
Complex Variables Theory Appl.

Vol. 38, 1999, pp. 221-241

ON THE GEOMETRY AT THE BOUNDARY OF
HOLOMORPHIC SELF-MAPS OF THE UNIT BALL OF Cn

FILIPPO BRACCI

Abstract. We introduce two new tools to study a holomorphic self-map f
of Bn (the unit ball of Cn, n > 1): the inner space A(f) and the generalized
inner space AG(f). After having defined the differential at the boundary for
f , k -dfτ , in its Wolff point τ ∈ ∂Bn, we prove that the boundary dilatation
coefficient α(f) is an eigenvalue for k -dfτ and we define AG(f) to be the
generalized eigenspace associated to α(f); the inner space A(f) will be the
span of the eigenvectors not belonging to the complex tangent space of ∂Bn

at the Wolff point τ and contained in AG(f). Among other things it turns
out that A(f) is the space of all “directions” of complex geodesics that are
mapped into themselves by f , and that the generalized inner space AG(f)
is a direct addend of a boundary Cartan-type decomposition for Cn. Using
A(f) and AG(f) we obtain several new results on the geometry of holomorphic
self-maps of Bn, including some necessary conditions for commutation under
composition.

0. Introduction

Since the first years of this century, iteration theory of holomorphic self-maps
of ∆, the unit disk of C, and the closely related subject of commutation (under
composition) of holomorphic maps have been deeply studied. In particular in these
last years necessary and sufficient conditions under which two holomorphic maps
commute have been found (see [11] for bibliography and references). In the case of
holomorphic self-maps of Bn (n > 1) the analogous problems are still open. Re-
cently (see [1] and [2]), it has been proved that a family of commuting holomorphic
self-maps of Bn extending continuously on ∂Bn, has a common “fixed point”; more-
over a complete classification of all holomorphic self-maps of Bn which commute
with a given hyperbolic automorphism of Bn has been obtained (see [5] and [4]).
In this work we study the geometry of a holomorphic self-map of Bn (with no fixed
points) in a neighborhood of its Wolff point. We stress the relationships between
the action on the complex geodesics of Bn, the fixed points and the iteration of
maps, and we give some necessary conditions in order that two holomorphic maps
with no fixed points commute under composition. The plan of this paper is the
following. Firstly, we recall some definitions and results such as the definition of
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complex geodesics and the Wolff and the Julia-Wolff-Carathéodory Theorems for
Bn. We then extend some of the definitions to the multidimensional case (see §1).
The Wolff point of a holomorphic self-map without fixed points can be now char-
acterized and used to prove that if a complex geodesic is transformed in itself by a
self-map of Bn, then it has to “touch” the Wolff point (see §2). As a spin-off result,
we also give a geometric condition which guarantees that two commuting holomor-
phic self-maps of Bn have the same “boundary fixed point” (see Theorem 2.4). In
§3 we prove some technical results and present a notion of boundary regularity that
we request in the next sections: we say that f is K-differentiable at a boundary
point if there exists the K-limit of dfz at that point. Let f ∈ Hol(Bn, Bn) be
with no fixed points and K-differentiable at its Wolff point τ ∈ ∂Bn, let k -dfτ be
the K-differential of f at τ and let α(f) = lim infz→τ

1−‖f(z)‖
1−‖z‖ be the boundary

dilatation coefficient of f at τ . In §4 we prove that if v is an eigenvector of k -dfτ

and v 6∈ TCτ ∂Bn (where TCτ ∂Bn means the complex tangent space of ∂Bn at τ),
then k -dfτ (v) = α(f)v. We then define the inner space A(f) to be the span of
the eigenvectors of k -dfτ not belonging to TCτ ∂Bn. If A(f) 6= {0} then it turns out
that A(f) is the eigenspace associated to α(f). The inner space A(f) is closely
connected to the complex geodesics of Bn which are mapped into themselves by
f : each of those geodesics (if any) corresponds to an element of A(f). In the case
that f maps complex geodesics into complex geodesics (every automorphism of Bn

has this property) then the correspondence is one to one. We end the section by
proving that if two commuting holomorphic maps f, g have the same Wolff point
and dimA(f)= 1 then A(f)⊆A(g). In §5 we prove that if v is a generalized eigen-
vector of k -dfτ and v 6∈ TCτ ∂Bn then v has to belong to the generalized eigenspace
associated to α(f) (and hence α(f) is always an eigenvalue of k -dfτ ). We define
the generalized inner space AG(f) to be the generalized eigenspace of α(f). Since
each “generalized inner eigenvector” is associated to α(f), we obtain a Cartan-
type decomposition of Cn at τ (see Theorem 5.3). By using the decomposition we
prove that, if two holomorphic maps f, g having a common Wolff point commute,
then AG(f)

⋂AG(g) 6= {0}. In §6 we study the geometry of a class of boundary
K-differentiable maps: the automorphisms of Bn, denoted by Aut(Bn) . In partic-
ular we see that if γ is a hyperbolic automorphism of Bn then it is equivalent to
know the two fixed points of γ, the (only) complex geodesic transformed to itself
by γ or the inner space A(γ). Moreover AG(γ) is the “smaller” space on which γ
is a well-defined self-map. In the case of a parabolic automorphism η of Bn, we
characterize the normal form of η (see [6]) by using A(η). Finally for two com-
muting parabolic automorphisms η and µ of Bn we prove that if A(η)= {0} then
dim(AG(η)

⋂AG(µ)) ≥ 2.

The author would like to sincerely thank Graziano Gentili for his support and
for many helpful conversations, Chiara de Fabritiis who read the manuscript and
whose many comments improved this work and the referee for useful suggestions.

1. Preliminary results

In this section we state some general definitions and theorems. First let us recall
some facts about complex geodesics in the simple case of the unit ball Bn; for the
general case and references see, e.g, [1].
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A m-dimensional affine subset of Bn is the intersection of Bn with an affine m-
dimensional subspace of Cn.

