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LINEAR FRACTIONAL MAPS OF THE UNIT BALL: A
GEOMETRIC STUDY

CINZIA BISI AND FILIPPO BRACCI†

Abstract. We classify up to conjugation with automorphisms the linear frac-
tional self-maps of the unit ball of Cn (n > 1). Then we give some applications
of these normal forms to the study of composition operators.

1. Introduction

In a recent paper [4] C. Cowen and B. MacCluer introduced a class of holomor-
phic maps of the unit ball Bn into itself which generalize the automorphisms and
can be represented as (n + 1)× (n + 1)-matrices in a Krĕin space. Therefore they
named these maps linear fractional maps of the ball. There are many good reasons
(at least in the opinion of the authors) for studying such maps. First of all they
provide a large class of easy to handle examples of holomorphic self-maps of the
unit ball which are not automorphisms. Secondly, although they present analogies
with the usual linear fractional maps of C, they also have marked differences with
their one-dimensional relatives. Third, they can be used to understand composi-
tion operators on Bn. Finally, they seem to be the maps one expects to find once
fractional linear models of fixed points free holomorphic self-maps of Bn will be
discovered (see [7] for a survey on fractional linear models in the unit disc).

In [4] the focus is on the basic properties of linear fractional maps of Bn obtained
mainly using their matrix representation. Here we adopt a more geometric point of
view. We study the connections between the “normal forms” of a linear fractional
map up to conjugation, the set and the distribution of its fixed points and its
invariant subspaces.

After a brief review of previous results—for some of which we give new proofs
in our setting—we prove the first main fact (Theorem 3.1): if a linear fractional
map has more than two fixed points on ∂Bn then it must have fixed points in
Bn (actually a complex geodesic of fixed points does exist). This is the first step
toward a complete classification of linear fractional maps up to conjugation with
automorphisms of Bn. Indeed, similarly to the classical setting of linear fractional
maps of the unit disc ∆ of C, the main classification depends on the number (and,
in the multidimensional case, the displacement) of the boundary fixed points of the
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map (see Theorem 3.4). In Cn (n > 1) there are basically four classes of linear
fractional maps according to the number of boundary fixed points: those having no
boundary fixed points, only one boundary fixed point, two boundary fixed points or
more than two. For each of these four cases there are different subclasses of maps.
We give a (sub-)classification based on a geometric tool developed by the second
author in [3]. Roughly speaking, we determine the behavior of a map by studying
the behavior of its differential at a fixed point. Hence, given a linear fractional map
f we prove the existence of an automorphism g of Bn such that g−1 ◦ f ◦ g is of a
(in some sense) unique prescribed form—the “normal form” of f—depending only
on the geometry of f . A normal form together with the intertwining automorphism
can also be thought of as a “model” for the map.

Once we have established the existence of normal forms for linear fractional maps,
we give some applications of these forms to the study of composition operators. In
particular we prove that the composition operator stemming from a linear fractional
map is non-cyclic if the map has more than two fixed points in the ball, and it is
hypercyclic if the map has exactly two boundary fixed points and its differential is
injective at some point.

Part of this research was carried out while the authors were at Purdue University.
They are very pleased to thank the Purdue staff for the hospitality and in particular
Professor Cowen and Professor Lempert for some helpful conversations.

The authors would also like to thank the referee for helpful comments which
improved the aspect of the paper.

2. Preliminary Results

Definition 2.1. Let A = (ajk) be an n× n-matrix, B = (bj) an n-column vector,
C = (cj) an n-row vector and d a complex number. A linear fractional map is a
map of the form

(2.1) f(z) :=
Az + B

< z,C > +d

where < ., . > indicates the usual Hermitian product in Cn. The map f is said to
be a linear fractional map of Bn, where Bn := {z ∈ Cn : ||z||2 < 1}, whenever f
is defined on a neighborhood of Bn and f(Bn) ⊆ Bn. By definition, we will also
always assume throughout the paper that f is non-constant.

Any linear fractional map f is associated with a (n + 1) × (n + 1) matrix Mf

given by

(2.2)
(

A B
C d

)

Embed Cn into Cn+1 with z 7→ (z, 1) and consider the standard Hermitian product
of signature (n, 1) given by the matrix

J :=
(

In 0
0 −1

)
.

Namely (z, w) := 〈z, Jw〉. The couple (Cn+1, J) is called a Kreĭn space. In [4],
Cowen and MacCluer prove that a linear fractional map f maps Bn into itself
if and only if Mf is a contraction up to multiples for the Hermitian product of
signature (n, 1) in Cn+1. Due to the words “up to multiples” this condition is



LINEAR FRACTIONAL MAPS 3

unfortunately very difficult to check. For a study of linear fractional maps from the
point of view of Krĕin spaces we refer the reader to [4].

Recall that an m-dimensional affine subset of Bn (or an m-slice) is the intersec-
tion of Bn with an affine m-dimensional subspace of Cn. In [4] it is proven that
a linear fractional map takes m-dimensional affine subspaces into m-dimensional
affine subspaces. A complex geodesic of Bn is a (injective) holomorphic parameter-
ization of a (non-empty) one-dimensional affine subset of Bn. As is customary we
will call a complex geodesic also the image of such a map. In the sequel we will
also say that a complex geodesic G passes through some point x ∈ Bn if x ∈ G.
Moreover we will say that G passes through x with direction v ∈ Cn \ {0} if x ∈ G
and G is parallel to v. In [3] a holomorphic map f : Bn → Bn holomorphic is said
to be rigid if the image under f of any complex geodesic is contained in a complex
geodesic. The cited result by Cowen and MacCluer then implies:

Proposition 2.2. Let f be a linear fractional map of Bn and let D(f) be its domain.
Let G be an m-dimensional affine subspace of Cn. Then f(G

⋂
D(f)) is contained

in an m-dimensional affine subspace of Cn. In particular f is rigid.

For future reference we state here some well-known results about automorphisms
of Bn (a proof can be found e.g. in [1] or [6]):

Theorem 2.3. (1) The group of automorphisms of Bn acts transitively on Bn

and double transitively on ∂Bn.
(2) An automorphism of Bn is a linear fractional map of Bn.

Remark 2.4. Let G be a one-dimensional affine subset of Bn (i.e. the image of a
complex geodesic or, simply, a complex geodesic). Consider the “standard” complex
geodesic ϕ0 : ∆ → Bn defined by

ϕ0 : ζ 7→ (ζ, 0, . . . , 0).

