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1. STATEMENTS OF THEBAUM-BOTT THEOREM AND GENERALIZATIONS

1.1. The Baum-Bott Theorem(s). Let VV be a compact complex manifold, dgi = n, let
v be a holomorphic vector field ol with only isolated singularitiesny, ..., m,. Letl =
(t1,...,1,) Withi; > 0for j =1,...,n. Let|I| =i, + 2iy + ... + ni, be theheightof I.

Forak x k matrix M andj = 1,...,k let ¢;(M) be thej-th symmetric function of the
eigenvalues of\/, i.e, c;(M) = trac&M),...., c,(M) = detM). For a multi-index! =
(i1, ..., 1n) S€ter == (c1)™ -+ (cn)™n.

Let m, be a singularity ofv, i.e, v(m,) = 0. Let{z,...,z2,} be a system of local co-
ordinates on/ defined on an open sét, C V such thatm, € U, andm, = (0,...,0).
Then

0

(1.1) Vo, :;Ai(zl,...,zTL)a—Zi,

T These are notes of a course given by Prof. Daniel Lehmann on December 2001 at UndidRsitna “Tor
Vergata”, supported by Progetto MURST di Rilevante Interesse Nazidiralgrieta geometriche delle variat
reali e complesse
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for some holomorphic functiond;. Note that, sincen, is an isolated singularity, then for any
m € Uy \ {m,} there exists (at least ongyuch that4d;(m) # 0. Moreover we let

Al)"'vAn _D<A177An)
© D(z1,...,2)

Let f : U, — C be holomorphic. Th&rothendieck residues defined as
fdzl/\dzn:| ( —1 >”/ f(zla"'7zn>
= 2l AL dzy,
{ A A, 2V =1) Jp, AAr A,
whereR;,._, is a (real)n-dimensional manifold given b5, = {m € U, : |A1(m)| = ... =
|A,,(m)| = €} for some smalk > 0 (and with some orientation, see [23]).

J = Jac(

1y %n

Definition 1.1.1. We say thav is non-degeneratat m, if J(m,) is invertible.

As usual, ifw is an element of/*™(V,C) andC is an element off,,,(V, C) we denote by
w —~ C the integration of @mn-form representative @b over a smooth representative©f
With these notations we have:

Theorem 1.1.2(Baum-Bott 1970) For any multi-index/ = (i1, . ..,i,) such that|I| = n it
follows

(1.2) ((TV) ~ V] =3 {cz(ﬁiz.ll A i ;Ldzn

A=1 mx

These theorem is due to Chern and Bott (1966) in easenon-degenerate at each of its
singularity.

In general, instead of working with vector fields Bhone might work with one-dimensional
foliations; in such a case however Theorem 1.1.2 does not hold. To see how it changes we need
some notations.

Definition 1.1.3. A one dimensional holomorphic foliatiah is a holomorphic line bundl€
on V' together with a morphism of vector bundles £ — T'V. Thesingularitiesof F are the
pointsp € V such thati(p) = 0.

Note that ifp € V is an isolated singularity of a one-dimensional foliatidn then F is
represented in some open neighborhoébdf p by a vector fieldv : U — TV with an isolated
singularity atp, and then one may define the Grothendieck residue of such a vectow field
at p. Since any other vector field representiAgnearp is given byu - v for some invertible
holomorphic functionu defined onU and the Grothendieck residue ofat p is equal to the
Grothendieck residue af - v for any invertible holomorphic functiom, then one can well-
define the Grothendieck residue Bfat p to be the Grothendieck residue ot p.

For dealing with the case of singular foliations one has to introduce the virtual Blilvcel
and its Chern classes. We recall briefly how these are defined.
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1.1.1. Virtual bundles and their Chern classeket 7 (V') denote the set of isomorphic classes
of complex vector bundles ovi. (7 (V), ®) is a commutative semi-group. We set an equiva-
lence relation oY (V') x 7(V) as follows: (E, F') ~ (E', F') if there exists&7 € 7 (V') such
thatFE e G =F & F' & G. WesetK°(V) = T(V) x T(V)/ ~. There exists a natural
map7 (V) — K°(V) given byE — [(E,0)], and the clas§ E, 0)] is called thestable class of
E. Note that such a map is not injective.

Example 1.1.4.Let T'S? be the (real) tangent bundle to tBedimensional spher§? c R®.
Let N2 be the normal bundle o$? in R3. SinceS? is orientable theVg: ~ S? x R. Then
TS?® Ng2 ~ S? x R* = (S% x R?*) @ Ng= and thugT'S2,0) ~ (S% x R?,0).

Note that inK°(V) the (stable class) aF has inverse given b0, £'). However the stable
class of a trivial bundlé” x C" is not the neutral element of the group unless 0. To avoid
this, one may introduce a new group as follows. Observe first tli&anapf : V. — V7,
for V' a complex manifold, induces a natural mgp: K°(V’) — K°(V). LetV’ = {z} for
some fixed point: € V. Note that a complex vector bundle overs nothing but a complex
vector space and therefore it is uniquely determined up to isomorphism by its dimension. Thus
7({z}) = NandK°({z}) = Z. The mapK°(V) — K°({x}) induced byr — V associates
to every element of (V) its rank, and the mag®({z}) — K°(V) induced by the constant
mapV — x associates to any € N the complex trivial bundle of rank over V. Therefore
there is an injective map — Z — K°(V) and one can defin&®(V) := K°(V)/Z. The exact
sequence

0—Z— K'(V)— K°(V) =0
splits and one can regafd® (1) as a subgroup ak®(V') as well. Ink°(V') the class of a trivial
bundle of any rank ove¥ is the neutral element of the group. More details can be foary,
in [1].

For a complex vector bundle overV letc (E) = 14¢, (E) +...+¢, (E) be thetotal Chern
class ofF; the Whitney formula for the sum of vector bundles states that

C(El D Eg) = C(El) . C(EQ) .

Let Hj (V') be the group (with respect to the product) of invertible element& i) =
@, H'(V) with 1 as term of degree. Thusc : 7 (V) — H; (V) is a semigroup morphism and
naturally extends to a group morphigi? (V) — Hg (V) (and toK°(V) — H(V)) in such a
way that
c(E1)
c(Es)
One can then also define the single Chern classgs; — E») as the2;™" degree term in the
total Chern class (E; — E,) .