Definition 1.1. A complex geodesic of Bn (so called because it is an isometry
between the Poincaré metric in ∆ and the Bergman metric in Bn) is a injective
holomorphic map ϕ : ∆ → Bn such that ϕ(∆) is a one-dimensional affine subset of
Bn.

We will often call “complex geodesic” the image ϕ(∆). Using affine maps, it
follows that every one-dimensional affine subset of Bn is a complex geodesic. We
can state:

Proposition 1.2. (1) If z0, z1 ∈ Bn, z0 6= z1, then there is one, and only one
(up to automorphisms of the unit disk ∆), complex geodesic ϕ : ∆ → Bn

such that z0, z1 ∈ ϕ(∆).
(2) If z ∈ Bn, v ∈ Cn, v 6= 0, and {ξv + z|ξ ∈ C}⋂

Bn 6= ∅, then there is one,
and only one (up to automorphisms of the unit disk ∆), complex geodesic
ϕ : ∆ → Bn such that z ∈ ϕ(∆) and that ϕ(∆) is parallel to the complex
line generated by v.

From now on we will often say, with an abuse of language, that the complex
geodesic ϕ passes through z ∈ Bn or that the complex geodesic ϕ has the direction
v if, respectively, z ∈ ϕ(∆) or ϕ(∆) is parallel to the complex line generated by v.
Here we have another definition:

Definition 1.3. Let be f ∈ Hol(Bn, Bn) and let ϕ : ∆ → Bn be a complex geodesic
of Bn. If f(ϕ(∆)) ⊆ ϕ(∆) we call ϕ a cut complex geodesic of f .

It turns out that if ϕ : ∆ → Bn is a cut complex geodesic of f , then ϕ−1◦f ◦ϕ is a
well-defined holomorphic self-map of ∆. Now let us state some classical results from
the theory of several complex variables (see [10], [1]) and give some new definitions:

Theorem 1.4 (MacCluer [9]). Let f ∈ Hol(Bn, Bn) be without fixed points; then
there is a unique τ ∈ ∂Bn such that for every z ∈ Bn

|1− 〈f(z), τ〉|2
1− ‖f(z)‖2 ≤ |1− 〈z, τ〉|2

1− ‖z‖2 ,

where 〈 , 〉 denotes the hermitian product in Cn.

Definition 1.5. If f is a holomorphic self-map of Bn without fixed points, we call
the Wolff point of f the unique τ ∈ ∂Bn defined by Theorem 1.4.

We recall that a Korányi region of vertex τ ∈ ∂Bn and amplitude M > 1 is given
by

K(τ,M) :=
{

z ∈ Bn :
|1− 〈z, τ〉|
1− ‖z‖ < M

}
.

If f ∈ Hol(Bn, Bn) we say that f has K-limit σ at τ ∈ ∂Bn and we write
K- limz→τ f(z) = σ if, for each M > 1 and for each sequence {zm} ⊂ K(τ,M)
such that limm→∞ zm = τ , we get limm→∞ f(zm) = σ.

Definition 1.6. Let f ∈ Hol(Bn, Bn) and τ ∈ ∂Bn. The boundary dilatation
coefficient of f at τ is the value lim infz→τ (1− ‖f(z)‖) · (1− ‖z‖)−1.
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If f ∈ Hol(Bn, Bn) has no fixed points and τ ∈ ∂Bn is its Wolff point, then we
denote the boundary dilatation coefficient of f at τ by α(f). The following result
holds:

Lemma 1.7. Let f ∈ Hol(Bn, Bn) be without fixed points with τ ∈ ∂Bn its Wolff
point. Then 0 < α(f) ≤ 1.

Proof. By a straightforward computation, or by the Julia Lemma (see [1] or [10])
it follows that α(f) > 0.
Now let E(τ, 1/k) := {z ∈ Bn : (|1−〈z, τ〉|2) · (1−‖z‖2)−1 < 1/k} be a horosphere.
The map z 7→ ‖z‖ reaches its minimum on E(τ, 1/k) at zk := τ · (k− 1) · (k + 1)−1.
The sequence {zk} converges to τ as k tends to ∞, and f(E(τ, 1/k)) ⊆ E(τ, 1/k) by
Theorem 1.4. Then ‖f(zk)‖ ≥ ‖zk‖ and (1−‖f(zk)‖) · (1−‖zk‖)−1 ≤ 1. Therefore
α(f) ≤ 1. ¤

For τ ∈ ∂Bn, a τ -curve is a curve γ : [0, 1) → Bn such that γ(t) → τ as t → 1.
To every τ -curve we associate its orthogonal projection γτ = 〈γ, τ〉τ into Cτ . A
τ -curve is said to be special if limt→1(‖γ(t) − γτ (t)‖2) · (1 − ‖γτ (t)‖2)−1 = 0, and
restricted if it is special and moreover there is A < ∞ such that for all t ∈ [0, 1) we
get (‖γτ (t)− τ‖)(1−‖γτ (t)‖)−1 ≤ A. In a natural way, we say that a holomorphic
self-map f of Bn has restricted K-limit σ at τ ∈ ∂Bn if f(γ(t)) → σ as t → 1 for
any restricted τ -curve γ (see [10]). Let us now state the Julia-Wolff-Carathéodory
Theorem for Bn:

Theorem 1.8 (Rudin [10], p.177). Let f ∈ Hol(Bn, Bn) and τ ∈ ∂Bn be such that

lim inf
z→τ

1− ‖f(z)‖
1− ‖z‖ = β < ∞.

Then f has K-limit σ ∈ ∂Bn at τ and the following functions are bounded in every
Korányi region:

(1)
1− 〈f(z), σ〉

1− 〈z, τ〉
(2) 〈dfzτ, σ〉
(3)

〈dfzτ
⊥, σ〉

(1− 〈z, τ〉) 1
2

where τ⊥ is any non-zero vector orthogonal to τ . Moreover the function 1) and 2)
have restricted K-limit β at τ and the function 3) has restricted K-limit 0 at τ .

