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Introduzione

Queste note sono il frutto di un live-TEXing durante le lezioni del corso estivo Loewner’s Theory from
the deterministic and stochastic point of view, tenutosi a Cortona dal 15 al 27 agosto 2010. Lo scopo di
tale scuola (a mia opinione ben riuscito) è stato di offrire una introduzione alla Teoria di Loewner dal
punto di vista dinamico (catene di Loewner) e stocastico (SLE). I corsi sono stati tenuti da Filippo Bracci
e Robert Bauer.

L’idea di avere una revisione delle note da me prese sul momento è sorta verso gli ultimi giorni di
corso parlandone con Filippo Bracci. Queste note riportano alla fine un seminario gentilmente tenuto
da Santiago Dı́az Madrigal a complemento delle lezioni “deterministiche”.

Le mie note originali comprendevano anche le lezioni di Robert Bauer, ma la mia (in)competenza
probabilistica non è tale da assicurare la correttezza di ció che abbia scritto. Di conseguenza ho preso la
decisione di rimuovere questa parte. Gli argomenti trattati in tali lezioni sono in ogni modo altamente
ben riportati nel libro, scelto come testo di riferimento, di Lawler Conformally invariant processes in the
plane.

Tengo a ringraziare caldamente Filippo Bracci e Santiago Dı́az-Madrigal per avere avuto la pazienza
di rileggere, corregere e completare questo lavoro. Un grazie va anche a tutti gli altri partecipanti della
scuola estiva di Cortona, in particolare a Leandro Arosio, Cinzia Bisi, Pasha Gumenyuk, Georgy Ivanov
e Caterina Stoppato per aver contribuito con le loro idee nelle risoluzioni degli esercizi proposti e per
aver costruito un ottimo clima. Infine grazie all’efficiente e impeccabile segreteria del Palazzone.

Michele Triestino

UMPA-ENS
Michele.Triestino@umpa.ens-lyon.fr
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1 Loewner’s chains and related topics (F. Bracci)

1.1 Historic motivation

Karel Löwner was born the 29th of May 1893, at Lány, Bohemia, but was also known as Karl
Löwner, from the German version of his first name. He received his Ph.D. from the University of
Prague in 1917 under the supervision of Georg Pick. Later on, he spent some years at the universities
of Berlin and Cologne. He emigrated to the US in 1939 and changed his name into Charles Loewner.
In the United States, he worked at Brown University, Syracuse University and eventually at Stanford
University, where he stayed until his death on the 8th of January 1968.

Loewner was motivated in studying the subject bearing nowadays his name, by the following
conjecture due to Bieberbach: consider a univalent function f (z) = z +

∑
∞

j=2 a jz j on the unit disc D then
|a j| ≤ j for any j ≥ 2. Using his own method, Loewner solved it for a3. Bieberbach’s conjecture was
completely solved in the ’80s by L. de Branges, see also [FP85].

The original idea of Charles Loewner was to embed the univalent function into a special flow
governed by a nice vector field for which good estimates of the coefficients are available and then
recover estimates for the initial function.

1.2 Preliminaries

Theorem 1.2.1 (Riemann Mapping Theorem). Let D be a simply connected proper domain in C, then there
exists a biholomorphic function f : D −→ D .

Moreover, if z0 ∈ D, there exists a unique f : D −→ D biholomorphic such that f (0) = z0 and f ′(0) > 0.

As an exercise, prove the uniqueness.

Exercise 1.2.1 (The Koebe function). Consider f : z ∈ D 7−→ z
(1−z)2 ∈ C − [−∞,−1

4 ]: show that it defines
a biholomorphism and expand it into power series at z = 0.

Observe that it gives exactly the bounds for the Bieberbach conjecture.

Exercise 1.2.2. Find a biholomorphism from D onto the upper half-plane H.

Theorem 1.2.2 (Carathéodory). The Riemann mapping f : D −→ D extends continuously up to ∂D if and
only if ∂D is locally connected.

1.3 The class S

Definition 1.3.1. We define S := { f : D −→ C univalent, f (0) = 0, f ′(0) = 1}, where we recall that a
univalent function is a injective holomorphic function.

Exercise 1.3.1. • If f ∈ S is such that | f (z)| ≤ 1 for any z ∈ D, then f (z) = z,

• show that @ f ∈ S such that f (D) = C.

