functions of class C2

In this section we characterize maximal plurisubharmonic functions of class C2 by means
of their Levi form. Let Ω ⊂ Cn and let u ∈ C2(Ω). Then

(2.1) (ddcu)n := ddcu ∧ . . . ∧ ddcu︸ ︷︷ ︸
n

= 4nn! det

(
∂2u

∂zj∂zk

)
dV

where dV is the volume form (IV.2.1)

LEMMA 2.1. Let Ω ⊂ Cn be a domain. Let u ∈ Psh(Ω) ∩ C2(Ω). Then (ddcu)n ≥ 0.

PROOF. It follows directly from Theorem IV.4.15 and (2.1). [Alternatively, by Theor-
em IV.4.15 the (1, 1)-form (with continuous coefficients) ddcu is positive. By Theorem IV.4.12.(2)
it is actually strongly positive. Therefore (ddcu)n is a positive (n, n)-form.] ¤

THEOREM 2.2. Let Ω ⊂ Cn be a domain. Let u ∈ Psh(Ω) ∩ C2(Ω). Then u is maximal in
Ω if and only if (ddcu)n = 0 in Ω.

PROOF. Assume first that (ddcu)n = 0. Let G ⊂⊂ Ω be an open set and let v ∈ Psh(Ω) be
such that v(p) ≤ u(p) for all p ∈ ∂G. We want to show that v ≤ u in G which, by Proposition
1.5 and by the arbitrariness of v implies that u is maximal. Seeking for a contradiction we
assume that there exists a ∈ G such that 0 < v(a) − u(a) = supz∈G(v − u)(z). Let δ > 0 be
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such that v(a)− δ > u(a). Then v(z)− δ ∈ Psh(Ω) and v(p)− δ < u(p) for all p ∈ ∂G. Thus,
if {vε} is the decreasing sequence of regularizing plurisubharmonic functions for v − δ, there
exists ε > 0 such that G ⊂⊂ Ωε, vε ∈ C∞(Ωε) ∩ Psh(Ωε), vε(a) > u(a) and vε(p) ≤ u(p) for
all p ∈ ∂G.

Let M = maxz∈G ‖z‖2. Let λ > 0 be such that vε(a) + λ(‖a‖2 − M) > u(a) and let
w(z) := vε(z) + λ(‖z‖2 −M). Then w ∈ Psh(Ωε), w(p) ≤ u(p) for all p ∈ ∂G, w(a) > u(a)
and Lz(w(z))(b; b) > 0 for all z ∈ G and b ∈ Cn \ {0}.

Let x ∈ G be a local maximum of w − u. Since w(a) − u(a) > 0 and w − u ≤ 0 on ∂G,
such a point does exist.

Notice that det
(

∂2u
∂zj∂zk

)
(x) = 0 is equivalent to the existence of a vector b ∈ Cn \{0} such

that Lx(u)(b; b) = 0. Let f(ζ) := (w − u)(x + ζb) for ζ ∈ C, |ζ| << 1. Since ζ = 0 is a local
maximum and f is of class C2 then ∆f(0) ≤ 0. Therefore

0 ≥ ∆f(0) = 4Lx(w − u)(b; b) = 4Lx(w)(b; b) > 0,

a contradiction. Therefore u is maximal.
Conversely, assume that u ∈ C2(Ω) ∩ Psh(Ω) is maximal. Assume by contradiction that

there exists a ∈ Ω such that det
(

∂2u
∂zj∂zk

)
(a) 6= 0. This implies that La(u) is positive definite.

Since u is of class C2 one can find a ball B(a, r) ⊂⊂ Ω and C > 0 such that Lz(u)(b; b) ≥ C
for all b ∈ Cn such that ‖b‖ = 1 and z ∈ B(a, r). Then u(z) + C(r2 − ‖z‖2) ∈ Psh(B(a, r))
because L(u(z) + C(r2 − ‖z − a‖2))(b; b) = L(u)(b; b)− C‖b‖2 ≥ 0 by construction. Let

v(z) =

{
u(z) for z ∈ Ω \ B(a, r)

u(z) + C(r2 − ‖z − a‖2) for z ∈ B(a, r)

By the analogous of Proposition I.5.1 for plurisubharmonic functions, v ∈ Psh(Ω). Moreover,
v(p) = u(p) for all p ∈ ∂B(a, r) and v(a) = u(a) + Cr2 > u(a) against the maximality of
u. ¤

REMARK 2.3. With some more effort (see, e.g., [16, Proposition 3.1.7]) one can prove the
following generalization of the previous theorem: let u, v ∈ C2(Ω) ∩ Psh(Ω). Let G ⊂⊂ Ω be
an open set. If v ≤ u on ∂G and (ddcu)n ≤ (ddcv)n in G then v ≤ u in G.

REMARK 2.4. Let Ω ⊂ Cn be a domain and let u ∈ C2(Ω). The condition (ddcu)n = 0
is equivalent to the fact that the rank of the Levi form L(u) is ≤ n − 1 in Ω. In other words,
(ddcu)n = 0 is equivalent to the existence for every z ∈ Ω of vector v ∈ Cn \ {0} (depending
on z) such that L(u)z(v; v) = 0.

3. Maximal plurisubharmonic functions and foliations

In this section we relate maximal (regular) plurisubharmonic functions to complex foliations
(in Riemann surfaces).
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Let Ω ⊂ Cn be a domain. A real foliation of class Ck and dimension 2m on Ω is a map
F : Ω → (TΩ)R such that for each p ∈ Ω there exist an open set U ⊂ Cn−m, D ⊂ Cm and
Φ : U × D → Ω a Ck-diffeomorphism onto its image such that dwΦ({x} × TwD) = FΦ(x,ζ)

for each x ∈ U . Moreover, if the map D 3 w 7→ Φ(x,w) is holomorphic for each x ∈ U
the foliation F is said to be a complex foliation of dimension m. Notice that if F is a real
(respectively complex) foliation of dimension m then for each p ∈ Ω there exists a real (respect.
complex) manifold M(p) ⊂ Ω, p ∈ M(p) such that (TzM(p))R = Fz for all z ∈ M . We call
such a manifold M(p) the leaf for F at p. We refer the interested reader to [7] for details on
foliations.

By definition, a foliation is a distribution of (TΩ)R, namely, a map Ω → (TΩ)R. It is clear
that if F is a foliation of class C1 then [F ,F ] ⊆ F , that is, F is involutive. The converse is
contained in the well known Frobenius’ theorem:

THEOREM 3.1 (Frobenius). Let Ω ⊂ Cn be a domain. A Ck (k ≥ 1) distribution F ⊂
(TΩ)R is a foliation of class Ck+1 if and only if it is involutive.

If one is interested in the complex side of the story, then one can consider (complex) dis-
tributions F ⊂ TΩ. For later reference we prove here only the following complex version of
Frobenius’s theorem.

PROPOSITION 3.2. Let Ω ⊂ Cn be a domain. Let F ⊂ TΩ be a Ck (k ≥ 1) distribution of
complex rank 1. Then F is a complex foliation of class Ck+1 and (complex) dimension 1.