Remark 1.9. We recall that the point σ ∈ ∂Bn in Theorem 1.8 is the unique point
of ∂Bn such that

|1− 〈f(z), σ〉|2
1− ‖f(z)‖2 ≤ β

|1− 〈z, τ〉|2
1− ‖z‖2

for every z ∈ Bn.

Remark 1.10. By Lemma 1.7 we can apply Theorem 1.8 at the Wolff point of a
holomorphic self-map f of Bn with no fixed points, replacing β with α(f) and σ
with τ .

2. The Wolff point and the cut complex geodesics

In this section we prove three interesting facts related to the Wolff point, to the
cut complex geodesics and to the common fixed points of commuting holomorphic
maps.
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Theorem 2.1. Let f ∈ Hol(Bn, Bn) be without fixed points. A point τ ∈ ∂Bn is
the Wolff point of f if and only if

(1) lim
r→1

f(rτ) = τ .

(2) lim sup
r→1

|〈dfrττ, τ〉| ≤ 1.

Proof. The necessity of the assertion follows directly from Theorem 1.8. Suppose
the two conditions hold. If τ 6= e1, then there is an unitary matrix U such
that Uτ = e1. It is easy to see that by setting f̃ = UfU

t
, then f̃ is a holo-

morphic self-map of Bn without fixed points, and such that limr→1 f̃(re1) = e1,
lim supr→1 |〈dfre1e1, e1〉| ≤ 1 and α(f̃) = α(f). Hence we can suppose τ = e1,
w.l.o.g. Since lim supr→1 |〈dfre1e1, e1〉| ≤ 1, for any fixed ε > 0 there exists r ≥ 0
such that for every r > r we get |∂f1

∂z1
(re1)| < 1 + ε. The function Ψ(r) := f1(re1)

is a differentiable map from [0, 1) to ∆ such that Ψ′(r) = ∂f1
∂z1

(re1); then

Ψ(r2)−Ψ(r1) =
∫ r2

r1

Ψ′(r)dr for all r1, r2 ∈ [0, 1).

Whence

|f1(r2e1)− f1(r1e1)| ≤
∫ r2

r1

|∂f1

∂z1
(re1)|dr < (1 + ε)(r2 − r1),

for all r2, r1 > r. By hypotesis 1), by allowing r2 → 1 we get |1 − f1(re1)| <

(1 + ε)(1 − r), for all r > r. Therefore, by setting β := lim infz→e1
1−‖f(z)‖

1−‖z‖ , we
have:

β ≤ lim inf
r→1

1− ‖f(re1)‖
1− r

≤ lim inf
r→1

1− |f1(re1)|
1− r

< (1 + ε).

Since this last inequality is in force for an arbitrary ε > 0 we get β ≤ 1. Now we
can apply Theorem 1.8, and by the following Remark 1.9 we have:

|1− 〈f(z), τ〉|2
1− ‖f(z)‖2 ≤ β

|1− 〈z, τ〉|2
1− ‖z‖2 ≤ |1− 〈z, τ〉|2

1− ‖z‖2 .

Then the assertion holds by the uniqueness of the Wolff point (Theorem 1.4). ¤

Remark 2.2. Let f ∈ Hol(Bn, Bn) and τ, σ ∈ ∂Bn. Arguing as in the proof of
Theorem 2.1 it is easy to see that if lim

r→1
f(rτ) = σ and lim sup

r→1
|〈dfrτ τ, σ〉| ≤ k for

some k > 0 then lim inf
z→τ

1− ‖f(z)‖
1− ‖z‖ ≤ k.

Theorem 2.3. Let f ∈ Hol(Bn, Bn) be without fixed points and let τ ∈ ∂Bn be
the Wolff point of f . If ϕ : ∆ → Bn is a cut complex geodesic of f then τ ∈ ϕ(∆).

Proof. Define ϕ̃ : ∆ → Bn to be ϕ̃(ξ) = (ξ, 0, . . . , 0). Since Aut(Bn) acts doubly
transitively on ∂Bn and transforms complex geodesics onto complex geodesics, then
there exists Φ ∈ Aut(Bn) such that Φ ◦ ϕ(∆) = ϕ̃(∆). Set f̃ := Φ ◦ f ◦ Φ−1. It
is easy to see that f̃ has no fixed points and that Φ(τ) is the Wolff point of f̃ .
Furthermore f̃(ϕ̃(∆)) ⊆ ϕ̃(∆) and then f̃2(ξ, 0, . . . , 0) = . . . = f̃n(ξ, 0, . . . , 0) = 0.
If we set Ψ(ξ) := f̃1(ξ, 0, . . . , 0), then Ψ is a holomorphic self-map of ∆ without fixed



6 FILIPPO BRACCI

points and there exists the Wolff point η ∈ ∂∆ of Ψ. Since lim infξ→η
1−|Ψ(ξ)|

1−|ξ| ≤ 1
we get

lim inf
z→ϕ̃(η)

1− ‖f̃(z)‖
1− ‖z‖ ≤ lim inf

z → ϕ̃(η)
z ∈ ϕ̃(∆)

1− ‖f̃(z)‖
1− ‖z‖ = lim inf

ξ→η

1− |Ψ(ξ)|
1− |ξ| ≤ 1.

By Theorem (1.8), and since

lim
r→1

f̃(rϕ̃(η)) = lim
r→1

f̃(rη, 0, . . . , 0) = lim
r→1

ϕ̃(f̃1(rη)) = lim
r→1

ϕ̃(Ψ(rη)) = ϕ̃(η),

we have: lim supr→1 |〈df̃rϕ̃(η)ϕ̃(η), ϕ̃(η)〉| ≤ 1; by theorem 2.1 ϕ̃(η) turns out to be

the Wolff point of f̃ . Then Φ(τ) = ϕ̃(η) and hence Φ(τ) ∈ ϕ̃(∆) and τ ∈ ϕ(∆). ¤
Theorem 2.4. Let f, g ∈ Hol(Bn, Bn) . Let f be without fixed points and let
τ ∈ ∂Bn be its Wolff point. If f has a cut complex geodesic and f ◦ g = g ◦ f then
g has restricted K-limit τ at τ .