By property 1 of Theorem 2.3 there exists g ∈ Aut(Bn) such that g ◦ ϕ0(∆) = G.
Therefore g ◦ ϕ0 is a complex geodesic whose image is G. If ϕ : ∆ → Bn is
another complex geodesic such that ϕ(∆) = G then ζ 7→ ϕ−1 ◦ g ◦ ϕ0(ζ) is an
automorphism of ∆ and therefore g ◦ϕ0 is “essentially” (i.e. up to automorphisms
of ∆) the only parameterization of G. It follows that if f is a linear fractional
map of Bn such that f(G) ⊆ G1, where G1 is the image of the complex geodesic
ϕ1, then ζ 7→ ϕ−1

1 ◦ f ◦ ϕ(ζ) is a linear fractional map of ∆. In particular if there
exist x, y ∈ ∂G with x 6= y such that f(x) 6= f(y) and f(x), f(y) ∈ ∂G1, then
ζ 7→ ϕ−1

1 ◦ f ◦ ϕ(ζ) is an automorphism of ∆. Sometimes in what follows we shall
refer to this just saying that f acts as an automorphism on G.

Property 2 of Theorem 2.3 allows us to conjugate linear fractional maps with
automorphisms, i.e. if γ ∈ Aut(Bn) and f is linear fractional then γ−1 ◦ f ◦ γ is
a linear fractional map (this follows from a straightforward calculation, or see [4]).
In the sequel we classify linear fractional maps up to conjugation with Aut(Bn) .

We recall now some facts about iteration of holomorphic functions in Bn as well
as their boundary behavior, adapted to the linear fractional setting. For a better
and general exposition we refer the reader to [1] and [3]. As a matter of notation,
for x ∈ ∂Bn we indicate the complex tangent space of ∂Bn at x by TCx (∂Bn), i.e.

TCx (∂Bn) = {z ∈ Cn : 〈z, x〉 = 0}.
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The first and the second parts of the following Theorem are a version of a Julia-
Wolff-Carathéodory Theorem for Bn due to Rudin [6]. For completeness, here we
include their simple proof in our case.

Theorem 2.5. Let g : Bn → Bn be holomorphic.
(1) Suppose g extends holomorphically past x ∈ ∂Bn and g(x) = y, with y ∈

∂Bn. Then dgx(TCx (∂Bn)) ⊆ TCy (∂Bn).
(2) Suppose g extends holomorphically past ∂Bn. If x ∈ ∂Bn and g(x) = x then

〈dgx(x), x〉 > 0.
(3) If g(x) 6= x for all x ∈ Bn then there exists a unique point τ ∈ ∂Bn such

that g(τ) = τ and 〈dgτ (τ), τ〉 = α with 0 < α ≤ 1.

Proof. For the first part it is enough to show that the real tangent space Tx∂Bn is
mapped into Ty∂Bn, since then the assertion follows from dfx being C-linear. Let ρ

be a smooth defining function for Bn near x. If γ : (−1, 1) → Bn is a C1-curve such
that γ((−1, 1) \ {0})) ⊂ Bn, γ(0) = x and γ′(0) ∈ Tx∂Bn, then t 7→ ρ ◦ f ◦ γ(t) has
a maximum at 0 and therefore (ρ ◦ f ◦ γ)′(0) = 0, i.e. dρy(dfx(γ′(0))) = 0, showing
that dfx(γ′(0)) ∈ Ty∂Bn.

For the second part consider η(ζ) := 〈g(ζx), x〉, ζ ∈ ∆. The function η is
a holomorphic self-map of ∆, extending holomorphically past ∂∆ and η(1) = 1.
Since Ψ : ζ 7→ |η(ζ)|2 − 1 is subharmonic and has a maximum at 1, then Hopf’s
Lemma implies that

lim
r→1−

Ψ′(r) > 0.

Namely <e η′(1) > 0. Now

d

dθ
η(eiθ)|θ=0 = iη′(1)

is a basis of T1∂∆, and therefore η′(1) ∈ R. Hence η′(1) > 0. This means that for
any boundary fixed points of f , we get 〈dgx(x), x〉 = α > 0.

If f has no fixed point in Bn, the existence of at least one fixed point for g on
the boundary follows from Brouwer’s Theorem . The fact that there should be at
least one -and only one- with α ≤ 1 is a consequence of iteration theory (see e.g.
[1] or [3]). ¤

Remark 2.6. The first part of Theorem 2.5 is particularly useful whenever f is a
linear fractional map of the ball, x = y and, after conjugation, x = e1. It says that
〈dfe1ej , e1〉 = 0 for j = 2, . . . , n, giving conditions on A,B, C, d.

A well-known result by Alexander (see e.g. [6]) states that the only proper
holomorphic self-maps of Bn (n > 1) are automorphisms. Here, using only Theo-
rem 2.5.2 and the rigidity of linear fractional maps, we characterize the automor-
phisms of Bn as the only proper maps among the linear fractional maps.

Theorem 2.7. Let f be a linear fractional map of Bn (any n). Then f is an
automorphism of Bn if and only if f(∂Bn) ⊆ ∂Bn.

Proof. One direction is obvious. Suppose then that f(∂Bn) ⊆ ∂Bn. We first prove
that if x ∈ Bn and f(x) = x then dfx is injective. Seeking for a contradiction
we assume x ∈ Bn, f(x) = x and dfx is not injective. Namely there exist two
linearly independent vectors v, w ∈ Cn \ {0} such that dfx(w) = dfx(v). If x ∈ ∂Bn

clearly we can assume v, w 6∈ TCx ∂Bn. Up to composing f with an automorphism
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of Bn fixing x, we can also assume that v is an eigenvector for dfx (i.e. using a
terminology to be introduced later, v ∈ A(f) if x ∈ ∂Bn). Let Gv, Gw be the
complex geodesics passing through x with directions v and w, respectively. Let
a ∈ ∂Gv \ {x} and b ∈ ∂Gw \ {x} and let Ga,b be the complex geodesic whose
closure contains a and b. We can assume f(a) 6= f(b), for if not then the restriction
of f to Ga,b would be an automorphism which is not injective on ∂Ga,b. Since f

is rigid and maps a, b on the boundary of Gv then f(Ga,b) ⊆ Gv. Moreover by
hypothesis f(∂Ga,b) ⊆ ∂Gv. Therefore, if ϕv : ∆ → Bn is a complex geodesic
whose image is Gv and ϕa,b : ∆ → Bn is a complex geodesic whose image is Ga,b,
then η ∈ Hol(∆,∆) given by

η : ζ 7→ ϕ−1
v ◦ f ◦ ϕa,b(ζ)

is an automorphism of ∆ (see Remark 2.4). Hence there exists y ∈ ∂Ga,b such
that f(y) = x. Now the complex geodesic Gx,y through x and y is mapped by f
onto another complex geodesic G whose closure contains x. Reasoning as above we
see that f acts on Gx,y to G as an automorphism, but x, y are mapped both to x.
Contradiction. Therefore dfx is injective.