PROOF. Consider the associated distribution FR ⊂ (TΩ)R. Then FR is a Ck distribution of
rank 2. Let U be an open set in Ω on which F is trivial and let z 7→ Z(z) be a generator for F
on U . Then Z, JZ (here J is the complex structure coming from the multiplication by i in TΩ)
generate FR on U . Now

0 = [Z, JZ] = [Z, iZ] = i[Z, Z] = 0,

and then FR is involutive. By Frobenius’s theorem FR is a real foliation of dimension 2 and
class Ck+1. Let p ∈ Ω and let M(p) ⊂ Ω be a real two dimensional submanifold such that
TzM(p) = FRz for all z ∈ M(p). To see that F is a complex foliation it is enough to prove that
M(p) is a complex submanifold of Ω. By construction TzM(p) = JTzM(p) for all z ∈ M(p)
and therefore TzM(p) has a structure of complex subspace of TzΩ. Since a C1-submanifold of
Cn is a complex manifold if and only if its real tangent space at every point is a complex space,
M(p) is a complex curve and thus F is a complex foliation of dimension one. ¤

We begin with the following result which generalizes Proposition 1.4.

THEOREM 3.3. Let Ω ⊂ Cn be a domain. Let u ∈ C2(Ω) ∩ Psh(Ω). If there exists a one
dimensional complex foliation F of class C1 of Ω such that the restriction of u to each leaf is
harmonic then u is maximal.

PROOF. Let Φ : U × D → Ω be a local foliation chart for F , namely, U ⊂ Cn−1 is an
open set, Φ is a diffeomorphism (onto its image) of class C1, for each x ∈ U the image Φ(x,D)
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is contained in a leaf of F and the map ζ 7→ Φ(x, ζ) is holomorphic. By hypothesis for each
x ∈ U fixed, the map ζ 7→ u ◦ Φ(x, ζ) is harmonic on ∆ and therefore

0 = ∆ζu ◦ Φ(x, ζ) = 4L(u)(
∂Φ

∂ζ
(x, ζ),

∂Φ

∂ζ
(x, ζ)).

Since ∂Φ
∂ζ

(x, ζ) 6= 0 because Φ is a diffeomorphism, then L(u) has rank ≤ n − 1. In particular
it follows that (ddcu)n = 0 at Φ(x, ζ). By the arbitrariness of x ∈ U and Φ and according to
Remark 2.4, it follows that (ddcu)n ≡ 0 in Ω and then u is maximal by Theorem 2.2. ¤

The converse of the previous theorem is given in the following form:

THEOREM 3.4. Let Ω ⊂ Cn be a domain. Let u ∈ C3(Ω) ∩ Psh(Ω). Suppose u is maximal
and (ddcu)n−1

z 6= 0 for all z ∈ Ω. Then there exists a one dimensional complex foliation F of
class C2 of Ω such that the restriction of u to each leaf of F is harmonic.

PROOF. Since u is maximal (and of class C3) Theorem 2.2 and Remark 2.4 imply that the
rank of L(u) is ≤ n − 1 and by hypothesis it is exactly n − 1 at each z ∈ Ω. This implies that
for each z ∈ Ω there exists a vector Z(z) ∈ TzΩ \ {0} unique up to complex multiples, such
that Lz(u)(Z(z), Z(z)) = 0. Let Fz = spanC{Z(z)} ⊂ TzΩ. Thus we have a well defined
distribution F : Ω 3 z 7→ Fz ⊂ TΩ. Notice that, if Z = (Z1, . . . , Zn) then Z is the only
solution (up to complex multiples) of the system

n∑
j=1

∂2u

∂zj∂zk

(z)Zj(z) = 0, k = 1, . . . , n.

Thus, for every p ∈ Ω there exists a neighborhood Up of p and jp ∈ {1, . . . , n} such that Zj(z) =

Pj(z)Zjp where Pj(z) is a polynomial combination of ∂2u
∂zj∂zk

(z) for j ∈ {1, . . . , n} \ {jp} and
z ∈ Up. Since by hypothesis u is of class C3, one can perform a choice (for instance Zjp ≡ 1)
which makes the map z 7→ Z(z) of class C1, showing that z 7→ Fz is a C1 distribution. Thus
F ⊂ TΩ is a C1 distribution of complex rank one and by Proposition 3.2 it is a complex one
dimensional foliation of class C2.

It remains to show that the restriction of u to every leaf of F is harmonic. Let p ∈ Ω and let
ϕ : D→ Ω be holomorphic such that ϕ(0) = p, ϕ(D) is contained in a leaf of F and

·
ϕ (ζ) 6= 0

for all ζ ∈ D. Then
·
ϕ (ζ) = λ(ζ)Z(ϕ(ζ)) for some C1-function λ(ζ). Hence

∆ζ(u ◦ ϕ)(ζ) = 4L(u)ϕ(ζ)(
·
ϕ (ζ);

·
ϕ (ζ)) = 4|λ(ζ)|2L(u)ϕ(ζ)(Z(ϕ(ζ)); Z(ϕ(ζ))) = 0

proving that the restriction of u to each leaf of F is harmonic. ¤
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4. The generalized Dirichlet problem

Let Ω ⊂ Cn be a domain and let ϕ ∈ C0(∂Ω). The generalized Dirichlet problem on Ω is
the following:

(4.1)





u upper semicontinuous in Ω

u maximal in Psh(Ω)

u|∂Ω = ϕ

Notice that, if the requirement u ∈ Psh(Ω) is changed with u ∈ subh(Ω) then the problem
(4.1) turns out to be equivalent to the classical Dirichlet problem which has a unique solution in
case Ω is bounded with boundary of class C2.

Looking at (1.2), one is tempted to define the following function:

(4.2) MΩ,ϕ(x) = sup{v(x) : v ∈ Psh(Ω), lim sup
Ω3x→p

v(x) ≤ ϕ(p)∀p ∈ ∂Ω}.

The function MΩ,ϕ is called the Perron-Bremermann function for Ω.
As a matter of notation, we say that a point p ∈ ∂Ω is a plurisubharmonic peak point if there

exists an open neighborhood U of Ω and Φp ∈ Psh(U) such that Φp(p) = 0 and Φp(z) < 0 for
all z ∈ Ω \ {p}. If this is the case, we say that the function Φp peaks at p in Ω.

REMARK 4.1. If Ω ⊂ Cn is a strongly convex domain and p ∈ ∂Ω, there exists a real
hyperplane Hp such that Ω ∩ Hp = {p}. Such a hyperplane can be written as Hp = {z ∈
Cn : Re 〈z − p, νp〉 = 0}, for some complex vector νp ∈ Cn. Up to replace νp with −νp, the
strong convexity of Ω implies that Re 〈z − p, νp〉 < 0 for all z ∈ Ω \ {p}. Thus the function
Φp(z) := Re 〈z − p, νp〉 is a pluri(sub)harmonic function which peaks at p in Ω and then each
point of ∂Ω is a plurisubharmonic peak point. In particular each point of the boundary of the
unit ball Bn is a plurisubharmonic peak point. More generally, it is known that if Ω ⊂⊂ Cn

is a strongly pseudoconvex domain, for each p ∈ ∂Ω there exists a holomorphic function fp

(defined in a neighborhood of Ω) such that |fp(p)| = 1 and |fp(z)| < 1 for all z ∈ Ω \ {p}.
The plurisubharmonic function Φp := log |fp| peaks at p in Ω and thus each point of ∂Ω is a
plurisubharmonic peak point.

THEOREM 4.2 (Bremermann-Walsh). Suppose Ω ⊂⊂ Cn has boundary of class C2 and
assume that every p ∈ ∂Ω is a plurisubharmonic peak point. Then the Perron-Bremermann
function MΩ,ϕ is a solution of the generalized Dirichlet problem (4.1). Moreover, MΩ,ϕ ∈
C0(Ω).