We remark that for a complex line bundiethere is only on& priorinon trivial Chern class,
ie,c(L)=1+4c; (L). Therefore in our case
I+ (V)+ ...+ (V)

1+ C1 (;C) .

C(E1 — Eg) =

c(TV —-L)=
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Note thatC is trivial if and only if there exists a (global) non-zero sectionV — £; in such a
caseh o v is a vector field orl/ with zeros at the singularities of andc;(£) = 0 (in terms of
K-theory, TV — £ =TV in K°(V) and thus:(TV — L) = ¢(TV)).

Theorem 1.1.5(Baum-Bott 1970/72)If F is a one-dimensional foliation with only isolated
singularities{m, } then

(1.3) e (TV —-L)n[V] =) [

cr (J)dz N ... Ndzy,
Al As . A,

mx

Observe that one retrieves Theorem 1.1.2 for vector fields in the £asetrivial, since
c(Ly=landsoac(TV — L) =c(TV).

1.2. Generalizations. We now give a more general point of view of the previous statements.

Definition 1.2.1. Let £ be a holomorphic, rank vector bundle ovel/ andv € T'(TV) a
holomorphic vector field of. An actionof v on E is an operator on th€*°-sectiond’(E') of
E into itself,
0,:T'(F) - T(F),

such that:

1. 6, is C-linear.

2. 0 €' (E), o holomorphic=>- 6, (¢) is holomorphic

3. 0,(fo)=f0,(c)+v(f)oforanyf e C> (V).

Example 1.2.2. (1) Any holomorphic vector field € I'(T'V) defines thelLie derivative
actiong, = [v,| : T(TV) - T (TV)onTV.
(2) Supposéd/ C M for some complex manifold/. Then there exists the exact sequence
of vector bundles

(1.4) 0—TV —TM|y > Ny — 0,

whereNy := T'M|,/TV is thenormal bundlgo V in M. Assumev € I'(T'V) is a
holomorphic vector field which extends to a holomorphic vector fietcearV' in M.
Then we have the actiofy, : I'(T'M|y) — (T M|y ) defined byd,(Y) := [3,Y]|v,
whereY is anyC> extension of” in 7M. One can easily show that this action is well-
defined, that is it is independent of the extensibhosen to define it. Note however
thatd, depends on the first jet of the extensian

(3) As in (2). Suppose furthermore thate I'(T'V). Then we can define the action :
I'(Ny) — T'(Ny) as follows. Ifo € T'(Ny) then there existy € T'(TM) so that
7(Y]y) = 0. Thené,(o) := =([5,Y]|y). Sincev € T(TV) one can show that the
action is well-defined once given

Suppose now € I'(T'V) is a holomorphic vector field with isolated zeros, ..., m,, ....
Suppose moreover that an actyof v on a holomorphic, rank vector bundle is given. For
each pointn, we choose an open neighborhodg C V' such thatF|;, is holomorphically
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trivial, and we leto, ..., o, be a holomorphic frame df;, . Moreover we may suppose thj
is the domain of a holomorphic chart with coordinates.., z,, centered inm,. OnU, one can
write v asv = Aia% for some holomorphic functiong;, such that4; (0) = 0 for any: and for
anyz = (2, ..., 2,) # 0 there existg s.t. 4; (z) # 0.

Using the local basi$oy, ..., 0.} one can locally describe the actiénin terms of a matrix
of functionsM =(M}) given by

91} (0’1) = Z MgO'j,
J

the functionsM’, being holomorphic because of the axioms of action.

Theorem 1.2.3.Suppose is a holomorphic vector field with isolated zeros which defines an
action on the holomorphic vector bundie With the previous notation, for any multi-indéx
of heightn, the following formula holds:

_ _ [%] Cr (M) le/\/\dZn

mx

In particular

Proposition 1.2.4.1f v € T'(T'V') is a nowhere zero holomorphic vector field defining an action
on a holomorphic vector bundle thenc; (E) = 0 for any|/| = n.

Going back to Examples 1.2.2.(2) and (3), one has

Proposition 1.2.5.LetV C M andv € I'(T'V)) a nowhere zero holomorphic vector field.
If there exists a holomorphic extensiorof v to a neighborhood of” in M thenc;(Ny) =
ci(TM|y) = 0 for any multi-index of heightn = dimV/,

1.3. General principles for residue theorems.Before giving the actual proof of the state-
ments written so far, we briefly digress to heuristically describe how a residue theorem is
achieved.

Roughly speaking a residue theorem is a localization of a certain characteristic class near
some sets outside which a vanishing theorem holds. More precisely:

I. A characteristic class is usually the obstruction to the existence of a certain intrinsic object
6 onV. Thus one has some clagg) in some cohomology group &f in such a way thap (6)
vanishes ifd exists. Avanishing theoreris thus any statement saying thia certain intrinsic
objectd exists then some classe@) vanish.

Il. It may happen thaf exists outside some closed setC V. Thus¢(f|,_x) = 0, and—
assuming a natural functoriality—we ha¥& (V') > ¢(0) — ¢(f|v_x) = 0 € H*(V —X).
Therefore from the piece of long exact sequence

H(V,V-%) — H* (V) — H* (V- %),

it follows that there exists a naturally defined clag8) € H* (V,V — X) such that(0) —
¢(0).
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If we now suppose to be a compact set admitting a regular neighborhood (for instance if
is a subvariety ofl”) then the Alexander duality giveB* (V,V — X) ~ Hs,_.(X). Thus
H*(V,V —=%) 5 n(@) — Reg¢(0),0,%) € H,, ,(X) and Reé&p(0),0,>) is called the
residueof ¢(0) at ¥ with respect tod. Now if V' is compact the Poincarduality gives an
isomorphismH* (V) ~ Hs,_. (V) sendingy() to P(4(#)). Moreover, ifi : ¥ — V' is the
embedding, the following diagram is commutative:

H (V,V-3%) —  H* (V)

I | I
H2n—* (E) - HZn—* (V)

—

If ¥ = UX,, with the ¥,’s being connected, theH,, .(3) = ®\Ha,—«(X)). Therefore
P(p(8)) =>_,i.Reg¢(0),0, X)), which is theresidue theorem

lll. Finally, one might find an easy expression fgRes»(6), 0, ¥,), which would make
the residue theorem really useful. In the previous sections we saw that for the Baum-Bott-like
theorems the residues are expressed in terms of Grothendieck residues.