Now we assume f(∂Bn) ⊆ ∂Bn, f(x) = x for some x ∈ ∂Bn and dfx invertible
(the case x ∈ Bn is similar and we omit it). Let v ∈ Cn \TCx ∂Bn. Then there exists
a unique w ∈ Cn such that dfx(w) = v. By Theorem 2.5.2 w 6∈ TCx ∂Bn. Therefore
by Proposition 2.2 f maps the complex geodesic G1 passing for x and with direction
w to the complex geodesic G2 for x and with direction v. If one parameterizes G1

and G2 with ϕ1 and ϕ2 respectively, then

ζ 7→ ϕ−1
2 ◦ f ◦ ϕ1(ζ)

is a linear fractional map of ∆ which maps ∂∆ into ∂∆, therefore it is an automor-
phism of ∆. In particular this implies that f : G1 → G2 is injective and surjective.
Therefore for any p ∈ Bn there exists a unique q ∈ Bn such that f(q) = p, hence f
is an automorphism of Bn. ¤

Remark 2.8. Reasoning as in the proof of Theorem 2.7 one can show that a linear
fractional map f of Bn is injective if and only if dfx is injective at some—and hence
any—x ∈ Bn. Roughly speaking, this is so because f is determined by knowing
f(x) and dfx at some point x ∈ Bn.

The number α given by Theorem 2.5 part 3, is often referred to as boundary
dilatation coefficient of f at τ . It turns out that it is always an eigenvalue of dfτ

(see Theorem 5.1 in [3]). By Proposition 2.2 an eigenvector of dfτ gives rise to
a one-dimensional affine subset of Cn containing τ and fixed (as a set) by f . If
this eigenvector is “pointing toward” the ball, then the intersection of such one-
dimensional affine space and the ball itself is fixed (as a set) for f , i.e. f has a
fixed complex geodesic. In [3] a tool has been developed to make precise the ideas
described above. Here we recall the main definitions and properties, adapted to
our needs:

Definition 2.9. Let f be a linear fractional map of Bn.

(1) A complex geodesic ϕ : ∆ → Bn is said to be a cut complex geodesic for f
if f(ϕ(∆)) ⊆ ϕ(∆).

(2) The set of fixed points of f is Fix(f) := {x ∈ Bn : f(x) = x}.
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(3) If Fix(f) = ∅ and τ is the point given by Theorem 2.5 part 3, then τ is called
the Wolff point of f . The number 0 < α ≤ 1 is the boundary dilatation
coefficient of f at τ .

In the following Theorem we collect the results we need from [3].

Theorem 2.10. Let f be a linear fractional map, Fix(f) = ∅, x ∈ ∂Bn the Wolff
point of f and let α be the boundary dilatation coefficient of f at x. Then α is an
eigenvalue of dfx. Moreover if dfx(v) = λv and 〈v, x〉 6= 0, then λ = α. Let

A(f) := span{v ∈ Cn : dfx(v) = αv, 〈v, x〉 6= 0},
and

AG(f) :=
∞⋃

j=1

ker(dfx − αI)j .

The spaces A(f) and AG(f) are called the inner space and the generalized inner
space of f respectively. Then

(1) The point x belongs to the closure of any cut complex geodesic of f .
(2) Let ϕ : ∆ → Bn be a complex geodesic such that ϕ extends C1 up to the

boundary, ϕ(1) = x and ϕ′(1) = v. Then ϕ(∆) is a cut complex geodesic
for f if and only if v ∈ A(f).

Remark 2.11. As a consequence of Theorem 2.10 we have that AG(f) is invariant
for dfx and by Proposition 2.2 it follows that f maps Bn

⋂
(AG(f) + x) into itself.

Moreover, as explained in Theorem 5.3 of [3], there is a dfx-invariant decomposition
of Cn = AG(f)

⊕
Vf such that Vf ⊆ TCx (∂Bn). Therefore Bn

⋂
(AG(f) + x) is the

maximum (maybe proper) invariant set of f in the ball. Any other invariant set of
f is obtained as Bn

⋂
(W + x) for W ⊂ AG(f) and dfx(W ) ⊆ W . This answers a

question raised at the end of section 4 of [4].

3. Fixed Points of Linear Fractional Maps of the Ball

In this section we generalize a result of Hayden and Suffridge [5] (see also [6])
on Aut(Bn) to linear fractional maps of Bn. Our proof seems to be new also for the
case of automorphisms of Bn.

Theorem 3.1. Let f be a linear fractional map of Bn. If f has more than two
fixed points on ∂Bn then f has fixed points in Bn.

Proof. Suppose that f has three fixed points on ∂Bn. Up to conjugation we can
suppose f(e1) = e1, f(−e1) = −e1. Theorem 2.5 implies then < dfe1(ej), e1 >= 0
and < df−e1(ej), e1 >= 0 for j = 2, . . . , n. Recall that f is of the form (2.1). Writing
down all these conditions we have bj = aj1 = 0, cj = a1j = 0 for j = 2, . . . , n, and
a := a11 = d, b := b1 = c1. In other words

(3.1) f(z) =
(az1 + b, A1z

′)
bz1 + a

,

where A1 is a (n− 1)× (n− 1) matrix and z′ = (z2, . . . , zn) as usual. Therefore f
fixes Ce1 (as a set). Now η(ζ) := f1(ζ, 0, . . . , 0) is a linear fractional map of C with
the properties that η(∆) ⊆ ∆ and η(±1) = ±1. Using the conformality of linear
fractional maps of C is then easy to see that η has to be an automorphism of ∆ or
the identity. Namely a = cosh t, b = sinh t, for t ∈ R (t = 0 if and only if η is the
identity). Suppose now that f fixes the point v = (v1, . . . , vn) different from ±e1.
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Since v ∈ Bn and v 6= ±e1, then v1 6= ±1. Hence f(v) = v implies f1(v) = v1. But
f1 depends only on z1, and then η(v1) = v1. By the Schwarz lemma η(ζ) = ζ and
hence f fixes (z1, 0, . . . , 0) for any z1. So f has fixed points in Bn as wanted. ¤

Remark 3.2. The proof of Theorem 3.1 says actually that if f has more than two
boundary fixed points then it has a whole complex geodesic of fixed points.