PROOF. Let us denote by

PΩ,ϕ := {v ∈ Psh(Ω), lim sup
Ω3x→p

v(x) ≤ ϕ(p)∀p ∈ ∂Ω}.

Let H ∈ harm(Ω) ∩ C0(Ω) be the solution of the classical Dirichlet problem, so that ∆H = 0
in Ω and H|∂Ω = ϕ. By the maximum principle in Corollary I.1.6 applied to v − H , v ≤ H
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in Ω for all v ∈ PΩ,ϕ. This implies that MΩ,ϕ ≤ H in Ω and by (the analogous for plurisub-
harmonic functions of) Proposition I.5.3, its upper semicontinuous regularization (MΩ,ϕ)∗ is
plurisubharmonic in Ω. By the very definition, MΩ,ϕ ≤ (MΩ,ϕ)∗ and (MΩ,ϕ)∗ ≤ F for any
upper semicontinuous F such that MΩ,ϕ ≤ F . Thus (MΩ,ϕ)∗ ≤ H in Ω which implies that
(MΩ,ϕ)∗ ∈ PΩ,ϕ. Thus MΩ,ϕ = (MΩ,ϕ)∗ and then MΩ,ϕ ∈ Psh(Ω).

By construction lim supΩ3x→p MΩ,ϕ(x) ≤ ϕ(p) for all p ∈ ∂Ω. In order to show that
limΩ3z→p MΩ,ϕ(z) = ϕ(z) for all p ∈ ∂Ω, we will prove that, for all p ∈ ∂Ω, ε > 0 there exists
a function uε,p ∈ C0(Ω) ∩ PΩ,ϕ such that uε,p(p) = ϕ(p) − ε. Assuming such a function uε,p

exists, since MΩ,ϕ ≥ up in Ω, it follows that

lim inf
Ω3x→p

MΩ,ϕ(x) ≥ lim inf
Ω3x→p

uε,p(x) = ϕ(p)− ε,

and thus, by the arbitrariness of ε, lim infΩ3x→p MΩ,ϕ(x) ≥ ϕ(p) showing that MΩ,ϕ is contin-
uous at p and MΩ,ϕ(p) = ϕ(p). The function uε,p can be defined by taking a plurisubharmonic
function Φp which peaks at p in Ω and defining uε,p(z) := cΦp(z) + ϕ(p)− ε for c > 0 chosen
so that uε,p ≤ ϕ on ∂Ω.

To show maximality of MΩ,ϕ, let G ⊂⊂ Ω be a open set and let u ∈ Psh(Ω) be such that
u(z) ≤ MΩ,ϕ(z) for all z ∈ ∂G. Define

v(z) =

{
MΩ,ϕ(z) z ∈ Ω \G

max{u(z),MΩ,ϕ(z)} z ∈ G

By the analogous of Proposition I.5.1, v ∈ Psh(Ω). Moreover, by construction v ∈ PΩ,ϕ. Thus
v ≤ MΩ,ϕ which implies that u ≤ MΩ,ϕ in G, proving maximality of MΩ,ϕ.

It remains to prove that MΩ,ϕ is continuous. We already know that it is upper semicontin-
uous, so it is enough to prove that it is lower semicontinuous. To this aim, we define a new
function as follows. Fix ε > 0. Let y ∈ Cn be such that ‖y‖ < δ (with δ = δ(ε) > 0 small to be
chosen later) and let

uy(z) :=

{
max{MΩ,ϕ(z),MΩ,ϕ(z + y)− ε} z ∈ Ω ∩ (Ω− y)

MΩ,ϕ(z) z ∈ Ω \ (Ω− y)

If we can show that uy ∈ PΩ,ϕ then uy ≤ MΩ,ϕ in Ω, proving that for ‖z − w‖ < δ then

MΩ,ϕ(z) ≥ uw−z(z) ≥ MΩ,ϕ(z + w − z)− ε = MΩ,ϕ(w)− ε,

proving that MΩ,ϕ is lower semicontinuous.
Let, as usual, Ωδ := {z ∈ Ω : dist(z, ∂Ω) > δ}. Since Ωδ ⊂ Ω ∩ (−y + Ω), by the

analogous of Proposition I.5.1 for plurisubharmonic functions, uy ∈ Psh(Ωδ). In order to prove
that uy ∈ PΩ,ϕ, it is then enough to prove that, for a suitable choice of δ, uy = MΩ,ϕ on Ω\Ω2δ,
for then uy ∈ Psh(Ω) and limΩ3z→p uy(z) = ϕ(p) for all p ∈ ∂Ω.

If z ∈ Ω \ (Ω − y) then uy(z) = MΩ,ϕ(z) by definition. If z ∈ (Ω ∩ (Ω − y)) \ Ω2δ, let
w ∈ ∂Ω be such that ‖z − w‖ ≤ 2δ. Now, since limΩ3z→p MΩ,ϕ(z) = ϕ(p) for all p ∈ ∂Ω and
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MΩ,ϕ|∂Ω = ϕ is uniformly continuous on ∂Ω, we can choose δ > 0 in such a way that for all
ζ ∈ Ω and η ∈ ∂Ω with ‖ζ − η‖ < 4δ it follows

|MΩ,ϕ(ζ)−MΩ,ϕ(η)| < ε/2.

Since ‖z − w‖ ≤ 2δ and ‖z + y − w‖ ≤ ‖z − w‖+ ‖y‖ ≤ 3δ, hence

|MΩ,ϕ(z)−MΩ,ϕ(w)| < ε/2, |MΩ,ϕ(z + y)−MΩ,ϕ(w)| < ε/2.

Thus

MΩ,ϕ(z) > MΩ,ϕ(w)− ε/2 > MΩ,ϕ(z + y)− ε/2− ε/2 = MΩ,ϕ(z + y)− ε,

as needed. ¤
REMARK 4.3. The Perron-Bremermann function MΩ,ϕ is also the unique solution in the

L∞-class of problem (4.1). However, uniqueness does not follow at once from tools such as
the maximum principle, but it is a particular instance of the so-called comparison principle of
Bedford and Taylor, see Remark 6.7. From the proof of Theorem 4.2 it follows only that MΩ,ϕ is
the maximum among other solutions of (4.1). Indeed, if u is any solution of (4.1) then u ∈ PΩ,ϕ

and therefore u ≤ MΩ,ϕ in Ω.

REMARK 4.4. In [1] Bedford and Taylor proved that if ϕ ∈ C2(∂Ω) then MΩ,ϕ ∈ C1,1(Ω)
(namely it is C1 with Lipschitz first derivatives) and MΩ,ϕ ∈ W 2,∞(Ω) (that is MΩ,ϕ has weak
second order derivatives which are in L∞loc(Ω)).

REMARK 4.5. It is worth noticing that if Ω ⊂ Cn is a domain for which the generalized
Dirichlet problem (4.1) has a continuous solution for each ϕ ∈ C0(∂Ω) then every point of ∂Ω
is a plurisubharmonic peak point (just solve (4.1) with ϕ(z) = −‖z − p‖ for p ∈ ∂Ω).

5. The complex Monge-Ampère operator on locally bounded plurisubharmonic
functions

The aim of this section is to extend the definition of the complex Monge-Ampère operator
(ddc)n to locally bounded plurisubharmonic functions, according to Bedford and Taylor [1].

