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DILATATION AND ORDER OF CONTACT FOR HOLOMORPHIC SELF-MAPS OF
STRONGLY CONVEX DOMAINS.

FILIPPO BRACCI†

INTRODUCTION

Let f be a holomorphic self-map of the unit disc∆. It is well known thatf has at most one
fixed point in∆. Moreover iff is not an automorphism and has a fixed point in∆ then such
a point isattractive, i.e, the sequence of iterates{fk} converges to the constant map which
shrinks the disc to that point. Iff has no fixed points in∆ then there exists a unique boundary
point, sayx ∈ ∂∆, such that{fk} converges uniformly on compacta tox. Such a point is
called the Wolff pointof f . Therefore the functional Hol(∆, ∆) − {Id} → ∆ associating to
anyf its inner fixed point (if any) or its Wolff point is well defined. Moreover Heins [8] proved
that this function is continuous (where one endowesHol(∆, ∆) with the topology of uniform
convergence on compacta). Heins’ result has been generalized to strongly convex domains
by Joseph and Kwack [10] who used Abate’s results on Wolff points (see [1]) to define the
functional.

Supposef ∈ Hol(∆, ∆) has no fixed points in∆ and letx ∈ ∂∆ be its Wolff point. Letα(f)
be the real number given by

α(f) := sup
z∈∆

{ |x− f(z)|2
1− |f(z)|2 /

|x− z|2
1− |z|2

}
.

The numberα(f) is called theboundary dilatation coefficientof f atx. The boundary dilatation
coefficient owes its name to the following interpretation: anhorocycleE(x,R) of centerx and
radiusR > 0 is given by

E(x,R) :=

{
z ∈ ∆| |x− z|2

1− |z|2 < R

}
.

The horocycleE(x,R) is a euclidean disc contained in∆ and tangent to∂∆ at x. Then by
the very definition it follows thatf(E(x,R)) ⊆ E(x, α(f)R) for any R > 0. Henceα(f)
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measures how muchf “shrinks” any horocycle. From the classical Julia-Wolff-Carathéodory
Theorem one has thatα(f) = f ′(x), wheref ′(x) indicates the non-tangential limit off ′ at x.
This happens just becausex ∈ ∂∆. Indeed iff has a fixed pointz0 ∈ ∆ thenf ′(z0) does not
control how muchf shrinks the Poincaré discs (the relatives of horocycles inside the disc) since
it could be zero. Therefore in this case we are led to defineα(f) as the maximum dilatation
of f on any Poincaŕe disc of centerz0 (see Section 1 for a precise definition). Thenα(f) = 0
if and only if f is constant, and the fact thatα(f) = 1 does not necessarily imply thatf is an
automorphism. Moreover in casef has a fixed point in∆ the dilatationα(f) turns out to be an
intrinsic measure of the “order of contact” off(∆) to ∂∆, where the order of contact is roughly
defined as the real numberk such that(1 − |f(z)|) = O((1 − |z|)k) (see Definition 2.3). In
general the functionalα : Hol(∆, ∆) → [0, 1] is lower semicontinuous. This allows to set up
conditions for describing the limit of a sequence of holomorphic self-maps.

Let D be a bounded strongly convex domain inCn with regular boundary (say at leastC3)
and endow Hol(D, D) with the topology of the uniform convergence on compacta. Abate [1],
[2] proved that iff ∈ Hol(D,D) has no fixed points inD then there exists a unique boundary
point, sayx ∈ ∂D, such that the sequence of iterates{fk} converges uniformly on compacta
to x. Call the pointx theWolff pointof f . Then a boundary dilatation coefficientα(f) can be
defined atx (see Section 3). Iff has fixed points inD then one can define a dilatationα(f)
similarly as we did in the disc using Kobayashi balls instead of Poincaré’s ones. Even in this
case the dilatation is a measure of the order of contact off(D) to the boundary. As in the disc
case it is possible to prove thatα : Hol(D, D) → [0, 1] is lower semicontinuous and again have
conditions for studying the limits of a sequence of holomorphic self-maps. The proof of this
result exploits a tool discovered by Lempert (see [13]) and developed by Abate (see [1]): the
complex geodesic projection device(see Section 2). As a spin off result of our work we give a
different proof of Joseph-Kwack extension of Heins’ result (see Theorem 3.10).

The method of “reduction to complex geodesics” also suggests to associate to any direction
a “directional dilatation” which measures the “shrinking” off along that direction. More in de-
tails letG be the (closure of the) space of closed complex geodesics endowes with the structure
of complete metric space coming from the Hausdorff distance on compacta ofD (see Definition
5.2). The functional

αG : G × Hol(D, D) → [0, 1],

associating to(G, f) the dilatationαG(f) of the restriction off to G (see Section 5) is lower
semicontinuous. In Theorem 5.10 we prove that the functional which maps a pointz ∈ D and
a vectorv ∈ Cn−{0} to the elementGz,v ∈ G containingz and parallel tov atz is continuous.
Therefore thedirectional dilatationαz,v(f) of a mapf ∈ Hol(D,D), defined asαGz,v(f), is a
lower semicontinuous function.

As applications we study the relationships among fixed points (also boundary fixed points in
the sense of non-tangential limits) of sequences of holomorphic self-maps with respect to the
limit function.
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1. THE DILATATION IN THE UNIT DISC

Let ∆ be the unit disc inC, and endow Hol(∆, ∆) with the topology of the uniform conver-
gence on compacta. As the theory of holomorphic self-maps of the unit disc is well known, we
avoid to recall it here in detail. Instead we refer tacitly the reader to,e.g., [1], [5], [15].

Let us start this section with the following examples:

Example 1.1.Let f0 ∈ Hol(∆, ∆) be given byf0(z) := z2. Thenf0 fixes0 andf ′(0) = 0. Let
ηt(z) := (t − z)/(1 − tz) for t ∈ (0, 1). Thenηt is a automorphism of∆ such thatηt(0) = t
andη−1

t = ηt. Let ft := ηt ◦ f0 ◦ ηt. Thenft ∈ Hol(∆, ∆) for any t and moreoverft(t) = t
andf ′t(t) = 0. A straightforward computation shows that the sequence{ft} converges to the
hyperbolic automorphism

γ : z 7→ 3z + 1

z + 3
.

The mapγ has no fixed points in∆, its Wolff point is1 andγ′(1) = 1/8 > 0.

Example 1.2. Let f ∈ Hol(∆, ∆) be a parabolic automorphism with Wolff point1. Then
f ′(1) = 1. The sequence of iterates{fk} converges (by the Wolff-Denjoy Lemma [20], [7]) to
the constant mapz 7→ 1 whose derivative is, of course, equals to0.

The two previous examples show that the functional “first derivative at the Wolff/fixed point”
is by no means continuous. However the two examples are of different nature, as it will be clear
later.

Let ω be the Poincaŕe distance on the unit disc∆.

Definition 1.3. Let f ∈ Hol(∆, ∆). If f is non-constant and has no fixed points in∆ then the
dilatation, denoted byα(f), of f is its boundary dilatation coefficient at its Wolff point.

If f has a fixed pointz0 ∈ ∆, then thedilatationof f is given by

α(f) := sup
z∈∆−{z0}

ω(f(z), z0)

ω(z, z0)
.

If f is a constant such thatf(∆) = τ ∈ ∂∆ then we letα(f) := 0.

Note that in the previous definition we allowf to be the identity and thatα(Id) = 1.

Remark1.4. By the Schwarz Lemma and the Wolff Lemma it follows thatα(f) ≤ 1. Moreover
it is clear thatα(f) = 0 if and only if f is a constant map.

If γ is an automorphism of∆ then α(γ ◦ f ◦ γ−1) = α(f), for the automorphisms are
isometries for the Poincaré distance.

Remark1.5. The dilatation in the case of a inner fixed point has the following interpretation.
Supposef ∈ Hol(∆, ∆) andf(z0) = z0. LetB(z0, R) be a Poincaŕe disc of centerz0 and radius
R > 0. thenf(B(z0, R)) ⊆ B(z0, α(f)R). Actually one could equivalently have definedα(f)
as

α(f) := sup
R>0

{inf{q > 0|f(B(z0, R)) ⊆ B(z0, qR)}}.
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Example 1.6. Let us consider again the situation in Example 1.1 and 1.2. In Example 1.1 we
haveα(f0) = 1 (asz2 ≈ z as|z| → 1). Thereforeα(ft) = α(f0) = 1 for anyt and hence

lim inf
t→1

α(ft) = 1 > 1/8 = α(γ).