We want to give now a classification theorem of linear fractional maps based on
their fixed point sets. Before that we need some definitions:

Definition 3.3. Let

P0 := spanC {x ∈ ∂Bn : f(x) = x}
and p0 := dimCP0. If p0 > 0 and f(x0) = x0, x0 ∈ ∂Bn, let

P1 := spanC {x− x0 : f(x) = x, x ∈ ∂Bn}
and p1 := dimCP1. Finally, let

PR1 := spanR {x− x0 : f(x) = x, x ∈ ∂Bn}
and pR1 := dimRPR1 .

Theorem 3.4. Let f be a linear fractional map of Bn. One and only one of the
following cases is possible:

(1) p0 = 0 if and only if f has only one (isolated) fixed point in Bnand no fixed
points on ∂Bn.

(2) p0 > 0 if and only if f has at least one fixed point on the boundary. In this
case:
(i) p1 = 0 if and only if f has only one fixed point on the boundary.

In this case it is the unique fixed point of f in Bn if and only if the
boundary dilatation coefficient of f at that point is less than or equal
to 1. Otherwise f has also an isolated fixed point inside Bn.

(ii) p1 = 1 if and only if one (and only one) of the two holds:
(a) pR1 = 1, f has only two fixed points on ∂Bn, and f is conjugate

to a map which has a hyperbolic automorphism (different from
the identity) as first coordinate, i.e. f is conjugate to a map of
the form

z 7→ (
az1 + b

bz1 + a
,

A1z
′

bz1 + a
),

where a = cosh t, b = sinh t with t ∈ R − {0} and A1 is a
(n− 1)× (n− 1) matrix with ‖A1‖ ≤ 1.

(b) pR1 = 2, f is conjugate to a map of the form

z 7→ (z1, A1z
′),

where A1 is a (n− 1)× (n− 1) matrix with ‖A1‖ ≤ 1.
(iii) p1 > 1 if and only if f is conjugate to a map of the form

z 7→ (z1, . . . , zp1 , Ap1z
(p1)),

where Ap1 is an (n− p1− 1)× (n− p1− 1) matrix with ‖Ap1‖ ≤ 1 and
z(p1) = (zp1+1, . . . , zn).
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Proof. Suppose p0 = 0 and f fixes two different points x, y ∈ Bn. Since f is rigid,
then f fixes (as a set) the complex geodesic G passing through x and y. Therefore f
restricted to G is a self-map of the unit disc with two fixed points. By the Schwarz
Lemma it has to be the identity and so f(z) = z for all z belonging to G. In
particular f fixes all the points on ∂Bn

⋂
G, contradicting p0 = 0.

Suppose now p0 > 0. Then it is clear that this is possible if and only if f has
some boundary fixed points. Let p1 = 0. Therefore f has only one fixed point
x ∈ ∂Bn. Let α be the boundary dilatation coefficient of f at x. If f has no other
fixed points in Bn then x is the Wolff point of f and α ≤ 1 (by Theorem 2.5 part
3). If f has another fixed point y ∈ Bn, then reasoning as before it is easy to see
that y is the only fixed point of f in Bn. Now, since f is rigid, f fixes (as a set)
the complex geodesic for x and y, and in particular f restricted to such a geodesic
is a self-map of the unit disc. Therefore its boundary dilatation coefficient is > 1
by the classical Julia’s lemma.

Let p1 = 1. In the proof of Theorem 3.1 it is shown that f has exactly two
boundary fixed points if and only if f is conjugate to a map of the form (3.1) with
t 6= 0. It is clear that the condition ”f has exactly two boundary fixed points” is
equivalent to pR1 = 1. Also pR1 > 1 if and only if f has more than two boundary
fixed points. Again looking at the proof of Theorem 3.1, this turns out to be
equivalent to f being conjugate to a map of the form (3.1) with t = 0.

For the case p1 > 1, we reason as follow. We have already shown that (up to
conjugation) f1(z) = z1 and f ′(z) = A1z

′. Suppose p1 = 2. Therefore there must be
a vector v ∈ ∂Bn such that f(v) = v and v 6= eiθe1 for any θ ∈ R. Hence A1v

′ = v′

and f fixes (0, ζv′) for ζ ∈ ∆. Conjugating f with a unitary transformation fixing
e1, we can suppose that (0, v′) = e2 and f has the form z 7→ (z1, z2, A2z

′′). If
p1 > 2, reasoning similarly, after a finite number of steps we get the claimed form.

For ending the proof we have to show that the matrices A1 in the cases (ii) (a)
and (b) and Ap1 in the case (iii) are contractions. This follows easily by setting up
the condition f(Bn) ⊆ Bn and using the identity a2 − b2 = 1. ¤

In the next two sections we provide further classifications for the cases 1 and
2(i) of Theorem 3.4.

4. Linear fractional maps with a unique fixed point on the boundary
and non-trivial inner space.

In this section we study linear fractional maps with no fixed points in Bn and at
least one cut complex geodesic. Before that we briefly recall the one-dimensional
classification (see e.g. [7]);

Proposition 4.1. Let γ : ∆ → ∆ be a linear fractional map (not the identity) that
fixes 1. Then

(i) γ is called of hyperbolic type if γ′(1) < 1. In this case γ is an automorphism
of ∆ if and only if there exists x ∈ ∂∆ such that x 6= 1 and γ(x) = x. This
is also the case if and only if there is a point -and hence any- x ∈ ∂∆−{1}
such that γ(x) ∈ ∂∆.

(ii) γ is called of parabolic type if γ′(1) = 1. In this case γ is an automorphism
of ∆ if and only if there is a point—and hence any—x ∈ ∂∆ − {1} such
that γ(x) ∈ ∂∆. This is also the case if and only if <e(γ′′(1)) = 0.
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(iii) γ is called of dilation type if γ′(1) > 1. This happens if and only if γ has
a fixed point in ∆.