First of all, notice that if u ∈ Psh(Ω) ∩ L∞loc(Ω) then u is actually locally bounded (because
it is upper semicontinuous and does not assume the value +∞ be hypothesis).

LEMMA 5.1. Let Ω ⊂ Cn be a domain. Let T =
∑

TJηJ ∈ Dk
0(Ω) (with ηJ smooth k-

forms and TJ Radon measures) and let u ∈ L∞loc(Ω). If ϕ ∈ C0(Ω, Λ2n−k) define aJ
ϕ ∈ C0(Ω)

by means aJ
ϕdV = ϕ ∧ ηJ (with dV the volume form on Cn). The functional uT defined on

C0(Ω, Λ2n−k) as

(5.1) uT (ϕ) :=
∑

J

∫

Ω

(uaJ
ϕ)TJ , ∀ϕ ∈ C0(Ω, Λ2n−k)

is a current of degree k and order 0. In particular, if u ∈ C0(Ω) then uT (ϕ) = T (uϕ) for all
ϕ ∈ C0(Ω, Λ2n−k).
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PROOF. Since u is locally bounded then it is TJ -integrable on the support of any ϕ ∈
C0(Ω, Λ2n−k) for any J . Thus the integrals in (5.1) are well defined and finite. It is then clear
that the definition does not depend on the choice of the decomposition T =

∑
TJηJ and thus

uT is a current of degree k and order 0. ¤

Now we need the following result:

PROPOSITION 5.2. Let Ω ⊂ Cn be a domain. Let T ∈ D(p,p)
∞ (Ω) be a d-closed positive

current. Let u ∈ Psh(Ω) ∩ L∞loc(Ω). Define

(ddcu ∧ T )(ϕ) = ddc(uT )(ϕ) := (uT )(ddcϕ),

for ϕ ∈ C∞
0 (Ω, Λ(n−p−1,n−p−1)). Then ddcu ∧ T is a d-closed positive current of degree (p +

1, p + 1).

PROOF. It is clear that ddcu∧T is a d-closed current of degree (p+1, p+1). We have only
to show positivity. To this aim, let {uε} be the sequence of smooth regularizing plurisubhar-
monic functions given by Theorem III.2.1. Since {uε} pointwisely decreases to u, by Lebesgue
dominated convergence theorem and the very definition (5.1) of uT , it follows that uεT → uT
in the weak∗ topology. Therefore, if we can show that uεT (ddcϕ) ≥ 0 for all ε > 0 and
ϕ ∈ SP n−p−1,n−p−1(Ω), it will follow that uT (ddcϕ) ≥ 0 and thus uT is positive.

Let ϕ ∈ SP n−p−1,n−p−1(Ω). Since uε is smooth, then (ddcuε ∧ T )(ϕ) = T (uεddcϕ). By
hypothesis dT = 0, that is, T (dΦ) = 0 for all Φ ∈ C∞

0 (Ω, Λ2n−2p−1). In particular if we let
Φ := uεd

cϕ we obtain

(5.2) 0 = T (dΦ) = T (d(uεd
cϕ)) = T (duε ∧ dcϕ) + T (uεddcϕ),

while, if we let Φ := dcuε ∧ ϕ we obtain

(5.3) 0 = T (dΦ) = T (d(dcuε ∧ ϕ)) = T (ddcuε ∧ ϕ)− T (dcuε ∧ dϕ).

Moreover, recalling that T is a (p, p)-current and thus T (ψ) = 0 for any (2n− 2p)-form of type
different from (n− p, n− p), it follows that

T (duε ∧ dcϕ) = T ((∂ + ∂)uε ∧ i(∂ − ∂)ϕ) = T (∂uε ∧ i∂ϕ + ∂uε ∧ i∂v)

= T (i(∂ − ∂)uε ∧ (∂ + ∂)ϕ) = −T (dcuε ∧ dϕ)
(5.4)

Putting together (5.2), (5.3), (5.4) we have

(5.5) T (uεddcϕ) = −T (duε ∧ dcϕ) = T (dcuε ∧ dϕ) = T (ddcuε ∧ ϕ).

Now, since uε is plurisubharmonic (and smooth) then ddcuε is a strongly positive (1, 1)-form by
Remark IV.4.17 and then ddcu ∧ ϕ ∈ SP (n−p,n−p)(Ω). But T ≥ 0 by hypothesis and therefore
T (ddcuε ∧ ϕ) ≥ 0, which, by (5.5) implies that T (uεddcϕ) ≥ 0 as needed. ¤

Now we can define the complex Monge-Ampère operator for locally bounded plurisubhar-
monic function by induction as follows.
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Let Ω ⊂ Cn. Let u1, . . . , uk ∈ Psh(Ω) ∩ L∞loc(Ω). By Proposition 5.2 we can define by
induction

(ddcu1 ∧ . . . ∧ ddcuk) := T ∧ ddcuk,

where T = (ddcu1 ∧ . . . ∧ ddcuk−1) is the positive d-closed (k − 1, k − 1)-current defined
inductively on k. More explicitly, for ϕ ∈ C∞

0 (Ω, Λ(n−k,n−k))

(ddcu1 ∧ . . . ∧ ddcuk)(ϕ) := uk(ddcu1 ∧ . . . ∧ ddcuk−1)(ddcϕ).

The functional ddcu1 ∧ . . . ∧ ddcuk is then a d-closed positive (k, k)-current (of order zero).
The previous definition is coherent with the case u1, . . . , uk are C2(Ω). Indeed, for all

ϕ ∈ C∞
0 (Ω, Λ(n−k,n−k)) it follows

(5.6)
∫

Ω

ddcu1 ∧ . . . ∧ ddcuk ∧ ϕ =

∫

Ω

uk(ddcu1 ∧ . . . ∧ ddcuk−1 ∧ ddcϕ)

and thus, in case u1, . . . , uk ∈ C2(Ω) the current ddcu1 ∧ . . . ddcuk defined as before coincides
with the natural current associated to continuous forms. Formula (5.6) can be proved by using
Stokes’ theorem and division into types (see [16, p. 111]).

It is known that the complex Monge-Ampère operator cannot be defined on a generic
plurisubharmonic function. Demailly (see [9]) extended the domain of definition of the com-
plex Monge-Ampère operator to plurisubharmonic functions which are bounded outside com-
pact sets. Other generalization are in Cegrell [8]. Jus recently, Z. Błocki [3] characterized
completely the domain of definition of the complex Monge-Ampère operator.

6. Properties of the complex Monge-Ampère operator

We collect here some basic properties of the Monge-Ampère operator referring the reader
to [1], [2] and [16] for those stated without proof.

THEOREM 6.1 (Chern-Levine-Nirenberg estimate). Let Ω be a domain in Cn and let K ⊂⊂
Ω be a compact set. There exists a constant C = C(Ω, K) > 0 and a compact set H ⊂⊂ Ω\K
such that for all u1, . . . , un ∈ Psh(Ω) ∩ L∞(Ω) it follows

∫

K

ddcu1 ∧ . . . ∧ ddcun ≤ C‖u1‖L∞(H) · · · ‖un‖L∞(H).

Such an estimate can be first proved for plurisubharmonic functions of class C2 and then,
using the next approximation theorem, extended to bounded plurisubharmonic functions.