Proof. Let ϕ : ∆ → Bn be a cut complex geodesic of f . By Theorem 2.3 we get
that τ ∈ ϕ(∆). Up to conjugation in Aut(Bn) , we can suppose τ = e1 and ϕ : ξ →
(ξ, 0, . . . , 0). As ϕ is a cut complex geodesic of f we have

(2.1) f2(ξ, 0, . . . , 0) = . . . = fn(ξ, 0, . . . , 0) = 0.

Set γ(t) := fk(t)(2[1−2k(t)(1− t)]f(z0)), where t ∈ [0, 1), z0 = (0, . . . , 0) and k(t) is
the greatest integer less than or equal to − log2(1− t). Since γ([1−2−k, 1−2−k−1])
is the image by fk of the segment S from z0 to f(z0), it is easily checked that γ is
continuous and γ(t) → e1 as t → 1. Moreover limt→1 g(γ(t)) = limk→∞ g(fk(S)) =
limk→∞ fk(g(S)) = e1 (by the Wolff-Denjoy Theorem for Bn, see [9], [1]). By
equation (2.1) it holds that γ(t) is a special e1-curve and by the Lindelöf-Čirka
theorem (see [10], [1]) g has restricted K-limit e1 at e1. ¤
Remark 2.5. If g has no fixed points and lim sup

r→1
|〈dgrττ, τ〉| ≤ 1, then τ turns out

to be the Wolff point of g. In particular K- limz→τ g(z) = τ (by Theorem 2.1).
Again note that we can substitute hypothesis 2) in Theorem 2.1 with an equivalent
one: lim supr→1

∣∣∣1−〈g(rτ),τ〉
1−r

∣∣∣ ≤ 1.

3. K-differentiability

We will now state some technical results about Korányi regions and a notion of
boundary differentiability.

Lemma 3.1. Let f ∈ Hol(Bn, Bn) and τ ∈ ∂Bn. If lim infz→τ
1−‖f(z)‖

1−‖z‖ = β < +∞
then there exists σ ∈ ∂Bn such that f maps Korányi regions with vertex τ into
Korányi regions with vertex σ.

A proof can be found in [10]. In particular every automorphism of Bn maps
Korányi regions onto Korányi regions.

Definition 3.2. A holomorphic self-map f of Bn is said to be K-differentiable

at τ ∈ ∂Bn, if K- lim
z→τ

∂fj

∂zk
exist for j, k = 1, . . . , n. In this case we define the

K-differential of f at τ to be:

k -dfτ := lim
r→1

dfrτ .
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Remark 3.3. If we replace the request for the existence of K- limz→τ
∂fj

∂zk
with the

stronger one concerning the existence of limz→τ
∂fj

∂zk
, we get a notion of differentiabil-

ity at the boundary. Of course boundary differentiability implies K-differentiability,
and an automorphism of Bn is differentiable in every boundary point.

As we will soon see, the fact that a holomorphic self-map f is K-differentiable
at τ ∈ ∂Bn means that it is C1 on K(τ, M)

⋃{τ}, for all M > 1:

Proposition 3.4. If f ∈ Hol(Bn, Bn) is K-differentiable at τ ∈ ∂Bn, then

• there exists σ ∈ Bn such that K- lim
z→τ

f(z) = σ.

• for each v ∈ Cn such that v + τ ∈ Bn, we get

K- lim
‖v‖→0

f(τ + v)− σ − k-dfτ (v)
‖v‖ = 0.

Proof. By a straightforward computation we see that a Korányi region is convex.
Whence we can apply the mean value Theorem to the real (and to the imaginary)
part of each component of f to obtain the assertion. ¤

The second statement of Proposition 3.4 can be replaced by :
for each differentiable curve γ : [0, 1) → K(τ,M) such that lim

t→1
γ(t) = τ and

lim
t→1

γ′(t) = v we get:

lim
t→1

f(γ(t))− σ

1− t
= k -dfτ (v).

By using Remark 2.2 and Lemma 3.1 we have the chain rule for K-differentiable
maps:

Proposition 3.5. Let be f, g ∈ Hol(Bn, Bn) . Let g be K-differentiable at τ ∈ ∂Bn

and let σ = K- lim
z→τ

g(z). If f is K-differentiable at σ then f ◦ g is K-differentiable

at τ and moreover k-d(f ◦ g)τ = k-dfσ ◦ k-dgτ .

By using Theorem 1.8 for K-differentiable maps we get

Theorem 3.6. Let f ∈ Hol(Bn, Bn) be without fixed points, and let τ ∈ ∂Bn be
its Wolff point. If f is K-differentiable at τ then

(1) 〈k-dfττ, τ〉 = α(f) 6= 0,
(2) 〈k-dfττ⊥, τ〉 = 0,

where τ⊥ is any non-zero vector orthogonal to τ .

Definition 3.7. The tangent complex plane TCτ ∂Bn at τ ∈ ∂Bn is given by

TCτ ∂Bn = {v ∈ Cn : 〈v, τ〉 = 0}.
Proposition 3.8. Let f ∈ Hol(Bn, Bn) be without fixed points and K-differentiable
at its Wolff point τ ∈ ∂Bn. Then v ∈ TCτ ∂Bn if and only if k-dfτ (v) ∈ TCτ ∂Bn; in
particular TCτ ∂Bn is k-dfτ invariant.

Proof. It is a straightforward consequence of Theorem 3.6. ¤
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4. Inner Space

Definition 4.1. Let f ∈ Hol(Bn, Bn) be K-differentiable at a point τ ∈ ∂Bn. An
eigenvector v of k -dfτ is properly internal if v 6∈ TCτ ∂Bn.

By definition an eigenvector v of k -dfτ is properly internal if and only if there
exists ξ ∈ C such that (ξv + τ) ∈ Bn.