Remark 1.3.1. • In Cn, n > 1, there exist simply connected domains D  Cn such that D is
biholomorphic to Cn (Fatou-Bieberbach phenomena).

• In Cn,n > 1, there is no Riemann Mapping Theorem. For instance, as already noticed by Poincaré,
the unit ball and the polydisc are not biholomorphic in dimension greater than 1 because their
automorphisms groups are not isomorphic.

Remark 1.3.2. Given 1 : Dr(z0) −→ C univalent,the function f (z) := 1((z+z0)r)−1(0)
r1′(z0) is in S.
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1.4 Estimates on S

Theorem 1.4.1 (Area Theorem). Let 1(z) = 1
z + b0 + b1z + b2z2 + . . . be a univalent function in D− {0}, with

a simple pole at z = 0, then
∑

n|bn|
2
≤ 1.

Dimostrazione. Define Dr := C − 1(Dr) and

Area(Dr) :=
"

Dr

dx ∧ dy
complex Gauss-Green

=
1
2i

∫
∂Dr

zdz = −
1
2i

∫
∂Dr

1d1;

as 1(z) = 1
z + b0 + b1z + . . . and d1 = 1′(z)dz =

(
−

1
z2 + b1 + . . .

)
dz we have

1d1 =
(1

z
+ b0 + b1z + . . .

) (
−

1
z2 + b1 + . . .

)
dz = −

(
1

1 − z
+

b1

z
+ . . .

)
dz;

we observe that z ∈ ∂Dr if and only if zz = r2, so that z = r2

z on ∂Dr; moreover,
∫
∂Dr

zndz = 0 for n , −1

and
∫
∂Dr

znzmdz =

0 n , m − 1
2πir2 n = m − 1

.

Thus, − 1
2i

∫
∂Dr
1d1 = π

(
1
r2 −

∑
∞

n=1 n|bn|
2r2n

)
≥ 0. We let r go to 1 and we get the result. �

Corollary 1.4.2. Let f (z) = z + a2z2 + a3z3 + . . . ∈ S, then |a2| ≤ 2.

Dimostrazione. Let 1(z) := 1√
f (z2)

exercise
= 1

z −
a2
2 z +

∑
j c jz2 j+1; the claim is that 1 is univalent in D with a

simple pole at z = 0; if so, by the Area Theorem, we have |a2| ≤ 2.
We prove the claim. Firstly, 1 is holomorphic in D − {0}, with pole at z = 0 (exercise). We show

injectivity; suppose 1(z1) = 1(z2), then f (z2
1) = f (z2

2), so that z1 = ±z2. Since we have observed that 1 is
odd, it can only occur z1 = z2. �

Theorem 1.4.3 (Koebe’s 1
4 -theorem). If f ∈ S then f (D) ⊃ D1/4.

Dimostrazione. Let w0 < f (D); define 1 : D −→ C as

1(z) :=
w0 f (z)

w0 − f (z)
.

Then (exercise) 1 ∈ S. Moreover, 1 has expansion 1(z) = z +
(
a2 + 1

w0

)
z2 + . . .. By Corollary 1.4.2,∣∣∣∣∣a2 +

1
w0

∣∣∣∣∣ ≤ 2, |a2| ≤ 2,

hence
∣∣∣ 1
w0

∣∣∣ ≤ ∣∣∣a2 + 1
w0

∣∣∣ + |a2| = 4. �

The Koebe’s function realizes the minimum (why?). We need now a technical result.

Theorem 1.4.4 (Growth Theorem). Given f ∈ S, then

(a)
|z|

(1 + |z|)2 ≤ | f (z)| ≤
|z|

(1 − |z|)2 ,

(b)
1 − |z|

(1 + |z|)3 ≤ | f
′(z)| ≤

1 + |z|
(1 − |z|)3 ,
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(c)
1 − |z|
1 + |z|

≤

∣∣∣∣∣z f ′(z)
f (z)

∣∣∣∣∣ ≤ 1 + |z|
1 − |z|

.

Moreover, equalities hold if and only if f is a rotation of the Koebe function.

Dimostrazione. (b) It is true for z = 0; let r ∈ (0, 1), |z| = r, then set

1(ζ) :=
f
(
ζ+z
1+zζ

)
− f (z)

(1 − |z|2) f ′(z)

Exercise 1.4.1. If a ∈ D, then Ta(z) := a−z
1−az ∈ Aut(D) and Ta(0) = a.