2. VANISHING THEOREMS

The aim of this section is to present several vanishing theorems, some of them will be used
later to prove the residue formulas stated in the previous section.

2.1. Holomorphic actions and special connectionsLet V' be an-dimensional complex man-
ifold and E' a holomorphic vector bundle dn. Letv € I'(T'V') be a nowhere zero holomorphic
vector field acting oy asé,, : I'(E) — I'(F).

Definition 2.1.1. We say that a connectidvi for E is aspecial connectiowith respect td@, if

(1) Vis of type(1,0),i.e, Vzo = 0foranyZ € T(T%'V) = I'(TV) ande holomorphic
section ofE.
) V, = 0,.

Note that given an actiof, on E it is always possible to define a special connection with
respect tod, (and this is actually the point where one need® be non-zero). Indeed one
has the natural (partial) connectidrfor £ on 7%V, the (partial) connectiof, for £ on the
subbundle< v > of T'V generated by, and taking any (partial) connectiérf for £ on aC*®
complement”V of < v > in TV one has the special connecti®h:= 0 & 6, & V° for E on
TRV @C=TVeTV =TV & (<v>aT'V) (see [3)).

Theorem 2.1.2.1f I is a multi-index of height. thenc;(V) = 0 for any special connectioWw
with respect td,,.

Before proving this theorem we give a general result for the Bott operator.
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2.1.1. The Bott operator in the Chern-Weyl theoryet E be a rank- complex vector bundle
onV and letVy,...,V, bes + 1 connections fors. Let A, := {(ty,...,t;) € R¥™ : t; >
0,>5_,t; = 1} the standard-simplex. Letp, : V' x A; — V the projection on the first factor

and letE := 77(F) be the pull-back bundle. Note that by definition
E:={(o,(z,t)) € Ex (VxA,):0¢€E,},
and thus one can identifE = E x A,. ThenF is a vector bundle over x A, whose fiber at a

point(m, t) is E,, x {t} = E,,. Thus the sections € I'(E) = I'(E x A,) which are “constant

along the fiberg\,”, i.e,, such that (z,t) = o(x) for some sectiom of E, generatd’(E) as a

C*-module:
pPi(E)=ExAy — E

VX A, T

This means that in order to define a connecfionn E is enough to define it on sections which
are constant along.,. We let

(2.1) (VX) ottty = Y (Vi) x0)m for X e T(TV),
=0

@%5 = 0.
We can now define thBott forme; (Vy, ..., V) integrating along the fiber&, as

2.2) e (Vo, .., V) = (=1)[3] / (D).

As
From the Stokes Theorem one obtains:

Theorem 2.1.3(Bott Formula)

(2.3) der (Vo, ., V) =S (=1) er(Vo, ..., Vi, oo, Vo).

=0
In particular we have two corollaries:

Corollary 2.1.4. The de Rham clags;(V,)] € H?!/(V) is independent of the chosen connec-
tion.

Proof. It follows from (2.3). O
and
Corollary 2.1.5. If the connections/,, ..., V, are special connections fdr with respect to

0, thenc;(V,, ..., V) = 0 for any multi-index! of heightn.

Proof. It is easy to see tha¥ if special as well. Then the result follows from Theorem 2.1.2
and (2.2). O

Instead of proving directly Theorem 2.1.2 we describe a slightly different situation and then
retrieve the vanishing theorem (see Remark 2.2.4).



8 DANIEL LEHMANN

2.2. Complex quasi free actions.Let VV be a complex:-dimensional manifold an&’ a holo-
morphic vector bundle ofv. Let G be a complex Lie group witdim¢ G = r. Let E be a
holomorphic vector bundle ovér and assumé&’ acts holomorphically orE through bundle
morphismsj.e., preserving the vector bundle structure— V. ThereforeGG naturally acts on
V as well. Letg be the Lie algebra afr. We recall that to any: € g is associated a vector field
z overV. The vector fieldr is defined as the infinitesimal generator of the flow dvedefined
forsmallt € Cby ¢, : V. — V, ¢(p) = (exptx)p (Whereexp is the exponential map ).
Vector fields likez are calledundamentalsnd form a subalgebrgof the Lie algebrax (1)
of holomorphic vector fields olr. Let's now consider the diagram

gCx(V)
| s N
0 — by = g TV

wheree,, is the map “evaluation at.”, e, is the composition with the map sendinge g to
T € g, andb,, isits kernel. It is not hard to show thi, is the Lie algebra of the isotropy group
H,, of G atm.

Definition 2.2.1. The action ofG is calledquasi-freeif and only if h,, = 0 for any m or,
equivalently, ifH,, is discrete for eacm.

Any z € g defines an action in the sense of definition 1.2.1. Indeed; fx g; the vector
field z € g C X(V) defines a flow(¢;):cc overV. Similarly z defines a holomorphic vector
field and a flow(®,),cc over E. Therefore any: € g gives rise to the following commutative
diagram of holomorphic maps:

E 2 F
! !
v o2y
We define®, : I' (F) — I'(E) by
O, (0)(m) = %h_o [@_, (0 [¢ (m)])] = lim Dy (0 [ (m)}f — &, [0 (m)]) L,

for o € I'(E) andm € V. One can check th&, satisfies the axioms of action as in defini-
tion 1.2.1.

Moreoverz € g C X(V) is a holomorphic vector field and therefore its Lie derivatfise:
['(TV) — I'(TV) defines an action of overT'V.

From the relation

[z,y] = [z,y] € X(V) foranyz,y € g,

one gets
(2.4) [©4,0y] = O, foranyz,y € g.

Theorem 2.2.2.Supposé&- acts onE and the action is quasi free. Then for any multi-index
of height|/| > n —r, ¢;(E) = 0.
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Remark2.2.3 The estimate does not involve the rankfof Moreover it is relative to Chern
classes with coefficients i@, since we use the Chern-Weyl theory in the proof.