Proposition 4.2. Let f ∈ Hol(Bn, Bn) be without fixed points, K-differentiable
at its Wolff point τ ∈ ∂Bn. If v is a properly internal eigenvector of k-dfτ , then
k-dfτ (v) = α(f)v.

Proof. Write v = hτ + τ⊥ where 〈τ, τ⊥〉 = 0 and h 6= 0 by hypothesis. By Theo-
rem 3.6 and since k -dfτ (v) = λv with λ ∈ C, we have:

λh = 〈k -dfτ (v), τ〉 = h〈k -dfτ (τ), τ〉+ 〈k -dfτ (τ⊥), τ〉 = hα(f).

Then λ = α(f). ¤
In force of the above proposition, we can define the inner space of a map f :

Definition 4.3. Let f ∈ Hol(Bn, Bn) be without fixed points and K-differentiable
at its Wolff point τ ∈ ∂Bn. We define the inner space of f , A(f), to be the vector
space generated by the properly internal eigenvectors of k -dfτ , i.e.

A(f) = span{v ∈ Cn : k -dfτ (v) = α(f)v, 〈v, τ〉 6= 0}.
We call inner vector each element of A(f).

Remark 4.4. (1) For each m ∈ 0, . . . , n there exists fm ∈ Hol(Bn, Bn) such
that dim A(fm) = m, see §6 for examples with fm ∈ Aut(Bn) .

(2) If there exist no properly internal eigenvectors of k -dfτ then A(f)= {0} and
we say that A(f) is trivial.

(3) By Proposition 4.2 the properly internal eigenvectors have the same eigen-
value, then A(f) is really a subspace of an eigenspace of k -dfτ . (We will soon
see that if A(f)6= {0} then it is actually the eigenspace which corresponds
to the boundary dilatation coefficient of f at τ).

(4) {A(f)+τ}⋂
Bn is an open set of A(f)+τ ' Cdim A(f).

(5) If dim A(f)= 1 then each inner vector is a properly internal eigenvector.
(6) If dim A(f)> 1 then there are inner vectors which are not properly internal

eigenvectors.

Proposition 4.5. Let f ∈ Hol(Bn, Bn) be without fixed points and K-differentiable
at its Wolff point τ ∈ ∂Bn. If A(f) is non-trivial then it coincides with the
eigenspace corresponding to the eigenvalue α(f) of k-dfτ .

Proof. Let S be the eigenspace of k -dfτ corresponding to α(f). By Proposition 4.2
we know that A(f)⊆ S. Let v ∈ S. Since A(f)6= {0} if v is not properly internal
then there is a properly internal inner vector w. Then w − v ∈ A(f) and therefore
v = w − (w − v) belongs to A(f), too. ¤

The inner space of a holomorphic self-map of Bn is an “intrinsic” concept, that
is, it is independent under conjugation in Aut(Bn) :

Proposition 4.6. Let f ∈ Hol(Bn, Bn) be without fixed points and K-differentiable
at its Wolff point τ ∈ Bn; if χ ∈ Aut(Bn) , set f̃ = χ ◦ f ◦ χ−1. Then the inner
space A(f) is isomorphic to the inner space A(f̃) with isomorphism dχτ .
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Proof. We recall that χ extends holomorphically in a neighborhood of Bn. Set
σ = χ(τ); we can easily see that f̃ is a holomorphic self-map of Bn with no fixed
points and σ is its Wolff point. Furthermore, by Lemma 3.1, f̃ is K-differentiable
at σ. Now if v is a properly internal eigenvector of k -dfτ at τ , we get

k -df̃σ(dχτ (v)) = dχτ ◦ k -dfτ ◦ dχ−1
σ ◦ dχτ (v) = dχτ ◦ k -dfτ (v) = α(f)dχτ (v).

Hence dχτ (v) is an eigenvector of k -df̃σ, and since dχτ is a isomorphism of TτBn

onto TσBn which maps TCτ ∂Bnonto TCσ∂Bn, then dχτ (v) is properly internal and
A(f) ' A(f̃). ¤

Now we are able to find the relationship between the inner space and the cut
complex geodesics of a holomorphic self-map of Bn:

Proposition 4.7. Let f ∈ Hol(Bn, Bn) be without fixed points and K-differentiable
at its Wolff point τ ∈ ∂Bn. Let ϕ : ∆ → Bn be a complex geodesic with direction
v ∈ Cn. If f(ϕ(∆)) ⊆ ϕ(∆), then v is a properly internal eigenvector of k-dfτ ; in
particular A(f) is non-trivial.

Proof. By Theorem 2.3 it follows that τ ∈ ϕ(∆) and we can suppose (τ + tv) ∈
K(τ, M) for some M > 1 and t ∈ R, |t| ¿ 1. By Proposition 3.4 we get k -dfτ (v) =
limt→0(f(τ + tv) − τ)/t. As f(τ + tv) ⊆ ϕ(∆) for every t small, it follows that
k -dfτ (v) = λv for some λ ∈ C. Then v is a properly internal eigenvector of k -dfτ ,
and by Proposition 4.2 we get λ = α(f). ¤

If f ∈ Hol(Bn, Bn) has no fixed points and f is K-differentiable at its Wolff
point, then Proposition 4.7 gives a necessary condition for a complex geodesic to
be a cut complex geodesic of f ; in particular if A(f)= {0} then f has no cut complex
geodesics. As we see in the following example, the condition fails to be sufficient:

Example 4.8. The holomorphic function defined as f : B2 → B2,

f(z1, z2) :=
(

1 + z1

3− z1
,
(z1 − 1)2

z1 − 3

)

has no fixed points, and (1, 0) is its Wolff point (apply Theorem 2.1). The map
f is clearly differentiable at (1, 0) and df(1,0)(1, 0) = (1, 0). The vector (1, 0) is a
properly internal eigenvector but the complex geodesic ϕ : z 7→ (z, 0) is not a cut
complex geodesic of f .