Exercise 1.4.2. Show that 1 ∈ S

Then
1(ζ) = ζ + a2ζ

2 + . . .

and a2 = a2(z) exercise
= 1

2

[
(1 − |z|2) f ′′(z)

f ′(z) − 2z
]
. By Corollary 1.4.2, we have∣∣∣∣∣(1 − |z|2)

f ′′(z)
f ′(z)

− 2z
∣∣∣∣∣ ≤ 4

and since |z| = r,

(*) ∣∣∣∣∣∣z f ′′(z)
f ′(z)

−
2r2

1 − r2

∣∣∣∣∣∣ ≤ 4r
1 − r2 ,

(**)
2r2
− 4r

1 − r2 ≤ <e
[
z

f ′′(z)
f ′(z)

]
≤

2r2 + 4r
1 − r2

(where (**) is obtained from (*) by means of the triangular inequality).

We note that f is univalent, so that f ′(z) , 0 for any z ∈ D, f ′(0) = 1 and we can take a branch of
log f ′(z) such that log f ′(z)|z=0 = 0; writing z in polar coordinates, z = reiθ, we have

∂
∂r

log | f ′(z)| =
∂
∂r
<e [log f ′(z)] =

=<e
[
∂
∂r

log f ′(z)
]

=

=<e
[
∂
∂z

(log f ′(z))
∂z
∂r

]
=

=<e
[

f ′′(z)
f ′(z)

eiθ r
r

]
=

1
r
<e

[
z

f ′′(z)
f ′(z)

]
and from (**) we have

2r − 4
1 − r2 ≤

∂
∂r

log
∣∣∣∣ f ′ (reiθ

)∣∣∣∣ ≤ 2r + 4
1 − r2 ;

now we integrate in r (since log f ′(0) = 0) and we obtain

log
1 − r

(1 + r)3 ≤ log
∣∣∣∣ f ′ (reiθ

)∣∣∣∣ ≤ log
1 + r

(1 − r)3

and we get (b) by taking exponentiation.
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(a) That’s true for z = 0, let r = |z| ∈ (0, 1), then

f (z) =

∫
[0,z]

f ′(ζ)dζ =

∫ r

0
f ′

(
ρeiθ

)
eiθdρ

and by the previous estimates

| f (z)| ≤
∫ r

0

∣∣∣∣ f ′ (reiθ
)∣∣∣∣ dρ ≤ ∫ r

0

1 + ρ

(1 − ρ)3 dρ =
r

(1 − r)2

so that we get the lower bound.

Let |z1| = r such that | f (z1)| = min{| f (z)| : |z| = r} > 0 and take Γ to be the segment between 0 and
f (z1), γ := f−1(Γ); then

| f (z1)| =
∫

Γ

|dw| =
∫
γ
| f ′(ζ)| |dζ| =

∫
γ

1 − |ζ|
(1 + |ζ|)3 d|ζ| =

∫ r

0

1 − t
(1 + t)3 dt =

r
(1 + r)2 ,

which concludes the proof of (a).
�

1.5 Tutorial - The Poincaré disc

Exercise 1.5.1. 1. Given a ∈ D, define
Ta(z) :=

a − z
1 − az

;

show that Ta is a conformal transformation of the disc of order 2 and Ta(0) = a.

2. Show that D is homogeneous, i.e. Aut(D) acts transitively on D.

3. f ∈ Aut(D) if and only if f is of the form f (z) = eiθTa(z).

We define the Poincaré metric on D as dρ2 = dz⊗dz
(1−|z|2)2 .

1. dρ is a Hermitian metric on D.

2. If f : D −→ D is holomorphic, then f ∗dρ ≤ dρ (and = holds if and only if f is a biholomorphism).

Indeed, dρ2
z(v,w) = vw

(1−|z|2)2 and using Schwarz’ Lemma one proves that

f ∗(dρz(v, v)) = dρ f (z)(d fz(v), d fz(v)) ≤ dρz(v, v).