Remark 4.2. Let f : Bn → Bn be a linear fractional map with a unique fixed point
on ∂Bn that, up to conjugation, we can suppose to be e1. Moreover suppose that
f has at least one cut complex geodesic ( i.e. dimA(f) ≥ 1). Again, conjugating f
if necessary, we can suppose that one of the cut complex geodesics is the standard
geodesic ϕ0 : ζ 7→ (ζ, 0, . . . , 0) for ζ ∈ ∆. The holomorphic self-map η of ∆ defined
as

η : ζ 7→ ϕ−1
0 ◦ f ◦ ϕ0(ζ) = f1(ζ, 0, . . . , 0),

is a linear fractional map with 1 as unique fixed point (see Remark 2.4). Therefore
according to Proposition 4.1 η could be a (non-automorphism) map of hyperbolic
type or a (non-automorphism) map of parabolic type or an automorphism (neces-
sary a parabolic one). Simple geometric considerations (or see [3]) show that

α := η′(1) = 〈dfe1e1, e1〉,
is invariant under conjugation. Therefore the boundary dilatation coefficient α
controls if f restricted to one—and hence any—cut complex geodesic is of (non-
automorphism) hyperbolic type (the independence of the cut complex geodesic
follows from Theorem 2.10).

Suppose now that f is as in Remark 4.2 and moreover that α = 1. We want to
show that if f is an automorphism (of parabolic type) restricted to a cut complex
geodesic then it is so when restricted to any other cut complex geodesics. After
that we can give a well-posed classification based on the behavior of f on a cut
complex geodesic.

The linear fractional map f has the form given by equation (2.1). After conju-
gation f fixes e1 and dfe1e1 = e1 (since f has Ce1 ∩Bn as a cut complex geodesic).
Setting up these conditions and those given by Theorem 2.5 we get information on
the matrix A and the vectors B, C and d. Namely:

(4.1)

{
bj = aj1 = 0 for j = 2, . . . , n.

a1j = cj for j = 2, . . . , n

Lemma 4.3. Let f be a linear fractional map of Bn such that f(e1) = e1, dfe1e1 =
e1 and dimA(f) = k, for 1 ≤ k ≤ n. Then there exists a unitary transformation U
such that Ue1 = e1 and A(U∗ ◦ f ◦ U) is spanned by e1, e2, . . . ek.

Proof. If k = 1 there is nothing to prove. Suppose that k > 1. By hypothesis
e1 is an (inner) eigenvector for dfe1 . Reasoning by induction we can suppose that
e2, . . . , ek−1 belong to A(f). Since dimA(f) = k there exists v ∈ Cn such that

v 6=
k−1∑

j=1

λjej ,

with λj ∈ C for j = 2, . . . , k − 1 and dfe1v = v. Hence

u := v −
k−1∑

j=1

〈v, ej〉ej



10 C. BISI, F. BRACCI

is still an eigenvector for dfe1 with eigenvalue 1. Moreover u belongs to the orthogo-
nal complement of ⊕j=1,...,k−1Cej . Therefore there exists a unitary transformation
U given by

U :=
(

Ik−1 0
0 Tk

)

where Ik−1 is the identity matrix on Ck−1 and Tk is a unitary transformation of
Cn−k+1, such that Uek = u/‖u‖. Notice that also Uej = ej for j = 1, . . . , k−1. ¤

Lemma 4.4. Let f be a linear fractional map of Bn such that f(e1) = e1, dfe1e1 =
e1 and dimA(f) = k, for 2 ≤ k ≤ n. If the restriction of f to Ce1∩Bn is a parabolic
automorphism then c2 = · · · = ck = 0.

Proof. Suppose first that f restricted to Ce1 ∩ Bn is a parabolic automorphism.
Using an (hyperbolic) automorphism of the form

(z1, . . . , zn) 7→ (cosh sz1 + sinh s, z2, . . . , zn)
sinh sz1 + cosh s

for s ∈ R, we can conjugate f to a map such that

f1(z1, 0, . . . , 0) =
(1 + it)z1 + it

−itz1 + 1 + it
,

for some t ∈ R− {0}. Now by Lemma 4.3 we can suppose that A(f) is spanned by
{e1, . . . , ek} (this is compatible with the previous operation since it leaves fixed the
first component restricted to Ce1). Hence:

dfe1 =




1 0 · · · 0 0 0
0 Ik−2 0 ∗ · · · ∗
0 · · · 1 ak,k+1

c+d · · · ak,n

c+d

0 · · · 0 ak+1,k+1
c+d · · · ak+1,n

c+d
...

...
...

...
...

...
0 · · · 0 an,k+1

c+d · · · an,n

c+d




and

f1(z1, . . . , zn) =
(1− it)z1 + c2z2 + · · ·+ cnzn + it

(−it)z1 + c2z2 + · · · cnzn + (1 + it)

f2(z1, . . . , zn) =
z2 + a2,k+1zk+1 + · · ·+ a2nzn

(−it)z1 + c2z2 + · · ·+ cnzn + (1 + it)
· · ·

fk(z1, . . . , zn) =
zk + ak,k+1zk+1 + · · ·+ aknzn

(−it)z1 + c2z2 + · · ·+ cnzn + (1 + it)

fk+1(z1, . . . , zn) =
ak+1,k+1zk+1 + · · ·+ ak+1,nzn

(−it)z1 + c2z2 + · · ·+ cnzn + (1 + it)
· · ·

fn(z1, . . . , zn) =
an,k+1zk+1 + · · ·+ annzn

(−it)z1 + c2z2 + · · ·+ cnzn + (1 + it)
.

Now fix j ∈ {2, . . . , k}. Setting the condition f(ζej) ∈ Bn for ζ ∈ ∆, we find:

−2<e(cjζ) < 1− |ζ|2, ∀ζ ∈ ∆,

which is easily seen to be verified only for cj = 0. ¤
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Theorem 4.5. Let f be a linear fractional map of Bn such that it has a unique
fixed point on ∂Bn and dimA(f) = k ≥ 2. If the restriction of f to a cut complex
geodesic is a parabolic automorphism, then the restriction to any other cut complex
geodesic is also a parabolic automorphism.

Proof. By Lemma 4.3 and Lemma 4.4 we can suppose, up to conjugation, that

f1(z1, . . . , zn) =
(1− it)z1 + ck+1zk+1 + . . . + cnzn + it

(−it)z1 + ck+1zk+1 + · · · cnzn + (1 + it)

f2(z1, . . . , zn) =
z2 + a2,k+1zk+1 + . . . + a2nzn

(−it)z1 + ck+1zk+1 + . . . + cnzn + (1 + it)
· · ·

fk(z1, . . . , zn) =
zk + ak,k+1zk+1 + . . . + aknzn

(−it)z1 + ck+1zk+1 + . . . + cnzn + (1 + it)

fk+1(z1, . . . , zn) =
ak+1,k+1zk+1 + . . . + ak+1,nzn

(−it)z1 + ck+1zk+1 + . . . + cnzn + (1 + it)
· · ·

fn(z1, . . . , zn) =
an,k+1zk+1 + . . . + annzn

(−it)z1 + ck+1zk+1 + . . . + cnzn + (1 + it)
.