We really need a sort of “rigidity” on the complex geodesics to get an exact
correspondence between the inner vectors and the cut complex geodesics: we say
that f has the rigidity property if for each complex geodesic ϕ : ∆ → Bn there exists
a complex geodesic η : ∆ → Bn such that f(ϕ(∆)) ⊆ η(∆).

Proposition 4.9. Let f ∈ Hol(Bn, Bn) be without fixed points and K-differentiable
at its Wolff point τ ∈ ∂Bn. If f has the rigidity property then a complex geodesic
ϕ : ∆ → Bn with direction v ∈ Cn is a cut complex geodesic if and only if τ ∈ ϕ(∆)
and v is a properly internal eigenvector of k-dfτ .

Proof. The necessity follows from Theorem 2.3 and Proposition 4.7.
To prove the sufficiency we operate as follows: let η : ∆ → Bn be such that
f(ϕ(∆)) ⊆ η(∆). We have that (τ + tv) ∈ K(τ, M)

⋂
ϕ(∆) for some M > 1
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and t ∈ R, |t| ¿ 1. Moreover f(τ + tv) ∈ η(∆). Since K- limz→τ f(z) = τ (see
Theorem 1.8) we get τ ∈ η(∆). If w is the direction of η(∆), it follows that

α(f)v = k -dfτ (v) = lim
t→0

f(τ + tv)− τ

t
= λw.

Since α(f) 6= 0 (see Lemma 1.7), this implies λ 6= 0 and w = α(f)λ−1v and
ϕ(∆) = η(∆). ¤

Since any element in Aut(Bn) has the rigidity property (see [10] or [1]), we can
apply the above proposition to Aut(Bn) .
Working with the inner space of a function in the next Proposition 4.10 we will
be able to find necessary conditions for maps to commute (better results will be
obtained in the next section):

Proposition 4.10. Let f, g ∈ Hol(Bn, Bn) be with no fixed points K-differenti-
able at their common Wolff point1 τ ∈ ∂Bn. If f ◦ g = g ◦ f and if A(f) has
dimension 1 then k-dgτ has one and only one (up to complex multiple) properly
internal eigenvector in common with k-dfτ . In particular A(g) 6= {0}.
Proof. Let v be a generator of A(f). By Proposition 3.5 f ◦ g is K-differentiable at
τ and k -d(f ◦ g)τ = k -dfτ ◦ k -dgτ (the same holds for g ◦ f); hence

k -dfτ ◦ k -dgτ (v) = k -dgτ ◦ k -dfτ (v) = k -dgτ (α(f)v) = α(f)k -dgτ (v).

Since by Proposition 4.5 A(f) coincides with the eigenspace of α(f) and dim A(f) =
1, we get k -dgτ (v) = λv for some λ ∈ C. ¤

5. Generalized Inner Space

Let us start this section with the following result:

Theorem 5.1. Let f ∈ Hol(Bn, Bn) be without fixed points, K-differentiable at
its Wolff point τ ∈ ∂Bn. The boundary dilatation coefficient of f at τ , α(f), is an
eigenvalue for k-dfτ .

Proof. Let a1, . . . , ar be the eigenvalues of k -dfτ , and let

Am =
∞⋃

j=1

ker(k -dfτ − amI)j

where m = 1, . . . , r and I is the identity matrix. The vector spaces Am are the
generalized eigenspaces of k -dfτ and therefore Cn =

⊕r
m=1 Am. Then there exist

m0 ∈ {1, . . . , r} and v ∈ Am0 such that 〈v, τ〉 6= 0. For the sake of clarity, we set
a = am0 .
By hypothesis we have v ∈ ker(k -dfτ − aI)j for some j ≥ 1. We can suppose
j > 1, otherwise v is a properly internal eigenvector of k -dfτ and by Proposition 4.2
we have a = α(f) and we are done. By Proposition 3.5 (setting k -dfτ

0 = I) the
following equality holds:

(5.1) (k -dfτ − aI)j =
j∑

h=0

(
j
h

)
(−a)hk -dfτ

(j−h).

1The author has recently proved that two commuting holomorphic self-maps of Bn, with no
fixed points, have the same Wolff point unless their restrictions to the complex geodesic passing
through their different Wolff points are two commuting hyperbolic automorphisms of that geodesic
(see [3]).
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We claim that a 6= 0. Firstly, by Theorem 3.6 and Proposition 3.8 we see that

(5.2) 〈k -dfτ
k(τ), τ〉 = α(f)k,

(5.3) 〈k -dfτ
k(τ⊥), τ〉 = 0.

Now assume that v = λτ + τ⊥ with λ 6= 0. If a = 0 then k -dfτ
j(v) = 0, that is

0 = 〈k -dfτ
j(v), τ〉 = 〈k -dfτ

j(λτ + τ⊥), τ〉 = λ〈k -dfτ
j(τ), τ〉 = λα(f)j 6= 0

by Lemma 1.7. This is a contradiction; then a 6= 0.
Since a 6= 0, from (5.1) we obtain

v = −
j−1∑

h=0

(
j
h

)
(−a)h−jk -dfτ

(j−h)(v)

and from this we have

〈v, τ〉 = −
j−1∑

h=0

(
j
h

)
(−a)h−j〈k -dfτ

(j−h)(v), τ〉.

By equation (5.2) and since v = λτ + τ⊥ with λ 6= 0 we get

〈v, τ〉 = −
j−1∑

h=0

(
j
h

)
(−a)h−jλα(f)j−h.

Now, as 〈v, τ〉 = λ 6= 0, we have

1 = −
j−1∑

h=0

(
j
h

)
(−a)h−jα(f)j−h

that is
j∑

h=0

(
j
h

)
(−a)hα(f)(j−h) = 0,

hence (α(f)− a)j = 0, and a = α(f). ¤

Definition 5.2. Let f ∈ Hol(Bn, Bn) be without fixed points and K-differentiable
at its Wolff point τ ∈ ∂Bn. We call generalized inner space of f the subspace of Cn

given by:

AG(f) =
∞⋃

j=1

ker(k -dfτ − α(f)I)j .