Proof of Theorem 2.2.2Recall the decomposition
T"V@C=TV @ ((TV)=T"V ¢ T"V.

With a slight abuse of notation we denote by the same Igttae subbundle of'°V" gener-
ated by the fundamental vector fields. Note that a (trivial) involutive subbundle of }°V.
By means of an hermitian metric, we can then find'& complementt’ decomposing the
holomorphic tangent bundle d8-°V = g & F and thus

(2.5) ™VeC=ga FoT"V.

Let V be a connection fo¥ of type (1,0). This means tha¥ ;o vanishes whenever <
['(T%') ande € T'(E) is holomorphic. Note that such a connection always exist¥f a
holomorphic vector bundle (see.g, [9]).

We may also assume that; = ©, for anyx € g. This can be done starting from the
decomposition (2.5) similarly to what we did for the existence of special connection for an
action, see the paragraph after Definition 2.1.1.

Let nowk be the curvature form 0¥. Letz, y € g andz, w € T(T%'V'). We claim that

(2.6) k(z,y9) =0, k(z,2)=0, k(z,w)=0.
Recall that forX, Y € T'(T®V @ C),
E(X,)Y)=VxVy = VyVx = Vxy: ['(F) — T'(£).
The first identity of (2.6) is in fact just a transcription of (2.4). For the other two identities we

first observe that it is enough to prove them on holomorphic sectiohs sihce these generate
['(E) as aC**-module, and: is a tensor. Let therefore be a holomorphic section d. Then

k(z,2)(0) =V3z(V.0) =V.(Vz0) = Vg0 =04+ 0+0,
for V is of type(1,0), Vzo = O, (o) is holomorphic andz, z] = 0. For the same reason the
third identity in (2.6) holds, just observing that w] € T'(T*'V).
Let{&,...& M1, ooy My, dZ1, ...dZ, } be alocal basis of the dual @V ® C which respects
the following decomposition:

TRV @ C=g @ F @ TO'V.

By (2.6), in this basis the curvature matix = (K”) is made up of forms belonging to the
ideal generated by, ...,n,_.}. Sincec;(E) = [c; (K)], the theorem follows because any
product of more that — » forms.’s vanishes. O

Remark2.2.4 Suppose a nowhere zero holomorphic vector fieddT'(7TV') together an action
6, on E are given. Then arguing as in the proof of Theorem 2.2.2 substitgtimigh the one-
dimensional vector bundle generated:in 7°V and©, with the given actiord,, one gets
Theorem 2.1.2.

As a corollary we also have:
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Corollary 2.2.5. If v € I'(T'V) is a nowhere zero holomorphic vector field, therl”) = 0 for
|I] = n.

Proof. Let £ = T'V andd, be the action ol'V' given by the Lie derivative action as in Exam-
ple 1.2.2.(1). Then the result follows from Theorem 2.1.2. O

There are two more types of vanishing theorems which we want to discuss in here. The first
is a real counterpart of Theorem 2.2.2 and the second one is a vanishing theorem for the case of
one-dimensional foliations.

2.3. Real quasi free actions.Let V' be arealn-dimensional manifold(z a real Lie group of
dimensionr and £ — V' a complex vector bundle. As before, we suppose thatts through
bundle morphism oveE and such an action is quasi free. This simply means that for any point
m € V, the composite map — g C X (V) == T,V is injective. Again with a slight abuse

of notation we denote by the same letgethe subbundle of the tangent bundl& generated

by the fundamental vector fields. As before one can déipér anyx € g. The operatoB,,

is a derivation of'( E) satisfying:

1.0, isC -linear,
2.0, (fo)=fO,(c)+v(f)oforanyf e C(V),
3. (O, @y] = Oy

Theorem 2.3.1.In the previous hypothesis, the following hold:

a) c; (E) = 0 for any multi-index! such that| > n — r.

b) If G is compact, them; (E) = 0 for any multi-index/ such that 7| > [25*].

As before, we remark that the inequalities do not depend on the rafk afid we consider
Chern classes with real coefficients. In the noncompact case, moreover, the formula is non-
trivial for n < 2r — 2, while in the compact case one hHd¢n — r)/2] < n — 2 for avoiding
triviality.

Proof of Theorem 2.3.1\We follow the same path of the proof in the complex case. We observe
thatg is a trivial integrable subbundle @fl”. We consider a complemehtof g given by some
Riemannian metric oY and thus we can construct a connectidsuch that

Vz =0, foranyz € g.

The formulalo,,0,] = O, assures thak (z,y) = 0 for anyz,y € g, wherek is the
curvature ofV. If now {&1, ...&, m, ..., } € T'(T'V) is a local set of generators, withe g,
andn; € I'(F), and{¢,...&.,n},....,n,_,} is the dual basis, then the curvature form\of
belongs to the ideal generated fy/ }, proving the estimate.

In the case b), compactness@allows one to pick up the Riemmannian metiidefining F’
to beG-invariant. Also we can choosé in such a way that it is & -invariant metric connection
for £, i.e. such thatVh = 0 andg(Vxo) = Vyx(go) forany X € I'(TV), o0 € I'(E) and
g € G. In other words

2.7) XY, Z) = W(VxY,Z) — h(Y,VxZ),
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and
0, (Vy0) = Vg0 +V, (0,0) foranyz € g,y € I'(TV) ando € I' (E) ,
or, which is the same,

(2.8) Vo (Vyo) = Vo +V, (Vo).
From these one hasz,y) = 0 for z € g andy € I'(F') as well, and the statement follows[J

2.4. Holomorphic non-singular foliations. LetV be a complex manifold of dimension Let
L be a holomorphic line bundle ovéf generating a foliatior#= by means of a holomorphic
vector bundle morphisth : £ — TV,

Theorem 2.4.1.1f F has no singularities oY’ thenc; (7'M — L) = 0 for any multi-index/ of
heightn.

Note thatF has no singularities o if and only if & is injective,i.e, h(L) is a one di-
mensional subbundle @fV and the virtual bundl&V — L coincides with the quotient bundle
Vg :=TV/h(L), thenormal bundlgo F.