In Example 1.2 we haveα(fk) = 1 for anyk (by the Julia-Wolff-Carath́eodory Theorem [5])
and then the limit ofα(fk) is 1 and the dilatation off is 0.

The situation of the previous example is a general one:

Theorem 1.7.The functionα : Hol(∆, ∆) → [0, 1] is lower semicontinuous.

Proof. Let fk, f ∈ Hol(∆, ∆) be such thatfk converges uniformly on compacta tof . If f is
constant then the result is trivially true. Now we divide the proof in three cases, which we can
always reduce to.

1) Supposefk, f ∈ Hol(∆, ∆) be such thatfk(zk) = zk for somezk ∈ ∆ and thatzk → z0 ∈
∆. We canw.l.o.g.suppose thatα(fk) → β. Then for anyz ∈ ∆ we have

ω(zk, fk(z)) ≤ α(fk)ω(zk, z),

and taking the limit we findω(z0, f(z)) ≤ βω(z0, z). thereforef(z0) = z0 andα(f) ≤ β.
2) Supposefk, f ∈ Hol(∆, ∆) be such thatfk(zk) = zk for somezk ∈ ∆ and thatzk → x ∈

∂∆. We can as well suppose thatα(fk) → β. We want to show thatx is the Wolff point off
and thatβ ≥ α(f). The pointx is the Wolff point off by Heins’ Theorem [8]. However this is
not necessary and actually it will also follow from our considerations. LetR > 0 andRk →∞
be such that

(1.1) lim
k→∞

1− |zk|
1− tanh Rk

= R.

By Proposition 1.2.1 of[1] (see also [11]) ifz ∈ E(x,R) for someR > 0 thenz ∈ B(zk, Rk)
eventually and thereforefk(z) ∈ B(zk, α(fk)Rk). Equivalently

(1.2)
|1− zkfk(z)|2
1− |fk(z)|2 <

1− |zk|2
1− tanh2(α(fk)Rk)

.

Now for k →∞ the left-hand term tends to
|x− f(z)|2
1− |f(z)|2 .

As for the right-hand term we have

(1.3)
1− |zk|2

1− tanh2(α(fk)Rk)
=

1− |zk|2
1− tanh2 Rk

1− tanh2 Rk

1− tanh2(α(fk)Rk)
.

By equation (1.1) the first term on the right-hand side tends toR. As for the second factor we
first note that it is bounded below from a positive constant. If not then the right-hand term of
equation (1.3) would tend to0 and hence taking the limit in equation (1.2) we would find

|x− f(z)|2
1− |f(z)|2 = 0,
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implying f ≡ x, against our assumption thatf ∈ Hol(∆, ∆). Therefore for anyk large

(1.4) 0 < C ≤ 1− tanh2 Rk

1− tanh2(α(fk)Rk)
≈ e2(α(fk)−1)Rk .

This forces

(1.5) β = lim
k→∞

α(fk) = 1.

Sinceα(f) ≤ 1 this proves the assertion in this case. Note that sincer 7→ (1 − tanh2 r) is
decreasing inr > 0, then equation (1.3) and the Wolff Lemma imply thatx is the Wolff point
of f or thatf is the identity.

3) Supposefk ∈ Hol(∆, ∆) be without fixed points in∆ for anyk. Suppose thatτk ∈ ∂∆
is the Wolff point offk for anyk, and thatτk → τ ∈ ∂∆. Up to conjugation we can suppose
τ = 1. Let ηk(z) := τkz. Then{ηk} is a sequence of rotations which tends to the identity.
Moreovergk := η−1

k ◦ fk ◦ ηk is such thatgk has Wolff point1 andgk → f . Since the boundary
dilatation coefficient is invariant under conjugation it follows thatα(gk) = α(fk). Now let
z ∈ E(1, R). Thengk(z) ∈ E(1, α(gk)R). If α(gk) converges (as we may suppose) toβ, then
f(z) ∈ E(1, βR), and (iff 6≡ 1 as we may suppose) by the open mapping theorem it is actually
f(z) ∈ E(1, βR), implying thatα(f) ≤ β. This and the Wolff Lemma imply that1 is the Wolff
point off unlessf is the identity. ¤
Remark1.8. In the previous proof we did not assume Heins’ Theorem, but actually we re-
proved it. Namely we showed that if{fk} ⊂ Hol(∆, ∆) converges to a mapf ∈ Hol(∆, ∆)
then the sequence of fixed points (or Wolff points) offk converges to the fixed point (or the
Wolff point) of f , unlessf is the identity.

Remark1.9. The previous proof shows that for a sequence{fk} ⊂ Hol(∆, ∆) with fixed points
zk ∈ ∆ to converge to a non-constant mapf without fixed points in∆ is necessary thatα(fk) →
1.

A better estimate is given by the following:

Proposition 1.10. Let {fk} ⊂ Hol(∆, ∆) be such that for anyk there existszk ∈ ∆ such that
f(zk) = zk andzk → τ for someτ ∈ ∂∆. Suppose thatfk → f for somef ∈ Hol(∆, ∆). Then

(1.6) α(f) ≤ lim inf
k→∞

e−(1−α(fk))·ω(0,zk).

In particular if
lim
k→∞

(1− α(fk)) · ω(0, zk) = ∞,

thenf is the constant mapz 7→ τ .

Example 1.11.The inequality in (1.6) could be strict and therefore the condition is by no means
necessary. For instance letf0(z) = iz, ϕt(z) = t−z

1−tz
for t ∈ (0, 1) andft(z) := ϕt ◦ f0 ◦ ϕt.

Then it is easy to see thatα(ft) = 1 for anyt and thatft converges to the constant map1 with
dilatation equals to0.
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Proof of Proposition 1.10.We argue as in the proof of part (2) of Theorem 1.7, choosingR, Rk

as there and assuming thatα(fk) → β. As before ifβ < 1 thenf is constant and equation (1.6)
follows. Otherwise we found equation (1.4). Now

e2(α(fk)−1)Rk = e−(1−α(fk))ω(0,zk) · e2(α(fk)−1)(Rk−ω(0,zk)/2).

Sinceα(fk) → β = 1 then equation (1.6) will follow as soon as we show thatRk − ω(0, zk)/2
is bounded above ask increases. But

Rk − ω(0, zk)/2 = Rk +
1

2
log(1− |zk|)− 1

2
log(1 + |zk|),

andRk + 1
2
log(1− |zk|) ≤ C < ∞ for all k since by equation (1.1) we have

1− |zk|
2

e2Rk → R.

This implies thatf maps any horocycle of centerτ and radiusR > 0 into an horocycle of center
τ and radiusθR for θ := lim infk→∞ e−(1−α(fk))·ω(0,zk), as wanted. ¤

2. THE ORDER OF CONTACT IN THE DISC

In this section we give a definition of “order of contact” to the boundary. The usual order
of contact of a mapf ∈ Hol(∆, ∆) at a given pointx ∈ ∂∆ is measured by the ratio(1 −
|f(z)|)/(1− |z|) asz → x which comes out naturally from Julia’s Lemma and (whenever less
than1) is very important in the study of compactness of composition operators (see [15]). Here
we generalize such an idea and introduce a precise definition of order of contact. Then we relate
it to the previously introduced dilatation.

Let us start with the following definition:

Definition 2.1. Let f ∈ Hol(∆, ∆), x ∈ ∂∆ andk ∈ R. We set

Lx,k(f) := lim inf
z→x

1− |f(z)|
(1− |z|)k

.

Remark2.2. Note that

Lx,m(f) = Lx,k(f) · lim inf
z→x

(1− |z|)k−m.

Therefore ifLx,k(f) > 0 thenLx,m(f) = ∞ for anym > k and ifLx,k(f) < ∞ thenLx,m(f) =
0 for anym < k.

Moreover by Julia’s Lemma [12],Lx,1(f) > 0, henceLx,m(f) = ∞ for m > 1.

Definition 2.3. Let f ∈ Hol(∆, ∆), x ∈ ∂∆ andk ∈ R. We say thatf hasorder of contactk
atx, briefly Ox(f) = k, if for any ε > 0

Lx,k+ε(f) = ∞ and Lx,k−ε(f) = 0.

The(global) order of contactO∂∆(f) is defined as

O∂∆(f) := sup
x∈∂∆

Ox(f).
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By Remark 2.2 the order of contact is well defined and0 ≤ O∂∆(f) ≤ 1.