More generally, if M is a manifold, with a length function (or a Finsler metric) k : TM −→ R+

(i.e. k(v) ≥ 0 and k(v) = 0 if and only if v = 0, k(λv) = |λ| k(v)) such that z 7−→ kz is upper semi-
continuous (that is, given a local frame v1, . . . , vn at a coordinate chart U, then z ∈ U 7−→ kz(v j) is upper
semi-continuous for any j = 1, . . . ,n), it is possible to define a distance

distk(p, q) =

∞ if @ a piecewise smooth curves joining p and q

infγ∈Sp,q

∫ 1
0 kσγ(t)(σ′γ(t))dt otherwise

where Sp,q := {(absolutely continuous) piecewise smooth curves joining p and q} and σγ is a parame-
trization of γ.

Exercise 1.5.2. 1. Show that

ω(z1, z2) := distdρ(z1, z2) =
1
2

log
1 +

∣∣∣∣ z1−z2
1−z1z2

∣∣∣∣
1 −

∣∣∣∣ z1−z2
1−z1z2

∣∣∣∣ =
1
2

log
1 + |Tz1(z2)|
1 − |Tz1(z2)|

.
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2. ω is a complete distance (balls are relatively compact).

3. Given a holomorphic function f : D −→ D then ω( f (z1), f (z2)) ≤ ω(z1, z2) (and = holds if and
only if f is a biholomorphism).

4. Isom(dρ) = Aut(D) ∪Aut(D).

5. The Gauss curvature of<e (dρ) is −4.

1.6 Something more about univalent functions

We equip Hol(D,C) with the topology of uniform convergence on compact sets.

Proposition 1.6.1. S is compact.

Dimostrazione. Given { fn} ⊂ S, K b D, there exists r ∈ (0, 1) such that K b Dr. By the Growth Theorem,

| fn(z)| ≤
|z|

(1 − |z|)2 ∀ z ∈ Dr,

then { fn} is uniformly bounded on compact sets and, by Montel’s Theorem, there is a subsequence fnk

converging to f ∈ Hol(D,C). As the fnk ’s are injective, then the Hurwitz’ Theorem says that f is either
constant or injective. Since fnk(0) = 0 and f ′nk

(0) = 1 for any nk, then f ∈ S. �

Remark 1.6.1. The Hurwitz’ Theorem asserts that the limit of a sequence fn : D −→ C of holomorphic
injective functions is either a constant or an injective function.

Definition 1.6.1. Let {Gn}n∈N be a sequence of open domains in C, with 0 ∈ Gn for every n ∈ N. We define the
kernel of {Gn} to be the set G as follows:

1. if 0 is not an interior point of
⋂

n∈N Gn then G := 0;

2. if 0 is an interior point of
⋂

n∈N Gn then G is the largest open domain containing 0 such that if K b G
then ∃n0 ∈ N such that K b Gn for any n > n0.

We say that a sequence of domains {Gn} (kernel) converges to G if each subsequence {Gnk} of {Gn} has
kernel G and, in such a case, we write Gn −→ G.

Remark 1.6.2. If Gn−1 ⊂ Gn for any n, then the kernel is G =
⋃

n≥0 Gn.

Exercise 1.6.1. Compute the kernel of {Gn}where Gn := C − [1,+∞) ∪
(
arc (0 ≤ θ ≤ 2π − 1

n ) of ∂D
)
.

Theorem 1.6.2 (Carathéodory’s kernel convergence). Let {Gn} be a sequence of simply connected domains
with 0 ∈ Gn and Gn , C for every n. Let fn : D −→ Gn be a biholomorphism such that fn(0) = 0 and f ′n(0) > 0.
Let G be the kernel of Gn, then fn converges uniformly to a function f if and only if Gn −→ G and G , C.

Moreover, in case of convergence:

1. if G = {0} then f ≡ 0,

2. if G , {0} then G is simply connected, f : D −→ G is biholomorphic and f−1
n converges uniformly on

compacta to f−1 on G.

Remark 1.6.3. In the statement 2 of Carathéodory’s kernel convergence theorem the sequence { f−1
n } is

not in general well defined on all of G for all n ∈ N. However, for every compact subset K b G, K
is eventually contained in Gn, thus { f−1

n } is eventually well defined on K and the statement is that it
converges to f−1 on K.
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Proof of Theorem 1.6.2. Assume that fn converges to f . We will show that f (D) = G. Once we have
proved this, it will follow from Hurwitz’ Theorem that f is either constantly zero or univalent; hence
G , C. Moreover, since fnk converges to f for any subsequence { fnk}, then (exercise) Gn −→ G.