(4.2)

Therefore f1(z1, 0, . . . , 0) is a parabolic automorphism of ∆ (since t ∈ R−{0}) and
A(f) is spanned by e1, . . . , ek. Hence any cut complex geodesic is given by

{ζ ∈ C : e1 + ζv ∈ Bn},
for v =

∑k
j=1 λjej with λ1 ∈ C− {0}, λj ∈ C for j = 2, . . . , k and

∑k
j=1 |λj |2 = 1.

Fix such a v. The boundary of the cut complex geodesic Gv with direction v is
given by

{ζ ∈ C : ||e1 + ζv||2 = 1}.
Namely

∂Gv = {ζ : |ζ|2 + 2<e(λ1ζ) = 0}.
Now

f(e1 + ζv) =
(

ζλ1(1− it) + 1
ζλ1(−it) + 1

,
λ2ζ

ζλ1(−it) + 1
, . . . ,

λkζ

ζλ1(−it) + 1
, 0, . . . , 0

)
.

Therefore

f(∂Gv) = {ζ ∈ C : ‖f(e1 + ζv)‖ = 1} = {ζ : |ζ|2 + 2<e(λ1ζ) = 0} = ∂Gv.

This means that f is a parabolic automorphism on Gv as claimed. ¤

Corollary 4.6. Let f be a linear fractional map of Bn with a unique fixed point in
Bn and dimA(f) = n. Then f is a (parabolic) automorphism of Bn if and only if f
restricted to a cut complex geodesic is a parabolic automorphism of such a geodesic.

Now we are in the position to give the following:

Definition 4.7. Let f be a linear fractional map of the unit ball Bn with a unique
fixed point on ∂Bn and dimA(f) ≥ 1. Let G be an arbitrary cut complex geodesic
for f . Then f is said of hyperbolic type if f|G is a hyperbolic linear fractional map
of G, f is said of parabolic automorphism type if f|G is a parabolic automorphism
of G and finally f is said of parabolic non-automorphism type if f|G is a parabolic
non-automorphism of G.
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Note that this definition is well posed by Remark 4.2 and Theorem 4.5. The last
proposition of this section is a multi-dimensional analogue of the second derivative
characterization for parabolic automorphisms of the disc:

Proposition 4.8. Let f be a linear fractional map of Bn with only e1 as a fixed
point in Bn. Suppose that f has non-trivial inner space and boundary dilatation
coefficient 1 (i.e. f is of parabolic type). Then f is of parabolic automorphism type
if and only if for one—and hence for any—unitary vector v ∈ A(f) there holds

(4.3) <e


v1 ·

n∑

j,k,l=1

∂2fl

∂zj∂zk
(e1)vjvkvl


 = 0.

Proof. Let v ∈ A(f) be a unitary vector. Therefore ‖v‖ = 1, v1 6= 0 and dfe1(v) = v.
The map ζ → f(ζv + e1) is well defined for ζ ∈ C such that ‖ζv + e1‖ < 1, i.e. for
ζ ∈ D := {ζ ∈ C||ζ + v1|2 < |v1|2}. The set D is a disc in C of radius |v1| and
center −v1. The affine transformation τ(ζ) := 1

v1
ζ + 1 is such that τ(D) = ∆ and

τ(0) = 1. A simple computation shows that τ−1(ζ) = v1(ζ − 1). Since the complex
geodesic for e1 and v is fixed (as a set) by f , then f(ζv + e1) = f̃(ζ)v + e1 where
f̃(ζ) := 〈f(ζv + e1) − e1, v〉. The condition ‖f(ζv + e1)‖2 < 1 for ζ ∈ D implies
that f̃(ζ) ∈ D, as well. Therefore a well-defined holomorphic map k : ∆ → ∆ is
given by

k(ζ) := τ ◦ f̃ ◦ τ−1(ζ).
By definition k is a linear fractional map of the unit disc, with no fixed points in
∆ and k(1) = 1. Moreover

k′(ζ) =
1
v1
· 〈dfτ−1(ζ)v+e1(v1v), v〉 = 〈dfτ−1(ζ)v+e1(v), v〉.

Hence k′(1) = 〈dfe1(v), v〉 = 〈v, v〉 = 1 and k is of parabolic type. By Proposition
4.1 k is a (parabolic) automorphism if and only if <ek′′(1) = 0. Now a simple
calculation shows that

k′′(1) =
d

dζ |ζ=1

〈dfτ−1(ζ)v+e1(v), v〉 = v1 ·
n∑

j,k,l=1

∂2fl

∂zj∂zk
(e1)vjvkvl.

Therefore equation (4.3) is equivalent to <ek′′(1) = 0. Hence equation (4.3) holds
for a unitary vector v ∈ A(f) if and only if f restricted to the cut complex geodesic
for e1 and v is a parabolic automorphism, and by Theorem 4.5 it must be of this
type on any other cut complex geodesic (and in particular equation (4.3) holds for
any other unitary element in A(f)). ¤

Remark 4.9. If for a vector v ∈ Cn we denote by Hfj(v) the (holomorphic)
Hessian matrix of the component fj of f applied to (v, v), and by Hf(v) the vector
(Hf1(v), . . . ,Hfn(v)), then Proposition 4.8 can be rephrased saying that f is of
parabolic automorphism type if and only if there exists a unitary vector v such that
v1 = <ev1 > 0, dfe1(v) = v and <e〈Hfe1(v), v〉 = 0.

5. Linear Fractional Maps with Trivial Inner Space

In this section we let f be a linear fractional map of the unit ball with e1 its
Wolff point and A(f) = {0}. A simple consequence of f being rigid is that e1 is
the only fixed point of f in Bn.
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Example 5.1. Consider the following family of linear fractional maps indexed by
β ∈ C:

(5.1) ηβ(z) =
((1− β)z1 − sz2 + β, sz1 + z2 − s, z3, · · · , zn)

−βz1 − sz2 + 1 + β

where s2 = 2<eβ 6= 0. A straightforward calculation shows that ηβ(∂Bn) ⊆ ∂Bn

and hence by Theorem 2.7 ηβ is an automorphism of Bn. Moreover ηβ(e1) = e1

and

(5.2) d(ηβ)e1 =




1 0 0
s 1 0
0 0 In−2




Therefore the ηβ ’s are parabolic automorphisms of Bn with Wolff point e1, inner
space A(ηβ) = {0} and generalized inner space AG(ηβ) = Cn.