Example 2.4. Let fθ(z) be alens map. Namely letσ(z) := (1 + z)/(1 − z) be the Cayley
transform which maps∆ onto the right half-plane. Then squeeze the half-plane onto the sector
{| arg w| < θπ/2} by means ofw 7→ wθ (for 0 < θ < 1) and go back to the unit disc withσ−1.
The result is a holomorphic self-map of∆ whose image looks like a lens. Analytically

fθ(z) :=
(σ(z))θ − 1

(σ(z))θ + 1
.

The functionfθ maps∆ − {±1} into ∆ andfθ(±1) = ±1. We claim that O∂∆(f) = θ. It is
clear that we have only to check that O±1(f) = θ. Fork > θ.

L±1,k(f) := lim inf
z→±1

1− |fθ(z)|
(1− |z|)k

= lim inf
z→±1

|(1 + z)θ + (1− z)θ| − |(1 + z)θ − (1− z)θ|
2θ(1− |z|)k

≥ lim inf
z→±1

|(1 + z)θ + (1− z)θ| − |(1 + z)θ − (1− z)θ|
2θ(|1∓ z|)k

.

Taking the square it is easy to see that this term goes to∞. On the other hand it is easy to see
that forr ∈ (0, 1)

lim
r→±1

1− |fθ(r)|
(1− |r|)θ

= 21−θ.

ThereforeL±1,θ(f) < ∞ which implies thatL±1,k(f) = 0 for k < θ and hence O±1(f) = θ.

Remark2.5. The (global) order of contact is invariant under composition with automorphisms.
Indeed ifϕ andθ are automorphisms of∆ then

1− |ϕ(f(θ−1(z)))|
(1− |z|)k

=
1− |ϕ(f(w))|

1− |f(w)| · 1− |f(w)|
(1− |w|)k

· (1− |w|)k

(1− |θ(w)|)k

wherew = θ−1(z). Since(1 − |ϕ(ζ)|)/(1 − |ζ|) and(1 − |θ(ζ)|)/(1 − |ζ|) tends to a positive
number as|ζ| → 1, then

Lx,k(f) = Lθ(x),k(ϕ ◦ f ◦ θ−1),

and therefore O∂∆(f) = O∂∆(ϕ ◦ f ◦ θ−1). In particular O∂∆(f) is invariant under conjugation.

By Remark 2.5 iff ∈ Hol(∆, ∆) has a fixed point in∆ and there exists an automorphismθ
such thatf ◦ θ has no fixed point in∆ then O∂∆(f) = 1.

We want to show now that the dilatation is an intrinsic way of measuring the order of contact
previously introduced.

Lemma 2.6. Letf ∈ Hol(∆, ∆) be such thatf(0) = 0 andx ∈ ∂∆. Let

(2.1) αx(f) := lim sup
z→x

ω(0, f(z))

ω(0, z)
.

Then Ox(f) = αx(f).
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Proof. We can supposex = 1. First of all note that the assertion is clearly true if|f(z)| doesn’t
accumulate at∂∆ for z → 1. Therefore we can suppose that|f(z)| → 1 for z → 1. By the
very definition ofω we have

ω(0, f(z))

ω(0, z)
=

log (1+|f(z)|)
(1−|f(z)|)

log (1+|z|)
(1−|z|)

.

Therefore for anya ∈ R such thatα1(f) < a we can find a suitable neighborhoodU of 1 such
that for anyz ∈ ∆ ∩ U

(2.2) log
1 + |f(z)|
1− |f(z)| < a log

1 + |z|
1− |z| .

Sincet 7→ log(1 + t)/(1− t) is increasing, this is, forz ∈ ∆ ∩ U , equivalent to

(2.3)
1 + |f(z)|
(1 + |z|)a

<
1− |f(z)|
(1− |z|)a

.

Taking the liminf on both sides we get

lim inf
z→1

1− |f(z)|
(1− |z|)a

≥ 21−a > 0.

Sincea > α1(f) was arbitrary this implies thatL1,a(f) = ∞ and O1(f) ≤ α1(f). On the other
hand ifL1,a(f) = ∞ for somea < α1(f) then equation (2.3) as well as equation (2.2) holds for
z close to1. Hencelim supz→1 ω(0, f(z))/ω(0, z) ≤ a and thenα1(f) ≤ O1(f). ¤

Theorem 2.7. Let f ∈ Hol(∆, ∆) be such that there existsz0 ∈ ∆ with f(z0) = z0. Then
O∂∆(f) ≤ α(f). Moreoverα(f) = 1 if and only if O∂∆(f) = 1. In particular if α(f) < 1
thenf has no finite angular derivative at any boundary point and ifα(f) = 1 thenf(∆) is not
relatively compact in∆.

Proof. Since bothα(f) and O∂∆(f) are invariant under conjugation we can suppose thatz0 = 0.
Supposeα(f) = 1. Let {zm} ⊂ ∆ be such that

lim
m→∞

ω(0, f(zm))

ω(0, zm)
= α(f).

If {zm} accumulates tox ∈ ∆ thenx 6= 0 andω(f(0), f(x)) = ω(0, x), implying thatf is an
automorphism of∆ and hence O∂∆(f) = 1. If {zm} accumulates atx ∈ ∂∆ then Ox(f) = 1
by Lemma 2.6.

In general for anyx ∈ ∂∆ by Lemma 2.6 we have that Ox(f) ≤ α(f) and therefore
O∂∆(f) ≤ α(f). The last part follows easily from the very definition and from the Julia-
Wolff-Carath́eodory Theorem [5] (see also [1] and [15]). ¤

Remark2.8. The order of contact O∂∆(f) could be strictly less than the dilatationα(f), e.g.,
think of z 7→ 1

2
z.
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It is remarkable that in case of a (inner) fixed point the dilatationα(f) measures theorder
of contactof f(∆) to ∂∆ but not the contact. That is iff(∆) is not compactly contained in∆
thenα(f) is not necessarily1. For instance the lens mapfθ built in Example 2.4 has dilatation
< 1 by Theorem 2.7, butfθ(±1) = ±1.

Remark2.9. We do not know ifα(f) < 1 is equivalent tof having no angular derivative at any
boundary point. Actually the open question is whetherf fixes0 and has order of contactk at
x ∈ ∂∆ imply thatLx,k(f) 6= 0,∞.

3. THE DILATATION IN STRONGLY CONVEX DOMAINS

Let D be a bounded strongly convex domain with smooth boundary (at leastC3). Let kD be
the Kobayashi distance inD. For all this section fix a pointz0 ∈ D (sometimes we refer to such
a point as thebase pointof D). For all the unproved statement and terminology we refer to [1]
or [4]. Let us recall (see [2]):

Theorem 3.1(Abate). Let f ∈ Hol(D, D). If f has no fixed points inD then there exists a
unique pointx ∈ ∂D, theWolff point of f , such that the sequence of iterates{fk} converges to
the constant mapz 7→ x.

Recall that iff ∈ Hol(D, D) then theboundary dilatation coefficientof f at x ∈ ∂D is the
(strictly) positive real numberβx(f) given by

1

2
log βx(f) := lim inf

w→x
[kD(z0, w)− kD(z0, f(w))].

Remark3.2. The numberβx(f) is finite or infinite independently ofz0. Namely ifw0 ∈ D and
β′x(f) is the boundary dilatation coefficient with base pointw0 thenβx(f) < ∞ if and only if
β′x(f) < ∞. This is a simple application of the triangle inequality. In Lemma 6.1 we will show
that actuallyβx(f) = β′x(f).

Similarly to the disc case, even in the strongly convex domainD it is possible to define
horospheres. This definition due to Abate [2] exploits the Kobayashi distance and turns out to
be the right tool to study iteration theory. In particular the boundary dilatation coefficientβx(f)
measures howf acts on horospheres centered atx ∈ ∂D. Using the explicit expression ofω
it is possible to show that in the disc the notion of boundary dilatation coefficient given in the
Introduction coincides with that given here (see [1]), and it is independent of the base point.

We also need (seeProposition 1.6 in[4]):

Proposition 3.3. Letf ∈ Hol(D, D) have no fixed points. A pointx ∈ ∂D is the Wolff point of
f if and only iff has limitx at x along some non-tangential path andβx(f) ≤ 1.

Motivated by the work in the unit disc we give:

Definition 3.4. Let f ∈ Hol(D, D). If f is non-constant and has no fixed points inD then
thedilatation α(f) of f is the boundary dilatation coefficient off at its Wolff point. If f is a
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non-constant map with at least one fixed point inD then thedilatationof f is given by:

α(f) := sup
z∈D−{w0}

kD(w0, f(z))

kD(w0, z)
,

wheref(w0) = w0. We letα(f) := 0 if f is constant.