THEOREM 6.2. Let Ω ⊂ Cn be a domain. For k = 1, . . . ,m ≤ n let {uk,j}j∈N be a
decreasing sequence of plurisubharmonic functions of class L∞loc. Let uk = limj uk,j and assume
that uk ∈ Psh(Ω) ∩ L∞loc(Ω) for k = 1, . . . , m. Then

lim
j→∞

ddcu1,j ∧ . . . ∧ ddcum,j = ddcu1 ∧ . . . ∧ ddcum in D(m,m)
0 (Ω).
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The previous theorem, together with the regularization theorem, allows to pass all alge-
braic properties of the Monge-Ampère operator from C∞-plurisubharmonic functions to locally
bounded ones.

Let Ω ⊂ Cn be a domain and let u ∈ Psh(Ω) ∩ L∞loc(Ω). The (n, n)-current (ddcu)n can be
seen as a Radon measure on Ω, the Monge-Ampère mass of u. We already saw that if u is of
class C2 then u is maximal if and only if its Monge-Ampère mass is zero. The same is true for
less regular functions, and it follows from the following result:

THEOREM 6.3 (Comparison Theorem). Let Ω ⊂⊂ Cn be a domain. Let u, v ∈ Psh(Ω) ∩
L∞(Ω). Suppose that for all p ∈ ∂Ω it holds

lim inf
Ω3z→p

(u(z)− v(z)) ≥ 0.

Then
∫

{u<v}
(ddcv)n ≤

∫

{u<v}
(ddcu)n.

As a consequence we have:

COROLLARY 6.4. Let Ω ⊂ Cn be a domain. Let u ∈ Psh(Ω) ∩ L∞loc(Ω). If (ddcu)n = 0 in
Ω then u is maximal.

PROOF. Let G ⊂⊂ Ω be a connected open set. Let v ∈ Psh(G) be such that lim infz→p[u(z)−
v(z)] ≥ 0 for all p ∈ ∂G. We have to show that v ≤ u in G. First we claim that we can
assume v ∈ L∞(Ω). Indeed, if this is not the case, we can replace v with the plurisubhar-
monic function v′ := max{u|G, v}. The function v′ has the properties that v ≤ v′ in G and
lim infz→p[u(z) − v′(z)] ≥ 0. Moreover, since v is bounded from above in G (by definition of
plurisubharmonic functions and the hypothesis on the behavior near ∂G) and u ∈ L∞(G) then
v′ ∈ L∞(G). Thus if we prove that u ≥ v′ in G then it will follow also that u ≥ v in G. We can
thus assume v ∈ L∞(Ω).

Assume by contradiction that the set {z ∈ G : u(z) < v(z)} is not empty. Let vε,δ(z) :=
v+ε‖z‖2−δ and choose ε > 0, δ > 0 so that vε,δ < v in G. Since the set {z ∈ G : u(z) < v(z)}
is not empty we can choose ε, δ in such a way that the set {z ∈ G : u(z) < vε,δ(z)} is not empty
as well. The set {z ∈ G : u(z) < vε,δ(z)} has positive Lebesgue measure, because otherwise
the plurisubharmonic function max{u|G, vε,δ} would be almost everywhere equal to u|G and
thus by Corollary I.3.2 it would be equal to u|G everywhere in G, implying u ≥ vε,δ in G.

Now we claim that for all w1, w2 ∈ Psh(G) ∩ L∞loc(G)

(6.1) (ddc(w1 + w2))
n ≥ (ddcw1)

n + (ddcw2)
n.
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If w1, w2 ∈ Psh(G) ∩ C2(G) then, taking into account that (ddcw1)
k ∧ (ddcw2)

n−k ≥ 0 for all
k = 0, . . . , n,

(ddc(w1 + w2))
n = (ddcw1)

n + (ddcw2)
n +

n−1∑
j=1

(
n
j

)
(ddcw1)

j ∧ (ddcw2)
n−j

≥ (ddcw1)
n + (ddcw2)

n.

Formula (6.1) for general w1, w2 ∈ Psh(G) ∩ L∞loc(G) follows now from Theorem 6.2 by ap-
proximating w1, w2 with decreasing sequences of smooth plurisubharmonic functions.

From (6.1) and Theorem 6.3 we have
∫

{u|G<vε,δ}
(ddcv)n +

∫

{u|G<vε,δ}
(ddc(ε‖z‖2 − δ))n ≤

∫

{u|G<vε,δ}
(ddcvε,δ)

n

≤
∫

{u|G<vε,δ}
(ddcu)n = 0.

But (ddcv)n ≥ 0 and (ddc(ε‖z‖2 − δ))n = 4nεnn!dV , thus
∫

{u|G<vε,δ}
(ddcv)n +

∫

{u|G<vε,δ}
(ddc(ε‖z‖2 − δ))n ≥ 4nεnn!

∫

{u|G<vε,δ}
dV > 0,

giving a contradiction. ¤

REMARK 6.5. An argument similar to that used in the proof of Corollary 6.4 shows that if
Ω is a bounded domain, u, v ∈ Psh(Ω) ∩ L∞(Ω) are such that u = v on ∂Ω and (ddcu)n =
(ddcv)n = 0 in Ω then u ≡ v in Ω.

To end up the discussion about the complex Monge-Ampère operator, we state the following
very deep result of Bedford and Taylor:

THEOREM 6.6. Let Ω ⊂ Cn be a domain. Let u ∈ Psh(Ω) ∩ L∞loc(Ω). Then u is maximal if
and only if (ddcu)n = 0 in Ω.

One implication of this theorem is contained in Corollary 6.4. For the other implication,
namely if u is maximal then (ddcu)n = 0, the hard part is to show that the Perron-Bremermann
function MB,ϕ for the ball B satisfies the Monge-Ampère equation (ddcMB,ϕ)n = 0 in B (apart
the original source, see, e.g., [16, Theorem 4.4.1]).

REMARK 6.7. Theorem 6.6 and Remark 6.5 imply that the Perron-Bremermann solution
MΩ,ϕ is the unique solution of the generalized Dirichlet problem (4.1) in the class L∞loc(Ω). It
also satisfies (ddcMΩ,ϕ)n = 0.
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7. The pluricomplex Green function for bounded domains

One of the main object in classical potential theory is the Green function. Such a func-
tion (and its normal derivative, the Poisson kernel) allows to reproduce smooth functions and
harmonic functions (see, e.g., [9], [16]). To be more concrete, in the unit disc D ⊂ C let

(7.1) GD(z, ζ) := log |Tz(ζ)|
where Tz(ζ) := (z − ζ)(1 − zζ)−1 is an automorphism of D which maps ζ to O and such that
T 2 = id. Then GD : D× D→ [−∞, 0] enjoys the following properties:

(1) GD is of class C∞ in D× D \ DiagD, where DiagD = {(z, ζ) ∈ D× D : z = ζ}.
(2) GD(ζ, z) = GD(z, ζ) for all ζ, z ∈ D.
(3) GD(ζ, z) < 0 in D× D and GD(ζ, z) = 0 on ∂D× D.
(4) D 3 ζ 7→ GD(ζ, z) is harmonic in D \ {z} for all fixed z ∈ D.
(5) D 3 ζ 7→ (GD(ζ, z)− log |z − ζ|) = O(1) for all fixed z ∈ D.