Now we are going to prove that any linear fractional map with trivial inner space
stems (up to conjugation) from the composition of one element of the family {ηβ}
and a well-behaving map g:

Proposition 5.2. Let f be a linear fractional map of Bn with e1 its Wolff point, α
the boundary dilatation coefficient of f at e1 and A(f) = {0}. Then there exist
T ∈ Aut(Bn) and a parabolic automorphism ηβ of the family (5.1), such that
T−1 ◦ f ◦ T = η−1

β ◦ g, where g is a linear fractional map of Bn with the following
properties:

(1) Fix(g) = ∅.
(2) g(e1) = e1.
(3) dge1(e1) = αe1, and in particular e1 is the Wolff point of g and α is the

boundary dilatation coefficient.
(4) dg|TCe1

∂Bn = dT−1
e1

◦ df|TCe1
∂Bn ◦ dTe1 .

(5) If Cn = W1 ⊕ . . . ⊕Wm is the Jordan decomposition of Cn in irreducible
cyclic dfe1-invariant subspaces, and Wj ⊂ TCe1

∂Bn for j ∈ {2, . . . ,m}, then
Cn = Ce1 ⊕ W̃1 ⊕ . . .⊕ W̃m, with W̃j = dT−1

e1
(Wj) for j ∈ {2, . . . , m} and

W̃1 = dT−1
e1

(W1) ∩ TCe1
∂Bn, is the Jordan decomposition relative to dge1 .

(6) AG(g) = dT−1
e1

(AG(f)).
(7) If Vα(f) := {v ∈ Cn|dfe1(v) = αv}, then A(g) = span{dT−1

e1
(Vα(f)), e1}.

In particular dimA(g) = 1+dimVα(f) = 1 + k, with k ≥ 1 the number of
cyclic irreducible subspaces for the Jordan decomposition of AG(f) relative
to dfe1 .

Proof. Let v ∈ AG(f) ∩ (Cn − TCe1
∂Bn). Then there exists an automorphism Φ

which fixes e1 and such that dΦe1e1 = λv, with λ 6= 0. Up to conjugating f
with Φ we can therefore suppose that e1 ∈ AG(f). By Theorem 2.5 it follows
that dfe1(e1) = αe1 + w, with 〈w, e1〉 = 0. Let r := ‖w‖. There exists a unitary
(n− 1)× (n− 1)-matrix H such that, if we set

U =
(

1 0
0 H

)

then Uw = re2 and, clearly, Ue1 = e1. Therefore up to conjugating f with U we
can suppose dfe1(e1) = αe1 + re2. The double conjugation with U and Φ (in the
right order) will be the automorphism T in the statement. Since it is clear how the
objects involved change passing from f to T−1 ◦f ◦T (or see [3]) we assume for the
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rest of the proof that e1 ∈ AG(f) and dfe1(e1) = αe1+re2 with r > 0 (i.e. we prove
the assertions assuming dTe1 = Id). Let ηβ be a parabolic automorphism of the
family (5.1) such that s := −r/α < 0. Let g := ηβ ◦ f . Then g is a linear fractional
map of the unit ball such that g(e1) = e1 and, looking at d(ηβ)e1—see equation
(5.2)—such that dge1(e1) = αe1. Therefore Ce1 ∩ Bn is a cut complex geodesic for
g. Since we only needed conditions on <eβ for picking up ηβ , we can choose =mβ
in such a way that g(z1, 0, . . . , 0) 6= (z1, 0, . . . , 0) (this is always the case if α < 1).
In this case Fix(g) = ∅. Indeed if there were a fixed point in Bn, then g would be
the identity once restricted to the slice G joining e1 and such a point. But then
the dynamical behavior of g on G would be different to that on Ce1 ∩ Bn, where
the iterates of g form a compactly divergent sequence (see [1]). Therefore e1 is the
Wolff point of g and (by Theorem 2.5) α is its boundary dilatation coefficient. Now
d(ηβ)e1 is the identity on TCe1

∂Bn (see equation (5.2)), and therefore dge1 = dfe1 on
TCe1

∂Bn. Since TCe1
∂Bn is dge1 (and dfe1)-invariant, then all the remaining assertions

follow easily from this. ¤

Remark 5.3. (1) The previous proposition allows a classification of linear frac-
tional maps with trivial inner space based on the classification given in the
previous section for maps with non-trivial inner space. More precisely, let
f , g be as in Proposition 5.2. One says that f is of hyperbolic, parabolic
automorphism or parabolic non-automorphism type according to the type
of g.

(2) Not all the linear fractional map of Bnwith non-trivial inner space give rise
after composition with a ηβ to a linear fractional map of Bn with trivial
inner space. For example, if g is a linear fractional map of Bn with Wolff
point e1 and A(g) has dimension one then η−1

β ◦ g has no chances to have
trivial inner space, for Property 7 of Proposition 5.2 would imply that A(g)
has dimension strictly greater than one.

6. Applications to Composition Operators

In this section we use the previous results to obtain information about the prop-
erties of composition operators whose symbols are linear fractional maps.

Let σ be the rotation-invariant positive Borel measure on ∂Bn for which σ(∂Bn) =
1. We say that a holomorphic map h defined on Bn belongs to the Hardy space
H2(Bn) provided that

sup
0<r<1

∫

∂Bn

|hr|2dσ < ∞,

where hr(z) := h(rz). The space H2(Bn) is a Hilbert space. We refer the reader to
[6] for the properties of Hardy spaces.

The composition operator with symbol f ∈ Hol(Bn,Bn) is the operator Cf on
H2(Bn) defined as

Cf (h) := h ◦ f, for h ∈ H2(Bn).

In general for n > 1 a composition operator is not bounded as an operator from
H2(Bn) into itself. However if f is a linear fractional map then Cowen and MacCluer
showed that Cf : H2(Bn) → H2(Bn) is a bounded operator (see Thm. 19 in [4]).
Before going ahead we need an operative formula for the adjoint of Cf (see [4]).
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Definition 6.1. If f is a linear fractional map of Bn of the form (2.1) then the
adjoint map f∗ is given by

f∗(z) :=
A∗z − C

〈z,−B〉+ d
,

where A∗ is the adjoint matrix of A.

Using the adjoint map we have the following formula for the (Hilbert space)
adjoint of Cf :

Lemma 6.2 (Cowen-MacCluer). If f is a linear fractional map of the form (2.1),
let

h(z) := (〈z, C〉+ d)n,

g(z) :=
1

(〈z,−B〉+ d)n
.