Remark3.5. If f ∈ Hol(D,D) thenα(f) ≤ 1 by Proposition 3.3 and the decreasing property
of Hol(D, D) with respect tokD. If Fix(f), the set of fixed points off , contains two points
(and then it is a submanifold of dimension greater or equal to one, see [17]) thenα(f) = 1.
Moreoverα(f) = 0 if and only if f is constant.

Theorem 3.6.The functionα : Hol(D,D) → [0, 1] is lower semicontinuous.

Before proving the theorem we need to introduce theLempert projection deviceand prove
some facts about it.

By Lempert’s work (see [13] and [1]) given any pointz ∈ D there exists a unique complex
geodesicϕ : ∆ → D, i.e., a holomorphic isometry betweenω andkD, such thatϕ extends
smoothly past the boundary,ϕ(0) = z0 andϕ(t) = z, with t ∈ (0, 1) if z ∈ D and t = 1
if z ∈ ∂D. Moreover for any such complex geodesic there exists a holomorphic retraction
p : D → ϕ(∆), i.e. p is a holomorphic self-map ofD such thatp ◦ p = p andp(z) = z for
any z ∈ ϕ(∆). We call such ap the Lempert projectionassociated toϕ. Furthermore we let
p̃ := ϕ−1◦p and call it theleft inverseof ϕ, for p̃◦ϕ = Id∆. The triple(ϕ, p, p̃) is the so-called
Lempert projection device.

Lemma 3.7. Suppose thatf ∈ Hol(D, D) has no fixed points inD and letτ ∈ ∂D be the Wolff
point off . Letϕ : ∆ → D be the complex geodesic such thatϕ(0) = z0 andϕ(1) = τ and let
p be the Lempert projection associated toϕ. Let f̃ := p̃ ◦ f ◦ ϕ. Thenα(f) = α(f̃).

Proof. Using Abate’s version of the Julia-Wolff-Carathéodory Theorem for strongly convex
domains (actually we just need a maimed version of it, coming from the classical Julia-Wolff-
Carath́eodory Theorem, seeTheorem 2.4.(i) in[4]) we get

α(f) = lim
r→1

1− f̃(r)

1− r
.

Then the classical Julia-Wolff-Carathéodory Theorem implies thatα(f̃) = α(f). ¤
Remark3.8. The mapf̃ in the previous Lemma cannot be the identity on∆. For if this were so
then for anyζ, ξ ∈ ∆

kD(ϕ(ζ), ϕ(ξ)) ≥ kD(f(ϕ(ζ)), f(ϕ(ξ))) ≥ kD(p(f(ϕ(ζ))), p(f(ϕ(ξ))))

= kD(ϕ(f̃(ζ)), ϕ(f̃(ξ))) = kD(ϕ(ζ), ϕ(ξ)),

forcing equality at all the steps. In particularf ◦ϕ would be a complex geodesic andf(ϕ(∆)) =
ϕ(∆)—as sets—for the uniqueness of complex geodesics. But

f ◦ ϕ(ζ) = ϕ ◦ p̃ ◦ f ◦ ϕ(ζ) = ϕ(ζ)

for anyζ ∈ ∆, which would imply thatf|ϕ(∆)
= id, against our hypothesis.
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Lemma 3.9. Supposef ∈ Hol(D,D) be such thatf(x) = x for exactly onex ∈ D−{z0}. Let
ϕ : ∆ → D be the complex geodesic such thatϕ(0) = z0 andϕ(t) = x for somet > 0 and let
p be the associated Lempert projection. Letf̃ := p̃ ◦ f ◦ ϕ. Thenα(f̃) ≤ α(f).

Proof. Note thatf̃ maps∆ into ∆ and thatf̃(t) = t. Now

ω(t, f̃(ξ)) = kD(ϕ(t), ϕ(f̃(ξ)) = kD(x, p ◦ f ◦ ϕ(ξ))

≤ kD(x, f(ϕ(ξ))) ≤ α(f)kD(x, ϕ(ξ)) = α(f)ω(t, ξ).

Since this holds for anyξ ∈ ∆ then it follows thatα(f̃) ≤ α(f). ¤

Proof of Theorem 3.6.Let {fk} ⊂ Hol(D,D) be such thatfk → f for somef ∈ Hol(D, D).
We can suppose thatα(fk) → β. If f is constant then there is nothing to prove. Also if Fix(fk)
has positive dimension for anyk thenα(fk) = 1 and then the limit is1 which is certainly greater
than or equal toα(f). Therefore we can suppose thatf, fk ∈ Hol(D,D) and thatfk has at most
one fixed point inD for anyk.

Suppose first that for anyk there existszk ∈ D such thatf(zk) = zk. If zk → x ∈ D thenx
is a fixed point forf . Now

kD(zk, fk(z)) ≤ α(fk)kD(zk, z)

for anyz ∈ D, and passing to the limit we get for anyz ∈ D

kD(x, f(z)) ≤ βkD(x, z),

which means thatβ ≥ α(f).
Suppose now thatzk converges to the pointτ ∈ ∂D. For anyk let ϕk : ∆ → D be the

complex geodesic such thatϕk(0) = z0 andϕk(tk) = zk with tk ∈ (0, 1). Since the family
{ϕk} is normal we can suppose that, up to subsequences,ϕk → ϕ. Since for anyk andξ, ζ ∈ ∆

ω(ξ, ζ) = kD(ϕk(ξ), ϕk(ζ)),

it follows thatϕ is a complex geodesic. Moreovertk tends to1. Indeed iftk → r for r < 1 then

∞ > ω(0, r) = lim
k→∞

ω(0, tk) = lim
k→∞

kD(z0, ϕk(tk)) = ∞.

In the same way we can suppose that the Lempert projectionspk’s converge to a holomorphic
mapp which is easily seen to be the Lempert projection associated toϕ. Now let f̃k := p̃k ◦fk ◦
ϕk andf̃ := p̃◦f ◦ϕ. Thenf̃k, f̃ ∈ Hol(∆, ∆) and moreover̃fk converges tõf . By Lemma 3.7
and Lemma 3.9 it follows thatα(f̃k) ≤ α(fk) and thatα(f) = α(f̃). Hence the result follows
from Theorem 1.7.

Finally suppose that eachfk has no fixed points inD and letτk ∈ ∂D be the Wolff point
of fk. Let τk → τ ∈ ∂D. As before letϕk be the family of complex geodesics such that
ϕk(0) = z0 andϕk(1) = τk. Up to subsequences we can suppose that{ϕk} converges to the
complex geodesicϕ such thatϕ(0) = z0 andϕ(1) = τ and that the Lempert projectionspk

converge to the Lempert projectionp associated toϕ. Let f̃k := p̃k ◦ f ◦ ϕk andf̃ := p̃ ◦ f ◦ ϕ.
Thenf̃k → f̃ , and the result follows from Theorem 1.7 and Lemma 3.7. ¤
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In the proof of Theorem 3.6 we have not used the fact that “the Wolff (or fixed) points offk

converge to the Wolff point off ”. This is true thanks to a theorem due to Joseph and Kwack
[10]. However it follows directly from our method of reduction to the one variable case. We
briefly decribe this point.

Theorem 3.10(Joseph-Kwack). Let {fk} ⊂ Hol(D, D) and letf ∈ Hol(D, D). Suppose that
fk → f andf has no fixed points inD. Then

(1) if fk(zk) = zk andzk → x ∈ ∂D thenx is the Wolff point off .
(2) if fk has no fixed points for anyk and xk ∈ ∂D is the Wolff point offk such that

xk → x ∈ ∂D thenx is the Wolff point off .