More generally anon-singular foliatiorf= of dimensiorp onV' is given by a rank holomor-
phic involutive vector subbundIEF C T'V. The bundI€l'F is called thetangent bundle aof .
There exists the exact sequence of (holomorphic) vector bundles:

0—=TF—=TV —Vr 50,
whereVr is a rankn — p vector bundle oV which is called thenormal bundléo F.

Theorem 2.4.2(Bott). If F is a non-singular foliation of dimensiomon V' thenc¢;(V£) = 0
for any multi-index’ of height|I| > (n — p).

Proof. The technique being the same as in the previous vanishing theorems we just sketch the
proof in here. First we write &> decomposition of"°V = TF & H. Then we choose

a connectionV on Vx which is of type(1,0), i.e, Vx(rY) = 0 for X € I'(T*'V) and

7Y holomorphic withY” € I'(T'V'). Moreover we require that for any € I'(TF) and any

Y eI'(TV)

(2.9) Vi (nY) =7 ([X,Y]).

Note thatifrY; = 7Y; thenY; —Y, € T'(TF) and for anyX € I'(TF) it follows [ X, Y] —Y5] €
I'(TF), too (forT'F is involutive). Thusr([X, Y1]) = 7([X, Y2]) andV is well defined.
In the splitting7T™®V @ C = TF & H & T%! the curvaturé: of V satisfies:

(2.10) k(xq1,29) = 0foranyxy,zo € T (TF),
(2.11) k(z,z) =0foranyz € T (T'F) andz € I' (T"'V) ,
(2.12) k(z1,20) = 0foranyz,z € I (T"'V) .

The first comes from (2.9) and the Jacobi identity. As for the second, one can show it holds for
holomorphic sections 0P+ using (2.9), the typéd,0) property ofV, and the fact thatz, |
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vanishes forr € T'(T°V) andz € T'(T%'V). The third comes from the “typd, 0)"-property
of V, using holomorphic sections ®f-.

Let {},...,2}, 4}, .. Yp_p: 21, ... 2, } be a basis of 7V ® C)* which respects the decompo-
sitionT*V @ C = TF @ H @ T%'. By (2.10), in such a basis the matrix bfis made up of
forms which belong to the ideal generated{ly}. Thus the theorem follows. g

3. EXISTENCE OFRESIDUES

In this section we are going to use the previous vanishing theorems in order to localize char-
acteristic classes.

Let V be an-dimensional complex manifold, |éf be a rank- holomorphic vector bundle
onV andv € I'(TV) a holomorphic vector field with isolated zerds= {m,,...,m,,...}.
Suppose acts onE|y _y, in the sense of definition 1.2.1 as

0, :T (Ely_s) — T (Ely_s).

3.1. The Mayer-Vietoris complex. LetU, := V —3 and letU; C V be an open neighborhood
of X. Denote by := {Uy, U, }. Finally letUy;, := Uy N Uj.

Consider the Mayer-Vietoris compleX V*(U/) (a two-open set€ech-de Rham complex
in the terminology of [23]). Indicating by}, (U) the vector space of (complex) differential
forms of degree: defined on the open sét C V recall that the complex/V*(i/) is defined as

MV*(U) = Qpp(Us) ® Qpp(Uh) ® Qpx (Un),
D(Oéo, aq, Oém) = (dOéo, dOél, —dOé(]l + a1 — Oéo).

The natural map : Q5,,(V) — MV*(U) given bya — (a|y,, @|v,,0) issuch thatod = Doi
and induces an isomorphism in cohomology (which is also an isomorphism at the level of
algebras).

We denote by\/V*(V, V' — %) the sub-complex of/V*(U) given by elements of the form
(0, a1, agy ), called therelative Cech-de Rham complex

The advantage of using the relative Mayer-Vietoris complex is that the morpligmi/) —
Q5p(V — X) is surjective with kernel given exactly by/V*(V,V — ), whereas the map
Q5hp(V) — Q5 Rr(V — X) given by the restriction is not surjective.

Thus one may represeat(E) as an element id/V*(U/). Indeed ifV, is a connection for
E onU, andV, is a connection folZ on U; then(c;(Vy),c1(V1),¢c1(Vo, V1)) € MV*(U)
and D(c;(Vy),cr(V1),c1(Vo, V1)) = 0 by the very definition ofD and the Bott operator
c1(Vo, V1). On the other hand one can prove thaVifis a connection fo# then the cocycle
(cr(V]wy),cr(Vly, ), 0) belongs to the same cohomology clas$@fVy), ¢;(V1), cr(Vo, V1))
and thus this last representg £) under the isomorphism

Now assumeZ = [ [, X, whereX,’s are the connected componentiaf In our case:), is
just a point, but the following reasoning holds for more general sets. Fok &ty/, C V be
an open set such that, N X = X,. Thus the relative Mayer-Vietoris complex

MV*(V,V =) = P Qpa(Un) & U (Ux — )
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Let V be a connection foF|y, on Uy which is a special connection with respectto(see
Definition 2.1.1). By Theorem 2.1.2 it follows that(V) = 0 in H*"(U,, C) for any multi-
index I of heightn, and more generally, by Corollary 2.14(V?, ..., V¢) = 0 if all the Vs
are special with respect th and|I| = n. For any) let V* be a connection fof|, .

Thus, for|I| = n, the cocycleb,(c;(V?), cr(V,V*)) € MV*(V,V — %) and it isD-closed.

Proposition 3.1.1. The cohomology class af (¢; (V*),¢; (V,V?)) in H(MV*(V,V —
¥)) does not depend on the choice of the connecfiohsor on the connectioW provideV is
special with respect t6, |, ).

Proof. Let V' be a connection foE on U, special with respect té, and letV"* be connections
for £ on eachl/,. Thus

) = (cr (V) er (V! V7)
= (e (V) —er (V) ser (V. V) = e (V' V7))
BRI (10, (VA V), [er(VA, V) + ¢ (V, V) = ¢ (V, V)
—der (V. VY,V 4+ ¢1 (V, V) — ¢ (V, V)
= (deg (V™ V), =der (V, VA, V) + (VA VY + e (V, V) — ¢ (V,VY)])
= (def (VA V), —der (V,V, V) + ¢ (VA V) + d (e (V' V, V7))
=D (cr(V*, V), er (V, VY, V) = (e (V,V,V?)))