It can be shown (see, e.g. [9, Theorem 4.3]) that for all ϕ ∈ C∞
0 (D) it follows

ϕ(z) =
1

2π

∫

D
GD(ζ, z)∆ϕ(ζ)

i

2
dζ ∧ dζ,

namely, ∆ζGD(ζ, z) = 2πδz in Dis∞(D).
As we already saw, in several variables the notion of harmonic functions is not invariant by

biholomorphisms, thus when working in higher complex dimensions, one is tempted to define
and study “pluricomplex Green functions”.

DEFINITION 7.1. Let Ω ⊂ Cn be a domain and let x ∈ Ω. The (Klimek) pluricomplex
Green function of Ω with logarithmic pole at x is defined as

KΩ,x(z) := sup{u(z) : u ∈ Psh(Ω), u < 0, lim sup
z→x

(u(z)− log ‖z − x‖) < +∞}

with the convention that sup ∅ = −∞.

We state here some properties of the pluricomplex Green function:

PROPOSITION 7.2. Let Ω, Ω′ ⊂ Cn be domains and let x ∈ Ω.
(1) If Ω ⊂ Ω′ then KΩ,x(z) ≥ KΩ′,x(z) for all z ∈ Ω.
(2) If Ω = B(x, r) then KB(x,r)(z) = log(‖z − x‖/r).
(3) If R > 0 and Ω ⊂ B(x,R) then for all z ∈ Ω it follows

log

(‖z − x‖
R

)
≤ KΩ,x(z).

(4) If r > 0 and B(x, r) ⊂ Ω then for all z ∈ B(x, r) it follows

KΩ,x(z) ≤ log

(‖z − x‖
r

)
.
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(5) If f : Ω → Ω′ is holomorphic then f ∗(KΩ′,f(x)) ≤ KΩ,x. In particular the pluricom-
plex Green function is invariant for biholomorphisms.

(6) If Ω is bounded then KΩ,x is maximal in Ω \ {x} (i.e. it is plurisubharmonic in Ω and
maximal) and (ddcKΩ,x)

n ≡ 0 in Ω \ {x}.

PROOF. Let us denote by

(7.2) KΩ,x = {u ∈ Psh(Ω) : u < 0, u(z)− log ‖z − x‖ ≤ O(1) as z → x}.
Then (1) follows directly from the very definition since every if u ∈ KΩ′,x then its restriction
u|Ω ∈ KΩ,x.

(2) If Ω = B(x, r), let u ∈ KB(x,r),x and let z ∈ B(x, r) \ {x}. Fix v ∈ Cn with ‖v‖ = r and
such that x+ ζ0v = z for some ζ0 ∈ D. Consider the function ũ : D 3 ζ 7→ u(ζv +x)− log |ζ|.
Such a function is subharmonic in D \ {0} and bounded from above in D (since log |ζ| =
log(‖ζv + x− x‖/r) and u has a logarithmic pole at x) thus, by Corollary I.5.5, ũ extends to a
subharmonic function in D. Since lim supζ→q ũ(ζ) ≤ 0 for all q ∈ ∂D by construction, by the
maximum principle ũ ≤ 0 in D. Therefore for all ζ ∈ D it follows u(ζv + x) ≤ log |ζ|, proving
that u(z) ≤ log(‖z − x‖/r). Thus KB(x,r)(z) ≤ log(‖z − x‖/r), but since log(‖z − x‖/r) ∈
KB(x,r),x, then KB(x,r)(z) = log(‖z − x‖/r).

(3) and (4) follow from (1) and (2).
(5) follows from the fact that if u ∈ KΩ′,f(x) then u ◦ f = f ∗(u) ∈ KΩ,x because clearly

f ∗(u) < 0 in Ω and

u(f(z))− log ‖z − x‖ = u(f(z))− log ‖f(z)− f(x)‖+ log
‖f(z)− f(x)‖
‖z − x‖

= u(f(z))− log ‖f(z)− f(x)‖+ O(1).

(6) If Ω is bounded then by (3) the pluricomplex Green function KΩ,x(z) > −∞ for all
z ∈ Ω \ {x}. According to (the analogous for plurisubharmonic functions of) Proposition I.5.3
the upper semicontinuous regularization u := (KΩ,x)

∗ is plurisubharmonic in Ω. We claim that
u ∈ KΩ,x. Indeed, by (4) u has a logarithmic singularity at x. Also, clearly u ≤ 0 in Ω. If
it were u(z) = 0 for some z ∈ Ω, then by the maximum principle u ≡ 0, contradicting the
fact that u has a logarithmic singularity at x. Thus u < 0 in Ω and therefore u ∈ KΩ,x. Hence
u = KΩ,x which is then plurisubharmonic (and strictly negative) in Ω.

To show maximality, let G ⊂⊂ Ω\{x} and let v ∈ Psh(G) be such that lim supG3z→p v(z) ≤
KΩ,x(p) for all p ∈ ∂G. Define

u(z) =

{
max{v(z), KΩ,x}(z) z ∈ G

KΩ,x(z) z ∈ Ω \G

Then u ∈ KΩ,x and by definition u ≤ KΩ,x, proving that KΩ,x is maximal in Ω \ {x}. Finally
notice that by (4) KΩ,x is locally bounded in Ω\{x} and thus Theorem 6.6 implies (ddcKΩ,x)

n ≡
0 in Ω \ {x}. ¤
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Recall that a domain Ω ⊂ Cn is called hyperconvex if there exists ρ ∈ Psh(Ω) ∩ C0(Ω)
such that for all r > 0 the open set {z ∈ Ω : ρ(z) < −r} is relatively compact in Ω.

THEOREM 7.3. Let Ω ⊂ Cn be a bounded hyperconvex domain and let x ∈ Ω. Then the
pluricomplex Green function KΩ,x : Ω → [−∞, 0], extended to be 0 on ∂Ω is plurisubharmonic
and continuous. Moreover, the function Ω× Ω 3 (x, z) 7→ KΩ,x(z) ∈ [−∞, 0] is continuous.

SKETCH OF THE PROOF. First of all we can prove that limΩ3z→p KΩ,x(z) = 0 for all p ∈
∂Ω. To this aim, by hypothesis there exists ρ ∈ Psh(Ω)∩C0(Ω) such that {z ∈ Ω : ρ(z) < −r}
is relatively compact in Ω for all r > 0. Let B(x, r) ⊂ Ω ⊂ Ω ⊂ B(x,R) for some r, R > 0
and define

v(z) =

{
max{Cρ(z), log(‖z − x‖/R)} z ∈ Ω \ B(x, r)

log(‖z − x‖/R) z ∈ B(x, r)

where C > 0 is chosen so that Cρ(z) < log(r/R) on ∂B(x, r). Then v ∈ KΩ,x (the family
defined in (7.2)). Moreover, since ρ(z) → 0 as z → ∂Ω, then v(z) → 0 as z → ∂Ω and since
v ≤ KΩ,x, the same holds for KΩ,x.

In order to show continuity, it is enough to prove that KΩ,x is lower semi-continuous. To
this aim, Demailly (see, [11]) constructs a sequence of continuous {uk} ⊂ KΩ,x such that
KΩ,x = sup uk (and the result follows since the supremum of lower semicontinuous functions
is lower semicontinuous). The rather explicit construction of such a family (which requires the
use of ρ) is omitted.

Finally, to show continuity of KΩ,x(z) with respect to (z, x), one can show that for all a ∈ Ω,
ε > 0 and open neighborhood U of a, there exists an open set V ⊂⊂ U , a ∈ V such that for all
(x, z), (y, z) ∈ V × (Ω \ U) it follows

(7.3) (1 + ε)−1 ≤ KΩ,x(z)

KΩ,y(z)
≤ 1 + ε.