We prove now that f (D) = G. There are two cases:

1. Suppose f ≡ 0. If G , {0}, then there exists ρ > 0 such that Dρ ⊂ Gn for any n ∈ N and we can
define f−1

n |Dρ : Dρ −→ D with f−1
n |Dρ(0) = 0. By Schwarz’ Lemma,∣∣∣∣( f−1

n |Dρ

)′
(0)

∣∣∣∣ ≤ 1
ρ
,

so that | f ′n(0)| ≥ ρ for any n, which contradicts the fact that fn converges uniformly to 0. Then
G = {0} and f (D) = G.

2. If f . 0, then f : D −→ D := f (D) is univalent.

We prove that D ⊂ G: given K0 b D, we take Γ ⊂ D to be a smooth curve whose interior contains
K0 and we set γ := f−1(Γ). We have to show that there exists n0 such that K0 ⊂ Gn for any n > n0.

Let δ := dist(K0,Γ) > 0; then for any w0 ∈ K0, | f (z) − w0| ≥ δ for any z ∈ γ. As γ is compact, there
exists an N ∈ N such that | fn(z) − f (z)| < δ for any z ∈ γ and n ≥ N.

By Rouché’s Theorem, fn(z) − w0 has the same number of zeroes of f (z) − w0 in the interior of γ,
for |( fn(z) − w0) − ( f (z) − w0)| = | fn(z) − f (z)| < δ ≤ | f (z) − w0|. Therefore there exists z′n such that
fn(z′n) = w0 and so w0 ∈ Gn = fn(D) for any n ≥ N. Thus D ⊂ G.

We prove that G ⊂ D. The sequence f−1
n |G : G −→ D is eventually well defined on compact sets.

As it is an equi-bounded sequence, the family { f−1
n |G} is normal. Pick w0 ∈ G, let { f−1

nk
|G} be a

convergent subsequence and w0 ∈ Gnk for any Gnk . Define 1 := lim f−1
nk
|G : G −→ D, which is

holomorphic and such that 1(0) = 0. By Hurwitz, either 1 ≡ 0 or 1(G) ⊂ D and 1 is univalent.
In any case, define the sequence zk := f−1

nk
(w0) which converges to 1(w0) =: z0 ∈ D. As fnk(z0)

converges to f (z0), for {zk} ∪ {z0} b D, we have that f (z0) = w0 and w0 ∈ f (D) = D.

Moreover, idG = fnk ◦ f−1
nk
|G converges uniformly to f ◦ 1, so that f−1

nk
|G converges uniformly to

f−1 and this holds for the sequence f−1
n |G as well.

Suppose now that Gn −→ G , C.

1. Suppose G = {0}. We want to prove that f ′n(0) −→ 0. If not, there is δ > 0 such that | f ′n(0)| ≥ δ for
any n ∈ N. Hence, by Koebe’s 1

4 -Theorem, Dδ/4 ⊂ Gn for any n, contradicting the hypothesis.

By the Growth Theorem, | f ′n(z)| ≤ f ′n(0) |z|
(1−|z|)2 implies that f ′n(0) converges to 0.

2. If G , {0},C, we want to prove that { f ′n(0)} is bounded. If not, there is nk ∈ N such that f ′nk
(0) > k

for any k. By Koebe’s 1
4 -Theorem, fnk(D) = Gnk ⊃ Dk/4 −→ C and so Gnk −→ C which is a

contradiction.

Thus there is M > 0 such that f ′n(0) ≤M for any n ∈ N. by the Growth Theorem,

| fn(z)| ≤M
|z|

(1 − |z|)2

and by Montel’s Theorem, { fn} is normal. Suppose to have two convergent subsequences fnk −→ 1

and fnm −→ h. We use the first part of the proof to fnk and to fnm in order to get that the kernel of
Gnk := fnk(D) is G = 1(D) and that of Gnm := fnm(D) is G = h(D) (G is the same by hypothesis). By
the uniqueness of the Riemann mapping, h = 1, as h(0) = 1(0) and 1′(0), h′(0) > 0.

�
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1.7 Towards Loewner’s Theory

Definition 1.7.1. A Jordan arc is a continuous curve γ : [0,T) −→ C which is injective and such that
limt→T |γ(t)| = ∞ and 0 < γ([0,T)).