(cr (V) er (V, V)

where the we used (V', V) = 0 since bothV andV’ are special. O

For any\ let 7, C U, be a2n-dimensional real smooth manifold with smooth boundary
such that, C 7,.

Proposition 3.1.2. The following expression, calleésidue

Resy (0,, E, cr) :/ cr (V’\) —/ cr (V,V’\)
T T,

is well defined (i.e. does not depend®y) for any|/| = n.

Proof. Let 7, be a2n-dimensional real smooth manifold with smooth boundafy, such that
¥\ C T’y C U,. ltis always possible to choosg” with the same properties but such that it
contains botl7, and7; in its interior. It is enough to show that the value fBrcoincides with
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that for7,’. Indeed:

/ e (V) - / e (V. V) - / e (V) - / e (V, V)
I o1 T oT,
_ / e (V) — / ¢ (V. 9)
T/ -T, oT! 0T,

(Stgkes)/ [er (V) = de; (V, V)] =0,
T/ T,

where the last equality follows from the Bott formula and the fact tha¥) = 0 sinceV is
special orZ, — 7,". O

Now supposé = {m,}. LetU C V be an open set containing, such that there exist local
holomorphic coordinate§z, . .., z,} for V.N U and E|y is holomorphically trivial by means
of » holomorphic sections-, ..., 0,. In this setting letd, o, = Zﬁ MPas for some matrix

M = M? of holomorphic functions and|;; = 3, 4;:2

i(’?zi '
Theorem 3.1.3.For any multi-index/ such that/| = n,

Res (0,, E, ¢r) = {CI (M)dzl/\.../\dzn} |

The previous theorem expresses the residue in term of a Grothendick residue. In particular,
by choosingv? a trivial connection fo|; thenc; (V°) = 0 and therefore, being (V, V) =
—c; (VY, V), for any V special connection, one gets:

Res (0,,E,cr) = / er (V,V9) = {C[ (M)dz A ... A dzn] |

oT

where7 is a2n-dimensional real manifold with smooth boundary such thate 7 C U.

3.2. The Proof of Theorem 3.1.3.. LetU; := {m € U|A;(m) # 0} fori = 1,...,n. Let
U = {U1a~-->Un}-

3.2.1. TheCech-de Rham compleXo the covering/ we associate the-nerve

k
Nk(“) = {(JO;?]IC) :jO <j1 <... <jk7ji € {17"'7n}7ﬂUji 7& @}
i=0

Thus.J € N, (U) means that’ = (jo, ..., jx) andU; := NUj;, # 0. In particularN,(U) = 0
for k > n — 1. The Cech-de Rham compleX’ DR*(U) is the set formed by elements:=
(ovy) sen,@) Wherek = 0,...,n — 1 anda,; € Q54 (U;y) for J € Ny (U) (here we setr; = 0
if x—k <0).
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Example 3.2.1.1. If n = 2 thenUd = {Uy,Us}, No(U) = {(1),(2)}, N1 (UU) = {((12)} and
a € CDR*(U) implies thata = (aq, as, a12) Wherea; € Q5 p(Ur), aa € Q5,z(Us2) and
Q12 € Q*D_Rl(Ul N Ug)

2. Letn = 3 and assumé/ = {U,U,, Us} is such that/; N U, N Uz # (. ThenNy(U) =
{(1),(2),(3)}, Ni(UU) = {(12),(13),(23)} and No(U) = {(123)}. Thena € CDR*(U) is
given by(l/ = (041,&2,&3,&12,0&13,&23,@123), Where@i S Q*DR(Ul) for: = 1,2, 3, Q; €
Qea(UinU;) fori < j=1,2,3andass € Q54 (U; N Uy N Us).

Now we have to define o6'DR*(U) a structure of cohomological complex. Harl fixed,

let us indicate by
Ck(ua QZDR) = @ QIDR(UJ)'
JENL(U)

The double comple™ (U, Q5 ) == ®rCH(U, QY R) is equipped with two differential opera-
tors, the de Rham differentidl : C*(/, Q) — C*(U, QL) and the usuaCech differential
6 CFU, Q% R) — CFYU, QL ). Note thatd o § = § o d. In general, given a double com-
plex with two commuting differential one can define a cohomological complex summing up
along the anti-diagonal (see [3]). In our c&3® R*(U) = @11 C*(U, Q) with differential
D =6+ (—1)kd.
Example 3.2.2.1. In the case of Example 3.2.1.1, tBech-de Rham complex is the Mayer-
Vietoris complexM/ V*(U).
2. Inthe case of Example 3.2.1.2, fore CDR*(U) itfollows thatDa = (day, dag, dog, —daga+
g — oy, —doz + oy — ag, —dogs + a3 — Qg daag + o3 — oz + an2).

The map: : Q,z(U — {mo}) — CDR*(U) given bya — (ay) with a; = «fy, for
J € No(UU) anday = 0 for J € Ni(U), k > 0 induces an isomorphism of algebras for
some multiplicative structure which has not been specified here and in particular it induces an

isomorphism in cohomology (see [3]).
On the other hand one has the natural injecjio®},,(U; N ... N U,) — CDR*"~1(UY).

3.2.2. Outline of the proof.Go back to the notation of Theorem 3.1.3, in particular recall that
V is a special connection fdf onV — {m,} andV" is the trivial connection foZ on U. Let

E=c (VO V) =—¢; (V,V?) € Q5 (U — {my}),
M)
TEA A A,
The form¢ is closed, since by the Bott formula and Theorem 2.1.2
dé = ¢ (V) —cr (V) =0+0.
The formn is closed as well, being holomorphic of top degree. For litle 0 let
R, ={m € 0T :|A;(m)| > |A; (m)| foranyj},

Ris.n = {m € T : |A; (m) |* = = for anyi}.
n

dzy A ... Ndz, € QL (U N ..NU,y) .
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We can integrate differential forms 7" (U — {m}) overd7 and differential forms in
Qg (Uia..n,) OVErRys .

STEP 1.There exists an opera@réT : CDR* ! () — C so that the diagram commutes:

O (U= {mo}) > CDR™IU) = Qpyp(Uin)
(3.1) \faT lé‘ﬁ ‘/lezmn

andfw (DB) =0foranys € CDR* 2 (U).
STEP 2 There exists @ € CDR*" 2 (U) s.t. Du=j(n) —i(&).
The proof of Theorem 3.1.3 follows at once from the previous steps.