Formula (7.3) implies that KΩ,x(z) is continuous in x locally uniformly in z ∈ Ω outside the
diagonal Diag(Ω × Ω) in Ω × Ω. From this it follows that KΩ,x(z) is continuous in Ω × Ω \
Diag(Ω× Ω). Continuity on the diagonal follows from Proposition 7.2.(4).

Formula (7.3) follows from modification of the pluricomplex Green function, see [11] or
[16, p. 227]. ¤

Some remarks are in order.
(1) According to Demailly [11], every bounded pseudoconvex domain with Lipschitz

boundary is hyperconvex.
(2) Although the pluricomplex Green function KΩ,x(z) (for Ω bounded and hyperconvex)

is continuous in (x, z), it is in general not symmetric in (x, z). Moreover, it can be
proved that it is symmetric in (x, z) if and only if x 7→ KΩ,x(z) is plurisubharmonic
for all z ∈ Ω fixed.

The following characterization of the pluricomplex Green function is due to Demailly:
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THEOREM 7.4. Let Ω ⊂⊂ Cn be a hyperconvex domain and let x ∈ Ω. The pluricomplex
Green function KΩ,x is the unique solution of the problem:

(7.4)





u ∈ Psh(Ω) ∩ L∞loc(Ω \ {x})
(ddcu)n ≡ 0 in Ω \ {x}
u(z)− log ‖z − x‖ = O(1) for z → x

limz→p u(z) = 0 for all p ∈ ∂Ω

PROOF. We already know that KΩ,x(z) is plurisubharmonic in Ω, continuous in z ∈ Ω,
KΩ,x|∂Ω ≡ 0 and (ddcKΩ,x)

n ≡ 0 in Ω \ {x} (see Proposition 7.2 and Theorem 7.3). Moreover,
according to Proposition 7.2.(3) and (4),

KΩ,x(z)− log ‖z − x‖ = O(1) for z → x.

Therefore KΩ,x is a solution of (7.4).
We are left to show uniqueness. Notice that if u is any solution of (7.4) then

(7.5) lim
z→x

u(z)

log ‖z − x‖ = 1.

Let u be a solution of (7.4). Notice that by Corollary 6.4 the function u is maximal in
Ω \ {x}. By the maximum principle, u < 0 in Ω and thus u ∈ KΩ,x (where KΩ,x is the family
defined in (7.2)). Therefore KΩ,x ≥ u in Ω. Seeking for a contradiction we assume that there
exists a ∈ Ω such that u(a) < KΩ,x(a). Thus there exist δ > 0 and 0 < c < 1 such that the set

Eδ,c := {z ∈ Ω : KΩ,x(z) > cu(z) + δ}
is not empty. Since u is upper semicontinuous (and KΩ,x is continuous), the set Eδ,c is open.
We claim that Eδ,c is relatively compact in Ω \ {x}. Assume we proved the claim. Then
KΩ,x(z) ≤ cu(z) + δ in ∂Eδ,c which would imply KΩ,x(z) ≤ cu(z) + δ in Eδ,c by maximality
of u, contradiction.

To prove that Eδ,c is relatively compact in Ω \ {x}, let {zk} ⊂ Eδ,c be such that zk → q ∈
∂Eδ,c. If q ∈ ∂Ω then it would follow that limz→q KΩ,x(z) ≥ δ > 0, a contradiction. If q = x
then KΩ,x(zk) → −∞ by Proposition 7.2.(4). Thus, from KΩ,x(zk) > cu(zk) + δ and (7.5) we
obtain

1 <c
u(zk)

KΩ,x(zk)
+

δ

KΩ,x(zk)

= c
u(zk)

log ‖x− zk‖ ·
log ‖x− zk‖

KΩ,x(zk)
+

δ

KΩ,x(zk)
→ c as k →∞,

from which c ≥ 1 against our choice c < 1. Thus Eδ,c is relatively compact in Ω \ {x} as
claimed. ¤

REMARK 7.5. Demailly [9] extended the definition of (ddc)n to plurisubharmonic functions
which are locally bounded in a domain Ω outside some points (actually he extended such a
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definition to plurisubharmonic functions which are locally bounded outside bigger subsets). For
instance (see, e.g., [16, p. 228-229]) fix x ∈ Ω. If u ∈ Psh(Ω) ∩ L∞loc(Ω \ {x}), one can prove
that the regularizing sequence {uε} of smooth plurisubharmonic functions which pointwise
decreases to u is such that the Monge-Ampére masses (ddcuε)

n converges in the weak∗ topology
of currents to a unique positive Borel measure denoted (ddcu)n (which of course coincides with
the already defined mass (ddcu)n if u is locally bounded near x as well). Also, it can be shown
that (ddcKΩ,x)

n = (2π)nδx, where δx is the Dirac delta.

REMARK 7.6. If one changes the requirement that u(z)− log ‖z− x‖ = O(1) in (7.4) with
another condition of the type u(z)− log(|z1−x1|α1 + . . .+ |zn−xn|αn) = O(1) with

∑
αj = 1

then the previous construction works entirely (changing the type of singularity in x) and gives
a unique solution uΩ,x. Even such a solution satisfies (ddcuΩ,x)

n = (2π)nδx.

In case the domain Ω is strongly convex with smooth boundary, Lempert [17] proved that
KΩ,x(z) is actually C∞(Ω × Ω \ Diag(Ω × Ω)) and that (ddcKΩ,x)

n−1(z) 6= 0 for all z ∈ Ω.
Moreover, the foliation in Ω \ {x} associated to KΩ,x according to Theorem 3.4 is formed by
complex geodesics, namely, any leaf is the image of a biholomorphic map ϕ : D→ D which is
an isometry between the Poincaré distance of D and the Kobayashi distance of Ω.

Demailly [10], [11] used the pluricomplex Green function to prove the following represen-
tation formula

THEOREM 7.7. Let Ω ⊂⊂ Cn be a hyperconvex domain. Let u ∈ Psh(Ω) ∩ C0(Ω). Then
for all z ∈ Ω

u(z) = µz(u)− 1

(2π)n

∫

Ω

|KΩ,z(w)|(ddcu)(w) ∧ (ddcKΩ,z)
n−1(w)

where µz is a suitable positive measure supported on ∂Ω and depending on KΩ,z.

The measure µz, which is called the pluricomplex Poisson kernel, is defined as follows.
For r < 0 let Br = {z ∈ Ω : KΩ,x(z) < r}. This set is relatively compact in Ω. Let
ur(z) = max{KΩ,x(z), r}. The Monge-Ampère mass (ddcur)

n is supported on ∂Br. The
positive Borel measure µz is thus defined as the weak∗ limit of (ddcur)

n as r → 0.
If Ω is a strongly convex domain with smooth boundary, it can be proved [5], [6] that the

pluricomplex Poisson kernel is given by dµz(p) = |PΩ,p(z)|nω∂Ω(p), where p ∈ ∂Ω, ω∂Ω is a
volume form on ∂Ω and PΩ,p ∈ C∞(Ω \ {p})∩C0(Ω) is the solution of the following problem:





u ∈ Psh(D)

(∂∂u)n = 0 in D

u < 0 in D

u(z) = 0 for z ∈ ∂D \ {p}
u(z) ≈ ‖z − p‖−1 as z → p non-tangentially
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8. Invariant distances and the pluricomplex Green function

Recall that the Poincaré distance ω on D is defined as

(8.1) ω(ζ, z) := tanh−1 |Tz(ζ)| = 1

2
log

1 + |Tz(ζ)|
1− |Tz(ζ)| .

where Tz(ζ) := (z− ζ)(1− zζ)−1 is an automorphism of D which maps z to 0. Such a distance
is complete. By (7.1) it follows

GD(z, ζ) = log tanh ω(z, ζ), z, ζ ∈ D
and by Proposition 7.2 (or directly from the Schwarz lemma) it follows that f ∗ω ≤ ω for all
f : D→ D holomorphic.