The space AG(f) is not reduced to zero by Theorem 5.1 and k -dfτ |AG(f) :
AG(f) 7→ AG(f) is a linear operator with only the eigenvalue α(f). By Propo-
sition 4.5 and by Theorem 5.1 it turns out that A(f)⊆ AG(f) and AG(f) 6= {0}.
Moreover a Cartan-type decomposition of Cn is possible at the Wolff point:

Theorem 5.3. Let f ∈ Hol(Bn, Bn) be without fixed points, K-differentiable
at its Wolff point τ ∈ ∂Bn. Then there exists V (f) ⊆ TCτ ∂Bn such that Cn =
AG(f)

⊕
V (f) is a k-dfτ -invariant decomposition.



12 FILIPPO BRACCI

Proof. Let Am (m = 1, . . . , k) be the generalized eigenspaces of k -dfτ not associated
to α(f). Set V (f) =

⊕k
m=1 Am. From the proof of Theorem 5.1 it follows that

each generalized eigenvector of k -dfτ that does not belong to TCτ ∂Bn is in AG(f).
Then V (f) ⊆ TCτ ∂Bn and Cn = AG(f)

⊕
V (f) is a k -dfτ -invariant decomposition

since it is the sum of generalized eigenspaces of k -dfτ . ¤

Definition 5.4. Let f ∈ Hol(Bn, Bn) be without fixed points and K-differentiable
at its Wolff point τ ∈ ∂Bn; we call generalized inner vectors the elements of AG(f)
and generalized properly internal vectors the elements of AG(f) that do not belong
to TCτ ∂Bn.

Remark 5.5. If AG(f) has dimension one, it follows from Theorem 5.3 that A(f)=
AG(f). In particular if A(f) is trivial then AG(f) has dimension greater than or
equal to two.

As one can expect, for AG(f) a property similar to that stated in Proposition 4.6
for A(f) holds; in fact, since formula (5.1) holds, we can easily generalize the proof
of Proposition 4.6 in order to get:

Proposition 5.6. Let f ∈ Hol(Bn, Bn) be without fixed points and K-differentiable
at its Wolff point τ ∈ Bn; if χ ∈ Aut(Bn) , set f̃ = χ ◦ f ◦ χ−1. Then the gener-
alized inner space AG(f) is isomorphic to the generalized inner space AG(f̃) with
isomorphism dχτ . In particular α(f) = α(f̃).

Before we can state the main result of this section we need another simple pre-
liminary result directly following by formula (5.1):

Lemma 5.7. Let f, g ∈ Hol(Bn, Bn) be without fixed points and K-differentiable
at the common Wolff point τ ∈ ∂Bn. If f ◦ g = g ◦ f then k-dgτ maps AG(f) into
itself and k-dfτ maps AG(g) into itself.

And now we have:

Theorem 5.8. Let f, g ∈ Hol(Bn, Bn) be without fixed points and K-differentiable
at the common Wolff point τ ∈ ∂Bn. If f ◦ g = g ◦ f then there exists a common
generalized properly internal vector of k-dfτ and k-dgτ ; in particular

AG(f)
⋂
AG(g) 6= {0}.

Proof. Let v ∈ AG(f), v 6∈ TCτ ∂Bn (such a v exists by Theorem 5.3). Since
Lemma 5.7 holds, then AG(f) = A1

⊕
. . .

⊕
Ak, where the Aj are the generalized

eigenspaces of k -dgτ |AG(f). Then v = a1 + . . .+ak (aj ∈ Aj), and since 0 6= 〈v, τ〉 =
〈a1, τ〉+ . . . + 〈ak, τ〉, there exists jo ∈ {1, . . . , k} such that 〈aj0 , τ〉 6= 0. Then aj0

is a generalized properly internal eigenvector of k -dgτ , hence aj0 ∈ AG(g). ¤

6. Some applications to automorphisms.

In this last section we apply the results obtained to the case of the automorphisms
of Bn with no fixed points (hyperbolic and parabolic automorphisms). This will
give a different (and more geometric) point of view for the study of the structure
of Aut(Bn) . We now recall this statement (see e.g. [5]):
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Theorem 6.1. Let γ be an automorphism of Bn with no fixed points. If γ has
two different fixed points on ∂Bn(i.e. if it is hyperbolic), up to conjugacy, we can
suppose

(6.1) γ(z) =

(
cosht0 z1 + sinht0, e

iθ2z2, . . . , e
iθnzn

)

sinht0 z1 + cosht0

where t0 ∈ R \ {0} and θj ∈ R for j = 2, . . . , n.

Suppose t0 > 0. An automorphism as (6.1) fixes the two points e1 and −e1 and,
by a straightforward calculation, we can see that e1 is its Wolff point. Another direct
calculation about dγe1

implies that α(γ) = e−2t0 and A(γ) = AG(γ) = span{e1}.
By Proposition 4.9 the automorphism γ has one, and only one, cut complex geo-
desic, that is the complex geodesic which passes through e1 with direction e1. Note
that the second fixed point of γ (i.e. −e1) belongs to the cut complex geodesic. By
Proposition 4.6 we can state:

Proposition 6.2. Let γ be a hyperbolic automorphism of Bn. Then there is one,
and only one, cut complex geodesic passing through the two fixed points of γ and
with direction the unique (up to C-multiples) inner vector of dγ at its Wolff point.

That is, given a hyperbolic automorphism γ of Bn, it is equivalent to know the
fixed points of γ, its cut complex geodesic or its inner space. Now we pass to the
case of parabolic automorphisms (see [6]):

Theorem 6.3. Let η be an automorphism of Bn with no fixed points. If η has only
one fixed point on ∂Bn (i.e. if it is parabolic), up to conjugacy, we can suppose

(6.2) η(z) =

(
eiθ1z1, . . . , e

iθn−1zn−1, (1− it)zn + it
)

−itzn + 1 + it

with t ∈ R \ {0} and θj ∈ R for j = 1, . . . , n− 1; or

(6.3) η(z) =

(
eiθ1z1, . . . , e

iθn−2zn−2, zn−1 + szn − s,−szn−1 + (1− β)zn + β
)

−szn−1 − βzn + 1 + β

with Reβ > 0, s =
√

2Reβ and θj ∈ R for j = 1, . . . , n− 2.