Proof. In the first case letϕk : ∆ → D be the complex geodesic such thatϕk(0) = z0 and
ϕk(tk) = xk for sometk ∈ (0, 1). In the second case letϕk : ∆ → D be the complex geodesic
such thatϕk(0) = z0 andϕk(1) = xk. In both cases letpk be the Lempert projection associated
to ϕk. As in the proof of Theorem 3.6 we suppose thatϕk converges to the complex geodesic
ϕ : ∆ → D such thatϕ(0) = z0 andϕ(1) = x. Also we supposepk converging to the Lempert
projectionp associated toϕ. We setf̃k := p̃k ◦ fk ◦ ϕk andf̃ := p̃ ◦ f ◦ ϕk. Thenf̃k → f̃ . By
Lemma 3.7α(f) = α(f̃). If f̃ is not the identity then by Heins’ Theorem (see Remark 1.8)f̃

has Wolff point1. Therefore, no matter whether̃f is the identity,α(f) ≤ 1 andf ◦ϕ : ∆ → D
has non-tangential limitx at1. Since a complex geodesic is transverse to∂D by Hopf’s Lemma
thenf has limitx atx along a non-tangential path and by Proposition 3.3 it follows thatx is the
Wolff point of f . ¤

As an application of the previous results we have:

Corollary 3.11. Suppose{fk} ⊂ Hol(D,D) and that for anyk there existszk ∈ D such that
f(zk) = zk. Letβ := lim supk→∞ α(fk). If β < 1 then a limit of{fk} is either a constant map
z 7→ τ ∈ ∂D whereτ is in the cluster set of{zk} or it has a unique fixed point inw0 ∈ D such
thatw0 belongs to the cluster set of{zk}.
Proof. Suppose that, up to subsequences,{zk} converges to a pointτ ∈ ∂D. Using the notation
as in the proof of Theorem 3.6, the one-dimensional mapsf̃k converge tof̃ andα(f̃) = α(f) <

1. By Remark 1.9f̃ is the constant mapζ 7→ 1 and thereforef(D) = τ .
If {zk} converges tow0 ∈ D then clearlyf(w0) = w0. Moreoverα(f) < 1 implies that the

dimension of Fix(f) is zero and hence by Vigué [17]w0 is the only fixed point off . ¤

4. THE ORDER OF CONTACT IN STRONGLY CONVEX DOMAINS

In this section we describe what is the “order of contact” for a self-map of a strongly convex
domain and how it is related to the dilatation. In all this sectionD is a bounded strongly convex
domain withC2 boundary andz0 ∈ D is its base point.

We need to recall the following lemma (seeTheorem (2.3.51) and (2.3.52) in[1] and[19]).
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Lemma 4.1(Abate, Vormoor). Let d(·, ·) denote the euclidean distance inCn. Then there are
two constantC1 > 0 andC2 > 0 depending only onz0 such that for allz ∈ D

−C1 − 1

2
log d(z, ∂D) ≤ kD(z0, z) ≤ C2 − 1

2
log d(z, ∂D).

Let x ∈ ∂D andf ∈ Hol(D, D). By Lemma 4.1 it follows easily that

(4.1) lim inf
z→x

d(f(z), ∂D)

d(z, ∂D)
> 0.

Now we define the order of contact in analogy to the disc case:

Definition 4.2. Let f ∈ Hol(D,D), x ∈ ∂D andk ∈ R. We set

Lx,k(f) := lim inf
z→x

d(f(z), ∂D)

d(z, ∂D)k
.

A similar argument as in Remark 2.2 allows one to define theorder of contact off at x,
Ox(f), as the unique real numberk such thatLx,m(f) = ∞ for m > k andLx,t(f) = 0 for
t < k. The(global) order of contactis defined as

O∂D(f) = sup
x∈∂D

Ox(f).

By equation (4.1) it follows that the order of contact is at most1. We start to study the relation-
ship between the order of contact and the dilatation:

Lemma 4.3. Let f ∈ Hol(D, D) be such thatf(w0) = w0 for somew0 ∈ D and letx ∈ ∂D.
Let

αx(f) := lim sup
z→x

kD(w0, f(z))

kD(w0, z)
.

Then Ox(f) = αx(f).

Proof. If αx(f) ≤ k then by Lemma 4.1 it follows that

lim sup
z→x

log d(f(z), ∂D)

log(d(z, ∂D))k
≤ 1.

Therefore for a fixedε > 0 there exists a neighborhoodU of x such that for anyz ∈ U ∩D it
holds

log d(f(z), ∂D) ≥ log(d(z, ∂D))k(1+ε).

Sincer 7→ log r is increasing forr > 0 then

d(f(z), ∂D) ≥ d(z, ∂D))k(1+ε),

and thereforeLx,k(1+ε)(f) ≥ 1. Sinceε is arbitrary this implies that Ox(f) ≤ k = αx(f). On
the other hand, ifLx,k(f) = ∞ for somek then there exists a neighborhoodU of x such that
for anyz ∈ U ∩D it follows

d(f(z), ∂D) ≥ d(z, ∂D)k,
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which is equivalent to
log d(f(z), ∂D)

log d(z, ∂D)k
≤ k,

implying thatαx(f) ≤ k and henceαx(f) ≤ Ox(f). ¤
Theorem 4.4. Let f ∈ Hol(D,D) be such that there existsw0 ∈ D with f(w0) = w0. Then
O∂D(f) ≤ α(f). Moreoverα(f) = 1 if and only if O∂D(f) = 1.

Proof. For anyx ∈ ∂D we get Ox(f) ≤ α(f) by Lemma 4.3, and hence O∂D(f) ≤ α(f).
Supposeα(f) = 1 and let{zm} ⊂ D be such that

lim
m→∞

kD(w0, f(zm))

kD(w0, zm)
= 1.

We can suppose thatzm → x ∈ D. If x ∈ ∂D then Ox(f) = 1 by Lemma 4.3 and we are done.
If x ∈ D thenkD(w0, f(x)) = kD(w0, x). Let ϕx : ∆ → D be the complex geodesic such that
ϕx(0) = w0 andϕx(t) = x for somet > 0. Let ϕf(x) : ∆ → D be the complex geodesic such
thatϕf(x)(0) = w0 andϕf(x)(r) = f(x) for somer > 0. Let pf(x) : D → D be the Lempert
projection associated toϕf(x). Definef̃ := ϕ−1

f(x) ◦ pf(x) ◦ f ◦ ϕx. Since

ω(0, r) = kD(w0, f(x)) = kD(w0, x) = ω(0, t),

thenr = t. Therefore

ω(0, t) = kD(w0, x) = kD(w0, f(x)) = ω(f̃(0), f̃(t)),

implying thatf̃ is an automorphism of∆. Namelyf mapsϕx(∆) ontoϕf(x)(∆) acting as an
automorphism. In particular

lim sup
z→ϕx(1)

kD(w0, f(z))

kD(w0, z)
≥ lim

ζ→1

ω(0, f̃(ζ))

ω(0, ζ)
= 1,

and by Lemma 4.3 Oϕx(1)(f) = 1 which gives the assertion. ¤

5. THE DIRECTIONAL DILATATION

Let us start with an example.

Example 5.1.Let f ∈ Hol(B2,B2), whereB2 is the unit ball inCn, given by(z1, z2) 7→ (z1, 0).
Thenf((0, 0)) = (0, 0) andα(f) = 1. Howeverf((0, ζ)) = (0, 0) for anyζ ∈ ∆. Therefore
the mapf̃1(ζ) := f1(ζ, 0) has dilatation1 = α(f) while f̃2(ζ) := f2(0, ζ) has dilatation0.

The previous example suggests that one could associate tof a family of “directional dilata-
tions” measuring in some sense the behavior of the map along these directions. To make precise
this idea we need to recall and to prove some facts.

Let D be a bounded strongly convex domani withC3 boundary. LetK be the set of compacta
of D. We can endowK with a structure of complete metric space by defining theHausdorff
distancebetween two elementsA,B ∈ K as

dH(A,B) := max{d(A,B), d(B, A)},
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whered(A,B) = max{d(x,B)|x ∈ A} andd(·, ·) is the euclidean distance. We denote by
H(D) the metric space(K, dH). Note that by the very definition{Ak} ⊂ H(D) is (Hausdorff-
)converging toA ∈ H(D) if and only if both any point ofA is in the cluster set of some
sequence{zk} for zk ∈ Ak and any sequence{zk} such thatzk ∈ Ak accumulates only at
points ofA. We define and topologize the “space of (images of) complex geodesics”:

Definition 5.2. Let

G := {G ⊂ D | ∃ϕ : ∆ → D complex geodesic: G = ϕ(∆)} ∪ {x | x ∈ ∂D}.
We endowG with the topology induced byH(D).

Note that an element ofG is either the closed image of a complex geodesic or a single bound-
ary point. Before proving some interesting properties ofG we need to look closely at complex
geodesics.