3.2.3. The proof of Step 1—Integration on honeycomb cellssystem of celladapted tad/ is
given by the familyRr; := n¥ (R, for J € N,(U). Note thatR; is a real smooth manifold
of dimension2n — 1 — k with (oriented) boundary. The boundaiw, = @, R;;, whereR,; is
positive oriented if < ¢, negative oriented otherwise. Inductively one defines an orientation on
each cell.

We give the proof of step 1 for = 3, the higher dimensional case being essentially the same.
Write « € CDR*! (i) as a “matrix”

651 &%) a3
o = Qo3 (13 (12
123

The maps, j are given by

o2

i QP (U — {mg}) — CDR™ 1 (U) st y—

o O

0
0

o O

71 Qe (Ua.) — CDR*™ M (U) st v+

Sl aNal S
o2

The cellsR;;, Ri,3 are oriented as:

ORy, = Ris + Ri3, ORy = —Ris+ Ra3, OR3 = —Ri3 — Ros,
OR13 = Rys3, OR13 = —Rqa3, ORs3 = Rios.

We define:

/ Oé_/Oé1+/ 052+/ Ck3+/ &12"‘/ 0613+/ 0523+/ 1923.
oT Ry Ra R3 Ry2 Ri3 Ras Ri23

It is clear that with this definition the diagram (3.1) commutes. More(f\égrDa = 0 from
the very definition and an obvious application of the Stokes formula.
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3.2.4. The proof of Step 2Fixi € {1,...,n}. OnUj;, sinceA; # 0, the set
0 0 0 0 0
{8_217 8_2’2’ “'821‘—1 ' 8Zz‘+1’ ...8zn
is a basis of'V|;.. On eachl; define a connectioR* of type (1, 0) for E|;. as follows:

(1) V}U = 0Oy,
(2) V'y 0, =0foranyj #iands =1, ...r,
azj

recalling that{ o4, ..., 0, } is a fixed holomorphic trivialization of |;;. Denote bwai the action
#j

of =~ on E|y defined by9 2 0y = Ofort =1,...,r. By the very definition it follows tha¥’ is

speC|aI with respect t6, and with respect t6 o for anyj # i. Obviously, even the connection

V? for E|y is special with respect to a% smce it is trivial in the coordinates’s.
We define ’

p=(us), =D e (V0,00 Vi V) for g = (o, i) -
For example, fon = 3, we get
cr (VO, VL V) cr (VO V2, V) cr (VO, V3, V)

p=| = (VO, V2, V3, V) —¢; (VO,VL,V3,V) —¢ (VO V!, V2 V)
—Cr (vov vlv v27 v?,’ V)

ComputingDyu using the Bott formula and Corollary 2.1.5, we get
—Cy (VU,V) —Cy (VO,V) —Cy (VO,V)
0 0 0

Dy =
—cr (VO V1 V2 V3)

For example, the high-left term is, by the Bott formula
de; (VO, VL, V) =¢; (VL V) — ¢ (VO, V) + ¢ (VO V) = —¢; (V°,V)
since the first and third addends vanish becauseand V are both special fof, whereas
VO, V! are both special fof o
Similar calculations hold fcm > 3. Thus to complete step 2 we need to show that
def _¢r (M)
" A A,

We will use the Chern-Weyl formula (2.2). Firstly we need to compute the connection forms
and the curvature forms of the various connecti®fis. . ., V. With respect to the local holo-
morphic framery, ..., o, of E|y, the connection one form{sJ{ } , ,—1,. for a connectiorV are

defined by the relaions
Vxoy\ = wa{(X o
7

doy A Ndz = (1)l ¢y (W0, 9.
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Compactlyw = (wY) is ar x r matrix of one-form which represents the connecfionin the
local coordinategz; }'s, we can writev = ) ", P,dz;+Q;dz;, thatisw) = )", Pj"AdziJrQﬁAdzi.
If the connectiorV is of type(1,0) then

0
0= Va%a)\ = ZW§(£>UM = ZQKJUN’
o H

and thus®; = 0 for anyj. Hencew = ) P;dz;.
We will denote byw® the matrix of connection one-forms relative ¥6. Now V° is flat in
the coordinates;, i.e. we assume&?oi_m = 0, therefore.? = 0. The connectio’VV? satisfies

V%m =0 fori # j, and therefordg;: 0 for j # i. Thus

oz

ZMKUM:VUU,\:ZVAJ,%JA:ZAjV%UA:AiVLJA:ZAin/\UW
M J ! J K Iz

therefored; P, = M i.e.P; = £1. Hence

(3.2) W=0, W= %dzl

For sake of clearness we assume- 3. We have
e (V9,... V%) = (—1)[3}/ er(9),
Az

whereV is the connection for the vector bundie(E) = E x Az onV X A; defined as in
(2.1), wherep; : V x Ay, — V is the projection. The connection form &f at the point
(m,t) eV xAszlis

w= towo + tlwl + t2w2 + t3w3 = tlwl + t2w2 + t3w37

wheret, = 1 — (¢; + t2 + t3). Cartan’s structure equation gives thex r)-matrix 2 of two
forms representing the curvature for a connecliowith connection matrixo as

1
O =dw+ §w A w.
Therefore, if() is the matrix of the curvature 6f we have
Q=diy Aw' +dts Nw?> +dis ANw® + S =
dz? dz! dz!
=dt; N — dts N — dts N — S
1 A1M+ 2 A1M+ 3 A1M+ ,

where the forms irt' do not involve differentials in the variables. Fof/| = n, we get

_ . _ d 1 d 2 d 3
(V) % ¢ (Q) = 3ldty Adty Adts N NN L

Al A2 A_QCI (M) + S R
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where the forms irt” do not contain more than two differentials in thevariables. Thus

~ dz' dz?  dZ?
/ c(V) = / 3!dt1/\dt2/\dt3/\i/\i/\icl (M) + 5" =
Az . Ay Ay Ay
(D imot=1
dz' dz?  dZ?
— | _— _ - —
/ 3dt1 A dtQ A dt'g, (Al VAN A2 A A2 Cr (M))
22 t)=1
1 /dzt  dz? dZ?
=3l= [ =A== A
3] (A1 A, A <M)) !

which completes the proof of step 2.