Let Th, Tg be the multiplication operators in H2(Bn) associated to h and g. Then
the adjoint operator C∗f of Cf : H2(Bn) → H2(Bn) is given by:

C∗f := Tg ◦ Cf∗ ◦ T ∗h .

For using the adjoint map with some profit we also need the following:

Lemma 6.3. Let f be a linear fractional map of Bn and let γ ∈ Aut(Bn) . Then
(γ−1 ◦ f ◦ γ)∗ = γ−1 ◦ f∗ ◦ γ.

Proof. It is easy to see that (γ−1 ◦ f ◦ γ)∗ = γ∗ ◦ f∗ ◦ (γ−1)∗. Therefore we only
need γ∗ = γ−1 for γ ∈ Aut(Bn) . This follows from MγMγ∗ = I. ¤

Recall that an operator T : H2(Bn) → H2(Bn) is said to be cyclic if there
exists h ∈ H2(Bn), a cyclic vector for T , such that {p(T )h : p polynomial} is dense
in H2(Bn). Moreover T is called hypercyclic if the set {Tnh : n ∈ N} is dense
in H2(Bn). Our first result is about the (non-)cyclicity of composition operators
whose symbols have more than two fixed points in the closed ball:

Theorem 6.4. Let f be a linear fractional map of the unit ball. If f has more than
two fixed points in Bn then Cf is not cyclic.

Proof. By Theorem 3.4 f is conjugate to a map of the form

(6.1) z 7→ (z1, . . . , zq, Aqz
(q)),

for q > 0. Since conjugation by invertible operators does not affect the cyclicity of
an operator we can assume f to be of the form (6.1). Let

(6.2) Lq := {h ∈ H2(Bn) : h depends only on z1, . . . zq}.
Obviously Lq is a closed subspace of H2(Bn) and Cf (Lq) = Lq. If we prove that
Cf (L⊥q ) ⊆ L⊥q then Cf is not cyclic, for if h is a cyclic vector for Cf then its
projection on Lq must be a cyclic vector for Cf |Lq

, but Cf |Lq
= Id|Lq

. To show
this it is enough to prove that Lq is C∗f -invariant. Now applying Lemma (6.2) we
find C∗f = Cf∗ , where f∗(z) = (z1, . . . , zq, A

∗
qz

(q)). Therefore C∗f (Lq) = Lq, and we
have the assertion. ¤
Remark 6.5. By Lemma 6.3 it follows from the previous proof that if f has more
than two fixed points in Bn then the adjoint operator (Cf )∗ is itself a composition
operator. This again implies that it has at least one eigenvalue and hence Cf cannot
be hypercyclic (see [2]).
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Reasoning as in [2] p.18 one can show that if the symbol f is not injective in
Bn then Cf cannot be cyclic. As we pointed out in Remark 2.8 a linear fractional
map is injective if and only if its differential is invertible everywhere. Keeping this
in mind we can investigate the cyclicity of other kind of linear fractional maps:

Theorem 6.6. Let f be a linear fractional map of Bn with exactly two boundary
fixed points. Then Cf is hypercyclic if and only if df is invertible at one—and hence
any—point of Bn.

Proof. By the previous remark f is injective if and only if df is invertible at one
-and hence any- point. Therefore if df is not invertible somewhere then f is not
cyclic (and hypercyclic). On the other hand suppose df is invertible everywhere,
implying that f is injective (see Remark 2.8). By Theorem 3.4 we can assume that
up to conjugation f has the form

f(z1, z
′) =

(
cosh tz1 + sinh t

sinh tz1 + cosh t
,

A1z
′

sinh tz1 + cosh t

)
,

for t > 0 and ‖A1‖ ≤ 1 (if t < 0 then just change e1 with −e1 in the following
reasoning). It is easy to see that f is injective if and only if A1 is invertible. Let
B := A−1

1 and

g(z1, z
′) :=

(
cosh tz1 − sinh t

− sinh tz1 + cosh t
,

Bz′

− sinh tz1 + cosh t

)
.

Notice that in general g is not a self-map of Bn (it is so if and only if f is a hyperbolic
automorphism, i.e. ‖A1‖ = 1). We want to use the hypercyclicity criterion (see [7]
for a proof). In our case this criterion states: if there exist X,Y two dense subsets
of H2(Bn) and an operator S : Y → Y such that Ck

f → 0 on X, Sk → 0 on Y and
Cf ◦ S = idY then Cf is hypercyclic. Let

Dp := {h holomorphic in Cn : h(p) = 0}.
We set X := De1 , Y := D−e1 and S := Cg. It is clear that De1 is dense in
H2(Bn), for {1 − zk

1 , zk
2 , . . . , zk

n}k∈N are in De1 and then 1, z1 are in its closure.
Similarly D−e1 is dense in H2(Bn). The operator Cg maps D−e1 into itself since
g(−e1) = −e1. Moreover Cf ◦ Cg = idY for f ◦ g(z) = z for z ∈ Bn and Ck

f → 0
on De1 since fk → e1 uniformly on compact subsets of the unit ball. Now we want
to show that also gk → −e1 uniformly on compact subsets of the unit ball, proving
that Ck

g → 0 on D−e1 , which is the last condition for the hypercyclicity criterion.
A straightforward calculation shows that

gk(z) =
(

cosh(2k−1t)z1 − sinh(2k−1t)
cosh(2k−1t)− sinh(2k−1t)z1

,
Bkz′

cosh(2k−1t)− sinh(2k−1t)z1

)

The first component of gk(z) is easily seen going to −1 (also because g1(z) = g1(z1)
is the inverse of f1(z1)). We want to see that the last n − 1 components tend to
zero as k tends to ∞. For |z1|2 + ‖z′‖2 < 1 we have

‖Bkz′‖2
| cosh(2k−1t)− sinh(2k−1t)z1|2 <

‖B‖2k(1− |z1|)2
| cosh(2k−1t)− sinh(2k−1t)z1|2

≤ ‖B‖2k

e2k−1t

2 (1− |z1|)− e−2k−1t
→ 0,

as k →∞. ¤
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Remark 6.7. Let f be a linear fractional map of Bn with exactly two boundary
fixed points and df invertible somewhere. Then Cf is hypercyclic on H2(Bn).
However the closed subspace L1 := {h ∈ H2(Bn) : h depends only on z1} is a
infinite dimensional Cf -invariant space.
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