We recall (see [13]) that a complex geodesicϕ : ∆ → D is defined to be a solution of
an Euler-Lagrange equation in the sense that there exists a positive functionP defined on∂∆
so thatϕ∗(ζ) := P (ζ)ζn(ϕ(ζ)), defined on∂∆, extends holomorphically to∆ (heren(x) is
the outer unit normal to∂D at x ∈ ∂D). The mapϕ∗ is called adual mapof ϕ. Thenp̃(z)
is defined to be the (unique) solution to the following equation in the unknownζ ∈ ∆ (here
〈z, w〉 =

∑
zjwj):

(5.1) 〈z − ϕ(ζ), ϕ∗(ζ)〉 = 0.

It is a basic fact in Lempert’s theory (see [13] and [1]) thatϕ∗ is unique up to a positive constant
and extendsC1 up to∂∆. Thereforep̃ is uniquely determined byϕ and extendsC1 up to∂∆.
Hence ifη := ϕ ◦ θ with θ an automorphism of∆ it follows that θ−1 ◦ p̃ is the left inverse
associated toη. The Lempert projection associated toϕ is ϕ ◦ p̃ which therefore turns out to
depend only on the imageϕ(∆) and to extendC1 up to ∂D. Therefore ifG ∈ G then there
exists auniqueC1 mapp : D → D such thatp is holomorphic onD, p2 = p andp(D) = G
(if G = x ∈ ∂D thenp(D) := x). Conversely (see [14]) ifp : D → D is holomorphic,p2 = p
andG̃ = p(D) is one-dimensional theñG is the image of a complex geodesicϕ : ∆ → D, and
thereforep actually is the Lempert projection associated to a complex geodesic and in particular
extendsC1 up to the boundary. Therefore the correspondence:

F : G → P := {p|p ∈ Hol(D, D), p2 = p, dimp(D) ≤ 1},
G 7→ pG

is one-to-one and onto. Moreover if we endowP with the topology induced byHol(D,D) we
have

Lemma 5.3.The spaceP is closed inHol(D, D) and the mapF : G → P is a homeomorphism.

Proof. Suppose that{Gk} ⊂ G converges toG ∈ H(D), and letpk := F (Gk). Since{pk}
is a normal family it follows that it contains some converging subsequences. Suppose that
pkm → p ∈ Hol(D,D). Then taking the limit top2

km
= pkm we findp2 = p. We have to show

that dimp(D) ≤ 1. Assume not. Then there existz0, z1, z2 ∈ p(D) which are not contained in
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any complex geodesic. Letzj
m := pkm(zj) ∈ D for j = 0, 1, 2. Thenzj

m ∈ pkm(D) = ϕm(∆)
for some complex geodesicϕm andj = 0, 1, 2. Up to subsequences,ϕm → ϕ, with ϕ being a
complex geodesic. Thereforeϕm(∆) 3 zj

m → zj ∈ ϕ(∆) for j = 0, 1, 2 and thusϕ(∆) contains
z0, z1, z2, a contradiction. Thenp ∈ P (which is thus closed). By the previous discussionp
extendsC1 up to the boundary. Now ifz ∈ G then there exists{zk} ⊂ D such thatzk ∈ Gk

andzk → z. Therefore

p(z) = lim
m→∞

pkm(zkm) = lim
m→∞

zkm = z,

and henceG ⊆ p(D). On the other hand ifz ∈ p(D) then

z = p(z) = lim
m→∞

pkm(z).

Let zm := pkm(z) ∈ Gkm. Thenz = limm→∞ zm and thereforez ∈ G, implying thatp(D) ⊆
G and actuallyG = p(D). Since this holds for any converging subsequences of{pk} then
it follows that pk actually converges top, holomorphic retraction and thatG = p(D) (and
henceG is closed inH(D)). This also shows thatF is bi-continuous and therefore it is a
homeomorphism. ¤

The previous Lemma allows one to move freely from maps to sets. Before going ahead we
need to introduce some more notation. IfG ∈ G andG ∩D 6= ∅ we indicate byϕG : ∆ → D
a complex geodesic such thatϕG(∆) = G (note thatϕG is unique only up to composition by
automorphisms of∆ on the right). IfG = x ∈ ∂D then we indicate byϕG the constant map
ζ 7→ x for ζ ∈ ∆.

Lemma 5.4. Let {Gk} ⊂ G, G ∈ G. ThenGk → G if and only if there existϕGk
andϕG such

thatϕGk
→ ϕG.

Proof. If ϕGk
→ ϕG then it is easy to see using the definition thatpk → p and by Lemma 5.3 it

follows thatGk → G.
On the other hand ifGk → G then we have two cases. IfG ∩ D 6= ∅ (which implies that

Gk ∩ D 6= ∅ eventually) then letz0 ∈ G ∩ D. There exists{zk} ⊂ D such thatzk ∈ Gk

and zk → z0. Let ϕGk
be the complex geodesic such thatϕGk

(0) = zk. Since the family
{ϕGk

} is normal, we can extract a converging subsequenceϕGkm
→ ϕ, whereϕ : ∆ → D is

a complex geodesic forϕ(0) = z0. The sequence of Lempert’s projections associated toϕGkm

converges to a holomorphic retractionp that by Lemma 5.3 must beF (G), thereforeϕ = ϕG.
The same token shows that any other subsequence of{ϕGk

} must converge toϕ and therefore
ϕGk

converges toϕG.
The second case is whenG is a pointx ∈ ∂D. If Gk is a point for allk then the result is

trivial. Suppose then that theGk’s are not all reduced to a point. As before{ϕGk
} contains a

converging subsequence. If the limit mapϕ is a constantζ 7→ y ∈ ∂D then by Lemma 5.3
it must bey = x. If ϕ were non-constant then the Lempert projectionpk associated to the
converging subsequence would converge to a non-constant holomorphic retractionp, and by
Lemma 5.3G = F−1(p) would not be a single point. Therefore the entire sequenceϕGk

must
converge toϕG. ¤
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Lemma 5.5. Let f ∈ Hol(D, D). Letϕ : ∆ → D be a complex geodesic and letp̃ be its left
inverse. Thenα(p̃ ◦ f ◦ ϕ) depends only onG := ϕ(∆).

Proof. By the discussion on complex geodesics at the beginning of this section any other para-
meterization of the geodesic disc whose closure isG has the formϕ◦ θ for some automorphism
θ of ∆. The associated left inverse is thereforeθ−1 ◦ p̃. Thus the result follows from Remark
2.5. ¤
Definition 5.6. Let f ∈ Hol(D, D) andG ∈ G, with G ∩ D 6= ∅. We define thedirectional
dilatationαG(f) as

αG(f) := α(p̃G ◦ f ◦ ϕG).

If G is a (boundary) point then we setαG(f) := 0.

Remark5.7. The directional dilatation is well defined by Lemma 5.5.

The main result for the directional dilatation is the following:

Theorem 5.8.The mapG × Hol(D,D) 7→ [0, 1] defined as

(G, f) 7→ αG(f)

is lower semicontinuous.

Proof. The result is trivially true ifG is reduced to a boundary point. Suppose thatG ∩D 6= ∅.
By Lemma 5.4 ifGk → G there existϕGk

such thatϕGk
→ ϕG. Therefore the left-inverses

p̃Gk
associated toϕGk

converge to the left-inversẽpG associated toϕG and hencẽpGk
◦ fk ◦ϕGk

converges tõp ◦ f ◦ ϕG. the result follows then from Theorem 1.7. ¤
Let us indicate byS := ∂Bn = {v ∈ Cn : ‖v‖ = 1}. Let z0 ∈ D. For anyv ∈ S

let ϕv : ∆ → D be the complex geodesic such thatϕv(0) = z0 andϕ′v(0) = λv for some
λ ∈ C − {0}. Lempert’s theory (see [13]) asserts that such a geodesic does exist, unique up
to automorphisms of the disc, and extends smoothly through the boundary. Ifτ ∈ ∂D let us
indicate byAτ := S ∩ (Cn − TCτ ∂D). Then for anyv ∈ Aτ there exists a complex geodesic
ϕv : ∆ → D such thatϕv(1) = τ andϕ′v(1) = λv with λ ∈ C − {0} (see [6] for∂D of class
C14 and [9] for∂D of classC3). Even in this case the geodesic is uniquely determined up to
right composition with automorphims of the unit disc.

Therefore there are two different ways of indicating a complex geodesic: by means of its
closed imageG or by giving a point and a (non complex tangent if the point is on the boundary)
direction. One could therefore define adirectional dilatationαz,v(f) := αG(f) for z ∈ D and
v ∈ S, according to whetherG is the (closure of the) image ofϕv (and as usualαz,v(f) := 0 if
z ∈ ∂D andv ∈ TCz ∂D). Even in this case the result is a lower semicontinuous function:

Proposition 5.9. The mapD × S × Hol(D, D) → [0, 1] defined as

(z, v, f) 7→ αz,v(f)

is lower semicontinuous.