An automorphism of type (6.2) or (6.3) has only one fixed point en at the bound-
ary, that is its Wolff point. A straightforward calculation shows that α(η) = 1.
If η is of type (6.2), then A(η) is non-trivial, since en is an eigenvector of dηen and
in particular we can easily see that AG(η) = A(η) and dimAG(η) = 1 + #{j =
1, . . . , n − 1 : eiθj = 1}. If η is of type (6.3), then A(η)= {0}; the eigenspace cor-
responding to α(η) is a m-dimensional space generated by {en−1}

⋃{ej : eiθj = 1}
where m is the number of j such that eiθj = 1, and AG(η) is generated by
A(η)

⋃{en}. This implies that en is a generalized properly internal eigenvector
which is not a inner vector. Hence AG(η) has dimension equal to 2 + #{j =
1, . . . , n − 2 : eiθj = 1}. It turns out that a parabolic automorphism of type (6.2)
has at least one cut complex geodesics, and a parabolic automorphism of type (6.3)
has no cut complex geodesic. Since the inner and the generalized inner spaces are
“intrinsic”, we can easily generalize these results:

Proposition 6.4. Let η ∈ Aut(Bn) be a parabolic automorphism. Then
(1) η is conjugated to a parabolic automorphism of type (6.2) if and only if

A(η) is non-trivial, and in this case η has a cut complex geodesic for each
properly internal vector.
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(2) η is conjugated to a parabolic automorphism of type (6.3) if and only if
A(η) is trivial, and in this case η has no cut complex geodesics.

If K ⊂ Cn is a subset biholomorphic to the unit ball of Cm (for some m)
through a biholomorphism Λ then a holomorphic self-map f of K can be regarded
as a holomorphic self-map of Bm (namely Λ ◦ f ◦ Λ−1). Keeping this in mind we
can state:

Theorem 6.5. Let γ be an automorphism of Bn with no fixed points and let τ ∈ ∂Bn

be its Wolff point. Let T be a m-dimensional subspace of Cn. Set L = {T +y}⋂
Bn,

for some y ∈ ∂Bn, and suppose L 6= ∅. If γ|L is a well-defined self-map of L, then
τ ∈ L and γ|L is a hyperbolic (parabolic) automorphism of L if and only if γ is
hyperbolic (parabolic) of Bn.

Proof. It is clear that γ|L is an automorphism of L with no fixed points, and since
L is biholomorphic to the unit ball of Cm, γ|L has at least one and at most two
boundary fixed points. Therefore if γ is a parabolic automorphism of Bn then γ|L
has only one boundary fixed point which has to be τ .
Now we can assume γ to be a hyperbolic automorphism of Bn. We have to prove
that both fixed points of γ belong to L. If γ|L has only one boundary fixed point,
say σ ∈ ∂Bn, then σ has to be the Wolff point of γ|L. By Theorem 1.4 and by
iterating γ|L we have (γ|L)k(z) → σ as k → ∞ for all z ∈ L; since γ = γ|L on
L then σ = τ . As L is the image under a translation and a dilatation of Bm,
then there is at least one generalized properly internal vector (see Theorem 5.3)
for d(γ|L)τ , say w ∈ T . But then w ∈ AG(γ) = A(γ), and hence A(γ)⊆ T . By
Proposition 6.2, the only cut complex geodesic of γ belongs to L, in particular both
the boundary fixed points of γ belong to L. ¤

The above theorem states that if γ is an automorphism of Bn with Wolff point
τ ∈ ∂Bn and L is an affine subset of Bn then γ(L) ⊆ L implies that there is a m-
dimensional subspace T of Cn such that T

⋂AG(γ) 6= {0} and L = {T + τ}⋂
Bn.

In particular if γ is a hyperbolic automorphism of Bn and m = 1 then L is the only
cut complex geodesic of γ.
If γ is an automorphism of Bn with Wolff point τ ∈ ∂Bn, and L = {T + τ}⋂

Bn

(T as in Theorem 6.5), a simple condition which guarantees γ to be a well-defined
self-map of L is that dγτ (T ) ⊆ T .

Theorem 6.6. Let f, g be parabolic automorphisms of Bn. Suppose f ◦ g = g ◦ f
and A(g) 6= {0}.

(1) If A(f)6= {0} then there is at least one common cut complex geodesic, or
equivalently A(f)

⋂
A(g) 6= {0}.

(2) If A(f)= {0} then dim(AG(f)
⋂AG(g)) ≥ 2.

Proof. It is well known that f and g have the same Wolff point (see e.g. [1]). If
A(f) 6= {0} then A(f)= AG(f) and A(g)= AG(g). From Theorem 5.8 it follows
that there is at least one common properly internal eigenvector; by Proposition 6.4
part 1 is proved.
Now we prove the second statement: note that AG(g) has dimension ≥ 2, by
Proposition 4.10. Moreover AG(f) has dimension greater than or equal to 2 by
Remark 5.5. By Lemma 5.7, dfτ (AG(g)) ⊆ AG(g) and then f is a well-defined
self-map of W := (AG(g) + τ)

⋂
Bn. Since A(f |W ) ⊆ A(f) (up to isomorphic

images) and AG(f |W ) ⊆ AG(f) then dimAG(f |W ) ≥ 2, otherwise A(f) 6= {0}
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by Remark 5.5. So there are at least two linearly indipendent generalized inner
eigenvectors v, w for d(f |W )τ , with v, w ∈ AG(f |W ). Therefore v, w ∈ TτW =
AG(g) and we are done. ¤
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