DEFINITION 8.1. Let Ω ⊂ Cn be a domain. The Carathéodory pseudodistance CΩ : Ω ×
Ω → R+ is defined as

CΩ(z, w) := sup{ω(f(z), f(w)) : f : Ω → D is holomorphic}.
The Lempert function δΩ : Ω× Ω → R+ is defined as

δΩ(z, w) = inf{ω(ζ1, ζ2) : ∃f : D→ Ω holomorphic with f(ζ1) = z, f(ζ2) = w},
with the convention that δΩ(z, w) = +∞ if there do not exist holomorphic functions ϕ : D→ Ω
with ϕ(ζ) = z and ϕ(η) = w.

The Kobayashi distance dΩ : Ω× Ω → R+ is defined as

dΩ(z, w) = inf
m∑

j=1

δΩ(zj, zj+1),

where the infimum is taken over all finite chains of points z1, . . . , zm ∈ Ω such that z1 = z and
zm = w.

Notice that dΩ is the biggest pseudodistance smaller than δΩ. It is not too difficult to see that

CΩ(z, w) ≤ dΩ(z, w) ≤ δΩ(z, w).

Both the Carathéodory and the Kobayashi pseudodistances are continuous, but in general
the induced distance topology is less finer than the euclidean topology of Ω. The topology
induced by the Kobayashi pseudodistance is equivalent to the euclidean topology if and only if
dΩ is a distance (namely, dΩ(z, w) = 0 if and only if z = w). The topology induced by the
Carathéodory pseudodistance is equivalent to the euclidean topology if the inner pseudodistance
associated to CΩ is a distance (the inner pseudodistance Ci

Ω(z, w) is defined to be the infimum of
the CΩ-length of piecewise smooth curves joining z to w. Notice that CΩ ≤ C i

Ω). However, if Ω
is bounded then CΩ induces a topology equivalent to the euclidean one. For all these properties
and much more see [15].

PROPOSITION 8.2. Let Ω ⊂ Cn be a domain. Then for all z, w ∈ Ω

log tanh CΩ(z, w) ≤ KΩ,z(w) ≤ log tanh δΩ(z, w).
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PROOF. Let f : D→ Ω be holomorphic and such that f(ζ) = z, f(η) = w. Then

KΩ,f(ζ)(f(η)) ≤ KD,ζ(η) = log |Tζ(η)|.
Therefore exp(KΩ,f(ζ)(f(η))) ≤ |Tζ(η)| which implies

tanh−1 exp(KΩ,f(ζ)(f(η))) ≤ tanh−1 |Tζ(η)| = ω(ζ, η).

For the arbitrariness of f we obtain tanh−1 exp(KΩ,z(w)) ≤ δΩ(z, w) from which the second
inequality follows.

As for the other inequality, the argument is similar. Let f : Ω → D. Then KΩ,z(w) ≥
KD,f(z)(f(w)) = log |Tf(z)(f(w))|. Arguing as before this implies that tanh−1 exp(KΩ,z(w)) ≥
ω(f(z), f(w)). By arbitrariness of f the first inequality follows. ¤

In [17] Lempert showed that for a convex domain CΩ = dΩ = δΩ and therefore the previous
proposition implies that if Ω is a convex domain then

KΩ,z(w) = log tanh δΩ(z, w) = log tanh dΩ(z, w) = log tanh CΩ(z, w).

In particular in this case the pluricomplex Green function is symmetric.

COROLLARY 8.3. Let Ω ⊂ Cn be a domain and z ∈ Ω. Suppose that Ω 3 w 7→
log tanh δΩ(z, w) is plurisubharmonic. Then

KΩ,z(w) = log tanh δ(z, w) ∀w ∈ Ω.

PROOF. Let u(w) = log tanh δ(z, w). Then u < 0 in Ω and u ∈ Psh(Ω). If we show
that u has a logarithmic singularity at z then u ∈ KΩ,z which implies that u ≤ KΩ,z and
by Proposition 8.2 we have the result. Now let r > 0 be such that B(z, r) ⊂ Ω. Let w ∈
B(z, r) \ {z} and define

ϕ(ζ) := z + ζr
w − z

‖w − z‖
for ζ ∈ D. Clearly ϕ : D → Ω is holomorphic, ϕ(0) = z and ϕ(‖w − z‖/r) = w. Thus by
definition δΩ(z, w) ≤ ω(0, ‖w − z‖/r). Therefore by (8.1)

log tanh δ(z, w) ≤ log tanh ω(0, ‖w − z‖/r) = log ‖z − w‖/r,
as needed. ¤

9. Some further geometrical directions

The works [5] and [6] show that it is possible to define a maximal plurisubharmonic func-
tion in strongly convex domains such that it solves a complex homogeneous Monge-Ampère
equation with a simple pole at the boundary. Such a function is the normal derivative of the
pluricomplex Green function and it is called the pluricomplex Poisson kernel. It is strongly re-
lated to the invariant geometry of the domain because its level sets are horospheres of the domain
(namely, limits of Kobayashi balls) and the associated Monge-Ampère foliation is made of com-
plex geodesics (namely, isometries between the Poincaré metric of the disc and the Kobayashi
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metric of the domain). Roughly speaking, similarly to what have been done for the pluricom-
plex Green function, the pluricomplex Poisson kernel can be characterized as the maximum of
the family

Fp = {u ∈ Psh(Ω) : u < 0, K- lim sup
z→p

u(z)‖z − p‖ < −1},

where K- lim sup means non-tangential limit, Ω is a bounded strongly convex domain in CN

with smooth boundary and p ∈ ∂Ω. However, the proof involves the use of fine properties of
complex geodesics and Lempert’s theory, and such tools are not available in other domains.

Thus, a geometrically relevant problem is to understand whether the family Fp has a max-
imum (and which are its regularity properties) when Ω is not strongly convex, for instance if
Ω is strongly pseudoconvex or weakly convex or hyperconvex. Also, it would be interesting to
know whether the Demailly measure µz introduced in Theorem 7.7 can be expressed in terms
of the maximal element (if any) of the family Fp.
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[14] L. Hörmander, Notions of convexity. Progress in Mathematics, 127. Birkhuser Boston, Inc., Boston,

MA, 1994.
[15] S. Kobayashi, Hyperbolic complex spaces. Springer, Grundlehren der mathematischen Wissenschaften

318.
[16] M. Klimek, Pluripotential Theory. London Math. Soc. Monographs, New Series, Academic Press,

1991.
[17] L. Lempert, La métrique de Kobayashi et la representation des domaines sur la boule. Bull. Soc. Math.

Fr. 109 (1981), 427-474.
[18] W. Rudin, Real and complex analysis, McGraw-Hill, New York, 1974.

69