The proof is a consequence of Theorem 5.8 and the following Theorem:
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Theorem 5.10.The mapD×S 7→ G which associates to(z, v) the elementGz,v ∈ G according
to whetherGz,v containsz and is parallel tov at z (or Gz,v := z if z ∈ ∂D andv ∈ TCz ∂D) is
continuous.

Proof. Let {vk} ⊂ S and{zk} ⊂ D. Suppose thatvk → v, zk → z with, respectively,v ∈ S
andz ∈ D.

First suppose thatz ∈ D. Thenzk ∈ D eventually. Let{ϕvk
} be the family of complex

geodesics such thatϕvk
(0) = zk andϕ′vk

(0) = λkvk for λk > 0. Since this family is normal we
can extract a subsequence{ϕm} which converges to a mapϕ : ∆ → D. Using the continuity
of kD it is not difficult to show thatϕ is a complex geodesic such thatϕ(0) = z. Moreover
ϕ′m(0) → λv for someλ > 0. ThereforeGzm,vm → Gz,v by Lemma 5.4. Note that the same
reasoning applies to any subsequence and therefore actually we haveGzk,vk

→ Gz,v.
Suppose now thatzk ∈ ∂D and thenz ∈ ∂D. If vk ∈ TCτk

∂D for anyk thenv ∈ TCτ ∂D.
Indeed ifρ : Cn → R is a local defining function forD nearτ then∂ρτk

(vk) = 0 for k large,
and taking the limit we get∂ρτ (v) = 0. In this case the assertion is verified asGzk,vk

= zk →
z = Gz,v. Therefore we can suppose thatvk ∈ Azk

for anyk. Let {ϕvk
} be a family of complex

geodesics such thatϕvk
(1) = zk andϕ′vk

(1) = λkvk for λk 6= 0. Up to subsequences we can
suppose thatϕvk

→ ϕ with ϕ : ∆ → D holomorphic. Ifϕ(∆) ⊂ D then it is a complex
geodesic. Moreoverϕ(1) = limk→∞ ϕvk

(1) = z andϕ′(1) = limk→∞ ϕ′vk
(1) = λv for some

λ 6= 0. If v ∈ TCz ∂D this is impossible, all the converging subsequences of{ϕk}must therefore
converge to a constant mapζ 7→ w ∈ ∂D, for ζ ∈ ∆, and it is easy to see thatw = z. By Lemma
5.4 this implies thatGzk,vk

→ Gz,v = z. If v ∈ Az then Lemma 5.4 implies thatGzm,vm → Gz,v

for any subsequence{ϕm} which converges to a (non-constant) complex geodesic. So we are
led to prove that we can reparameterizeϕvk

in such a way that no subsequences of{ϕvk
} can

converge to a constant map. Sincevk → v andv 6∈ TCz ∂D there existsk0 andC > 0 such that
for anyk > k0

|(vk)N | > C

2
|(vk)T |,

where ifx ∈ ∂D anda ∈ Cn − {0} then|(a)T | and|(a)N | indicate respectively the complex
tangential and complex normal component ofa. Hence fork > k0 there exists̃tk ∈ (0, 1)
such that for anytk > t̃k the pointzk is the nearest boundary point toϕvk

(tk) (for ϕvk
(∆) is

transversal to∂D by Hopf’s Lemma) and

|(ϕ′vk
(tk))N | > C|((ϕ′vk

(tk))T |,
where this time(ϕ′vk

(tk))N and(ϕ′vk
(tk))T indicate, respectively, the complex tangential and

the complex normal component of the vectorϕ′vk
(tk) as if it were a vector ofTCzk

∂D. Thus
Corollary 2of [9] implies that the diameter ofϕvk

(∆) is bounded from below independently of
k andProposition 4of [6] provides a compactK ⊂⊂ D such thatϕvk

(∆) ∩K 6= ∅ for anyk.
Therefore for anyk there existsζk ∈ ∆ such thatϕvk

(ζk) ∈ K. Then for anyk there exists an
automorphismθk of ∆ such thatθk(0) = ζk. Henceϕ̃k := ϕk ◦ θk is a reparameterization of
ϕk such thatϕ̃k(0) ∈ K for anyk. Therefore any limitϕ is such thatϕ(0) ∈ K and soϕ is a
complex geodesic.
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Now suppose thatzk ∈ D for any k and z ∈ ∂D. Let {ϕvk
} be the family of complex

geodesics such thatϕvk
(0) = zk andϕ′vk

(0) = λkvk for someλk > 0. If v ∈ TCz ∂D then any
limit of {ϕvk

} is the constant mapζ 7→ z and the result follows from Lemma 5.4. Indeed if there
were a non-constant limitϕ, then byCorollary 2 of [9] the directionsvm := ϕ′vm

(0)/‖ϕ′vm
(0)‖

of such subsequence would be eventually of the form|(vm)N | > C|(vm)T |, and then|vN | ≥
C|vT | which is impossible (here we retain the notations of the previous step). Suppose now
that v ∈ Az. Again we want to show that it is possible to reparameterizeϕvk

in such a way
that no subsequence is converging to a constant. Once we have this it is clear that any limit
must be of the formϕGz,v—for the convergence is actually inC1(∆)—and the result follows by
Lemma 5.4. Sincevk → v andv 6∈ TCz ∂D then there existsC > 0 such that for anyk it follows
|ϕ′vk

(0))N | ≥ C|(ϕ′vk
(0))T |. Arguing as before we can find a suitable reparameterization of

{ϕk} such that any convergent subsequence tends to a (non-constant) complex geodesic.¤

6. APPLICATIONS

The main point in the previous section was that the restriction off ∈ Hol(D,D) to a “ge-
odesic disc” is well-defined up to conjugation. Namely ifϕ : ∆ → D andη : ∆ → D are
complex geodesics such thatϕ(∆) = η(∆) =: G, andp̃, q̃ are the associated left-inverses, then
p̃ ◦ f ◦ϕ is conjugated tõq ◦ f ◦ η. Therefore givenG ∈ G with G∩D 6= ∅ we can definefG as

fG := {g ∈ Hol(∆, ∆) | ∃θ ∈ Aut(∆) : θ−1 ◦ g ◦ θ = p̃G ◦ f ◦ ϕG}.
Note that any two functionsh, g : ∆ → ∂∆ are conjugated, for Aut(∆) acts (doubly) transi-
tively on ∂∆. Therefore ifG = x ∈ ∂D we can definefG as the conjugation class ofζ 7→ 1.
The map

Hol(D,D)× G → Hol(∆, ∆)/Aut(∆),

(f,G) 7→ fG

is continuous by Lemma 5.4.
Roughly speaking the underlying philosophy is that ifW is anintrinsic propertyof Hol(∆, ∆)

(i.e. depending only on the conjugation class of Hol(∆, ∆)) thenW extends to a “directional
property” on convex domains by(G, f) 7→ W(fG). We give some examples of this.

Recall that iff ∈ Hol(D, D) we indicate byβx(f) the boundary dilatation coefficient off at
x ∈ ∂D. We begin with the following lemma:

Lemma 6.1. Let f ∈ Hol(D,D), τ ∈ ∂D andG,H ∈ G with G ∩ D 6= ∅, H ∩ D 6= ∅ and
τ ∈ G ∩ H. LetϕG be a complex geodesic such thatϕG(∆) = G andϕG(1) = τ . LetϕH be
a complex geodesic such thatϕH(∆) = H andϕH(1) = τ . Let p̃G and p̃H be the left inverses
of ϕG and ϕH respectively. Finally lethG := p̃G ◦ f ◦ ϕG and hH := p̃H ◦ f ◦ ϕH . Then
β1(hG) = β1(hH) = βτ (f). Therefore the boundary dilatation coefficient does not depend on
the base point chosen.

Proof. Let us choosez0 := ϕH(0) as base point. ThenTheorem 2.7.14 of[1] (see also [3]) and
the classical Julia-Wolff-Carathéodory Theorem [5] imply thatβτ (f) = β1(hH). By Remark
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3.2β1(hH) = ∞ if and only if β1(hG) = ∞. Suppose thenβ1(hH) < ∞. The curvet 7→ ϕH(t)
goes non-tangentially toτ by Hopf’s Lemma. Therefore againTheorem 2.7.14 of[1] gives

β1(hG) = lim
t→1

1− p̃G ◦ f ◦ ϕH(t)

1− p̃G ◦ ϕH(t)
.