Corollary 3.2.3. If my € V' is an isolated, non degenerate, singular poinbahen
cr (M(my))

AL s An
where the)\;’s are the eigenvalues of the Jacobian matrix @t 1.

(3.3) Res0,, E, cr)m, =

Proof. The eigenvalues of the Jacobianuaditm,, J(my) are all different from zero fog (m)
is invertible by definition of non-degeneracy. Up to shrinkf necessary, we may suppose that
det(J(m)) # 0 foranym € U. NowdA; A ...dA, = detJ)dz A ...dz, and therefore

cr(M) (dA; dA,\ dz dz,
del(J)(Al A"'AAn>_CI<M>z1 A"'Azn'

If we setF = Ecile(t%))’ thenF is holomorphic orlV and F'(m) = F(mg) + O(m), whereO(m)

is holomorphic inU and vanishing atng. On R;_,, we haveA; = ceV=1 for 9, € R, and
therefore

cf(M)dzy A odz,| (1 " / d_Al / dA, B
Al""’An :| a (27” F(mO) |A1|=e Al [Ap|=e An +O(m) _F(mO)

Then Theorem 3.1.3 gives the assertion. O

3.3. Examples of Residues.In Example 1.2.2 we saw some instances of natural actions. We
are going to calculate the residues for isolated singular pointsroguch cases.
1. LetE =TV andd, = [v,]. Leto; = 2= fori =1,...,n. Then

o 0 0A; 0
0., (02) = {Alayﬁ} Y
and M = —J, where/J is the Jacobian matrix af. In particular ifmg is a non-degenerate
singularity forv then by Corollary 3.3 one has fof| = n,

Cr ()\1, ceey /\n)

Res(0,, TV, c;) = 3 S
1° " Ap
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wherec; (A4, ..., A,) indicates the; of the diagonal matrix with entries,, ... \,.

2. Suppos&” C M for some complex manifold/ of dimension: + ¢g. Assume moreover that
v IS the restriction td” of a holomorphic vector field on M. We may assume that there exists
an open sel/ C M such that/ NV = U and local coordinate$zy, . . ., z,, 41, - .., y,} onU
sothatV NU = {y1 = ... =y, = 0}. In such coordinates

for some holomorphic functiond,, B; such thatd,(z,0) = A4;(z) andB;(z,0) = 0 (the forv
is tangent td/).

Let E = TM]|y, andd,(Y) := [#,Y]|v, whereY is a holomorphic section af M such that
Y|y =Y. An explicit calculation shows that in such a case

D(Al, ...,Any Bl? --’Bq>
D(Zl, sy Rmy Y1, "'qu) .

The residue given by Theorem 3.1.3 is called wagation index

3. Assume a setup as in 2. LBt= Ny, where the normal bundl¥y, to V' is given by (1.4). Let
0, be defined as in Example 1.2.2.(3). Ther(;-|v), ..., 7(5,-|v)} is a local holomorphic
frame of Ny, and we have

0, (r( \V =7 ZA —i—ZBJa ay Zayy

If n=g¢=1ando = A(z,y) 2 + B(z, y)a% then Theorem 3.1.3 gives

M=—

R N = —
es{eva V>cl) 27_(_\/_—1/y A > 0

wherey = {(z,0) : |z| = €}. This is called theCamacho-Sad index

4. PROOF OF THERESIDUESTHEOREMS AND APPLICATIONS

We are now in the good shape to prove the residues theorems stated in the first sections. The
proof is essentially stated in section 1.3.

Suppose we are in the hypothesis of Theorem 1.2.3. In partituilsicompact and one can
integrate the2n-form ¢;(E) over V. The singular set of is given byYX = {m,...,my}.
By Theorem 2.1.2 one can consider a representati(}é >2) of ¢;(E) in the relative Mayer-
Vietoris cohomologyH**(MV*(V,V — X)), which is isomorphic to the relative cohomology
H*"(V,V —%,C). Integration ofc;(E) onV is the same as integration af(V, ) on V' (using
honeycomb cells as in 3.2.3 or in [23]). Thus by Proposition 3.1.2

/VCI(E) — 3" Reg0,, E, ¢)),
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and Theorem 1.2.3 follows from Theorem 3.1.3.

As for Theorem 1.1.2, it follows from Theorem 1.2.3 takihgo be the Lie derivative action
onTV (see Example 1.2.2.(1)) and calculating the residues as in section 3.3.1.

Theorem 1.3 involves virtual bundles and the proof is slightly different from the previous
ones, seee.g, [22] p.110-113. Instead of giving it here, we present an application of Theo-
remz2.4.1.

Proposition 4.0.1. All one-dimensional foliations oGP" are singular.

Proof. Let £ be a holomorphic line bundle ovéiP™ andh : £ — TCP™ be an injective
morphism of holomorphic vector bundle defining a non-singular one-dimensional foliations.

Now H?(CP",C) ~ C and the tautological bundle (the inverse of the hyperplane bundle)
L on CP™ generates this cohomology. Also each line bundleC#t is determined (up to
isomorphisms) by its Chern class if?(CP", C) and therefore = L' (see,e.g, [8]). The
numberd € Z is called thedegreeof the foliation. Lety = c¢;(—L) be the generator of
H?*(CP",C). Then, sincel'(CP") & (CP" x C) = —(n + 1)L, it follows thatc¢(TCP") =
(1 +~)"*L. Moreoverc(L*t) =1 — (d — 1). Thus, ifVr = TCP" /L1, we have

(14

(4.1) c(Vr) = T (1+)" A4 (d— 1Dy +(d—1)%2+..).

Thusc;(Vg) = (d + n)y. By Theorem 2.4.17 (V) = 0, but
[awn= [ @rarmr=@ar,
Cpn Cpn
for .. 7" = 1. Hence the only possibility i¢ = —n. Butc,(V#) = 0 for V# has rank: — 1,

and a straightforward calculation shows that if= —n than (4.1) gives a non-vanishing term
of degreen. O
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