Up to subsequences we can suppose that(τ − f ◦ ϕH(t))/‖τ − f ◦ ϕH(t)‖ tends to some unit
vectorv. Therefore

lim
t→1

1− p̃G ◦ f ◦ ϕH(t)

1− p̃G ◦ ϕH(t)

= lim
t→1

1− p̃G ◦ f ◦ ϕH(t)

‖τ − f ◦ ϕH(t)‖ · ‖τ − f ◦ ϕH(t)‖
1− hH(t)

1− hH(t)

1− t
· 1− t

1− p̃G ◦ ϕH(t)
.

By Lemma 2.6.44 of[1] (or see [3]) it follows then

β1(hG) =
〈v, nτ 〉

〈ϕ′G(1), nτ 〉 ·
〈ϕ′H(1), nτ 〉
〈v, nτ 〉 · β1(hH) · 〈ϕ

′
G(1), nτ 〉

〈ϕ′H(1), nτ 〉 = β1(hH).

¤
Note that ifh ∈ Hol(∆, ∆) has a fixed point in∆ so does anyg ∈ Hol(∆, ∆) conjugated to

h. Therefore iff ∈ Hol(D, D) andG ∈ G, G ∩D 6= ∅, with abuse of terminology we say that
fG has a fixed point in∆ to mean that anyh ∈ fG has a fixed point in∆. As custom we denote
by Fix(f) the set of fixed points off in D.

By a result of Vigúe [17] the setFix(f) is a submanifold ofD.

Proposition 6.2. Letf ∈ Hol(D, D) and letG ∈ G with G ∩D 6= ∅. Then

(1) If αG(f) < 1 andfG has no fixed points in∆ thenf has no fixed points inD, its Wolff
point belongs toG andα(f) = αG(f).

(2) If αG(f) = 1 andfG has no fixed points in∆ then eitherf has no fixed points inD, its
Wolff point belongs toG andα(f) = 1 or dimFix(f) ≥ 1 andG ∩ Fix(f) 6= ∅.

In particular if fG has no fixed points in∆ thenαG(f) = α(f).

Proof. (1) LetϕG : ∆ → D be a complex geodesic such thatϕG(∆) = G andh := p̃G ◦ f ◦ϕG

has Wolff point1 (here, as usual, we let̃pG be the left-inverse ofϕG). Let τ := ϕG(1). By
Lemma 6.1 the boundary dilatation coefficient off atτ is independent of the base point. Hence

βτ (f) = β1(h) = αG(f) < 1.

SupposeFix(f) 6= ∅. If τ ∈ Fix(f) there existsH ∈ G such thatτ ∈ H andH ⊂ Fix(f)
(see [17]). ThereforefH = id∆ and by Lemma 6.1βτ (f) = β1(id) = 1, contradiction. Hence
τ 6∈ Fix(f). By the very definition of horospheres (see [2]) there existsR0 > 0 so that for any
0 < R < R0, E(τ, R) ∩ Fix(f) = ∅. By Theorem 2.4.16 and Corollary 2.6.48 of[1] (see also
[3] and [4]) for any0 < R < R0, z ∈ E(τ, R) andm ∈ N it holdsfm(z) ∈ E(τ, R). Therefore
{fm(z)} accumulates at somez0 ∈ E(τ, R). By the fundamental theorem on iteration (see
Theorem 2.1.29 of[1] or [16]) this implies thatτ belongs to the closure of thelimit manifoldX
of f . Now X is a complex submanifold ofD such thatFix(f) ⊆ X, f(X) = X andf |X is
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an automorphism ofX. Again this impliesβτ (f) = 1, contradiction. Thereforef has no fixed
points inD and its iterates accumulate atτ , i.e. τ is the Wolff point off .

As for (2), arguing as before and retaining the same notation, iff has fixed points inD then
τ ∈ X. Thus ifz0 ∈ Fix(f) thenf is the identity on the complex geodesic joiningz0 to τ and
thereforeτ ∈ Fix(f). ¤

Let us now examine the case of sequences of converging maps.

Proposition 6.3. Let {fk} ⊂ Hol(D,D) be such thatfk → f ∈ Hol(D, D). Suppose that for
anyk there existsGk ∈ G with G ∩D 6= ∅ such that(fk)Gk

= idGk
. If Gk → G ∈ G then one

and only one of the following cases is possible:
(1) G ∈ ∂D and the mapf is the constantz 7→ G.
(2) G ∈ ∂D, f ∈ Hol(D,D) has no fixed points andG is its Wolff point.
(3) G ∈ ∂D, f ∈ Hol(D,D) has fixed points inD, dimFix(f) ≥ 1 andG ∈ Fix(f).
(4) G ∈ D, f ∈ Hol(D,D) has fixed points inD, dimFix(f) ≥ 1 andG ∩D ⊂ Fix(f).

Proof. First suppose thatG ∈ ∂D. Then there exists a sequence{zk} such thatzk ∈ Gk for any
k andzk → G. If f has no fixed points inD then the result follows from Theorem 3.10. Iff
has a fixed pointz0 ∈ D then this is exactlyThéor̀eme 4.3 of[18]. However let us give another
proof based on our method. Letϕ : ∆ → D be a complex geodesic such thatϕ(0) = z0,
ϕ(1) = 1 and letp̃ be the associated left-inverse. If we prove thatβG(f) ≤ 1 then by Lemma
6.1 it follows thatp̃ ◦ f ◦ϕ fixes0 and has boundary dilatation coefficient at1 less than or equal
to 1, which is impossible by the Wolff Lemma [20] unlessf fixesϕ(∆). Suppose that (up to
subsequences)

(6.1)
zk −G

‖zk −G‖ → v,

for somev 6∈ TCG∂D. For anyk let ϕk : ∆ → D be the complex geodesic such thatϕk(0) = zk

andϕk(1) = G. Let Hk := ϕk(∆). By Theorem 5.10 and equation (6.1)Hk → H ∈ G where
H ∩ D 6= ∅. Therefore we can reparameterize theϕk’s in such a way thatϕk → η for some
complex geodesicη with left inverseq̃. Hencep̃k ◦ fk ◦ ϕk converges tõq ◦ f ◦ η. Moreover
p̃k ◦ fk ◦ ϕk has fixed pointζk andζk → 1. By Remark 1.8̃q ◦ f ◦ η has Wolff point1 or it is
the identity. In both casesβ1(q̃ ◦ f ◦ η) ≤ 1 and Lemma 6.1 givesβG(f) ≤ 1. We are led to
show that it is actually possible to find such a{zk} for which equation (6.1) holds. ByTheorem
2 of [9] for anyk largeGk is almost parallel to some direction inTCG∂D at any point ofGk ∩D.
SinceGk is transversal to∂D, if zk ∈ Gk is such thatd(zk, ∂Gk) is the maximum among all
z ∈ G then such{zk} realizes equation (6.1) up to subsequences.

Suppose now thatG ∩D 6= ∅. Thenid = (fk)Gk
→ fG implying thatfG = id and—arguing

as in Remark 3.8—f(z) = z for anyz ∈ G ∩D, as claimed. ¤
Let f ∈ Hol(D,D). Let us denote byFix(f) the set of fixed points inD, i.e. Fix(f),

together with any pointx ∈ ∂D such thatf has non-tangential limitx atx andβx(f) ≤ 1.
As a corollary of Proposition 6.3 we have the following Theorem (see alsoTheorem p. 1700

in [10]):
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Theorem 6.4.Let{fk} ⊂ Hol(D, D) be such thatfk → f . Thenlim sup Fix(fk) ⊆ Fix(f).

Proof. Consider the familyΓ := {Gν} such thatGν ∈ G andGν ⊂ Fix(fk) for somek.
By [17] for any z, w ∈ Fix(fk), z 6= w, there existsGk ∈ G with Gk ∩ D 6= ∅ such that
Gk ⊂ Fix(fk) andz, w ∈ Gk. Therefore the cluster set ofΓ coincides withlim sup Fix(fk).
Let G be in the cluster set ofΓ. Then there exists a sequenceGm ∈ G such thatGm → G and
eitherGm ∩ D ⊂ Fix(fm) or Gm is the Wolff point offm (these are the only possibilities by
Proposition 6.2). HenceG ⊂ Fix(f) by Proposition 6.3 or Theorem 3.10. ¤
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