Definition 1.7.2. A function f ∈ S is a single-slit map if f (D) = C − γ.

Theorem 1.7.1. Single-slit maps are dense in S.

Dimostrazione. Fix ε > 0, ρ ∈ (0, 1), given f ∈ S, we need to find a single-slit map 1 such that
| f (z) − 1(z)| < ε for all |z| ≤ ρ.

Define fr(z) := f (rz)
r , 0 < r < 1 which turns out to be in S and fr → f uniformly. The functions fr are

analytic up to ∂D. Hence it is enough to prove the theorem for f ∈ S which extends real analytically
and injectively on ∂D.

Define D := f (D), then ∂D = f (∂D) is a real analytic Jordan curve. Given w0 ∈ ∂D, we consider
a Jordan arc Γ starting at w0 which does not intersect D − {w0}. Let {wn} ⊂ ∂D such that wn moves
counterclockwise on ∂D and such that wn → w0.

Let γn := Γ∪“the portion of ∂D from w0 to wn”, Gn := C−γn (which is a simply connected domain).
Exercise 1.7.1. Gn → D.

Let 1n : D −→ Gn be the Riemann maps such that 1n(0) = 0, 1′n(0) > 0; by the previous exercise and
Carathéodory Kernel Convergence Theorem, we have that 1n → f and then fn := 1n

1′n(0) is the searched
sequence. �

1.8 Parametric representation of single-slit maps

Given a Jordan arc ψ : [0,T) −→ C tending to ∞ and omitting 0, we define D0 := C − γ (γ is the
support of the curve ψ); then we consider the single-slit map f : D −→ D0.

Set γt := ψ([t,T)), then the domains Dt := C − γt are contained one into the other for increasing
time t: Ds  Dt for s < t.

Let ft : D −→ Dt be the Riemann map with ft(0) = 0 and f ′(0) > 0; then ft(z) = β(t)[z + b2(t)z2 +
b3(t)z3 + . . .].

Exercise 1.8.1. Show that t 7−→ β(t), t 7−→ b j(t) are continuous.

Solution. Let t→ t0, we can take a sequence {tn} converging to t0; then we want to show that f ′tn
(0)→

f ′t0
(0). We have that ftn(D)→ ft0(D), so that by Carathéodory Theorem ftn → ft0 uniformly on compact

sets. �

Exercise 1.8.2. The function t 7−→ β(t) is strictly increasing.

Solution. The composition f−1
t ◦ fs : D −→ D, for s < t is such that

( f−1
s ◦ ft)′(0) =

f ′t (0)
f ′s (0)

< 1

by Schwarz’ Lemma.
We show that β(t)→∞.
Suppose that β(t) < M for a certain M > 0. Then f ′t (0) < M and so f ′t (z) ≤M |z|

(1−|z|)2 ; then there exists
ftn → 1 for tn → ∞ and by Carathéodory Theorem Dtn −→ C. This implies that we have a conformal
transformation 1 : D −→ C, which is a contradiction. �

Let σ(s) := β−1(es), ψ̃ : s 7−→ ψ(σ(s)), with t = σ(s) we have

fs(z) = es

z +
∑
n≥2

bn(s)zn

 .
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Exercise 1.8.3. In fact, ψ̃ : [0,∞) −→ C.
fs is called the standard parametrization.
We define a family (ϕt)0≤t<∞ of univalent mappings of D

D
f= f0 //

ϕt(=ϕ0,t)

99D0
� � // Dt

f−1
t // D .

We see that ϕt(z) = e−t (z +
∑

n≥2 an(t)zn) for 0 ≤ t < ∞.
Exercise 1.8.4. Prove that an(t) is a polynomial in b2(t), . . . , bn(t), hence t 7−→ an(t) is continuous.

Theorem 1.8.1 (Loewner). Let f ∈ S be a single-slit map with omitted arc γ. Let ψ : [0,∞) −→ γ be the
standard parametrization and let ( ft) be the associated chain. Then (ϕt) := ( f−1

t ◦ f0) satisfies:

∂ϕt

∂t
= −ϕt(z)

1 + k(t)ϕt(z)
1 − k(t)ϕt(z)

, (1.1)

where k : [0,∞) −→ ∂D is a continuous function.
Moreover limt→∞ etϕt(z) = f (z) uniformly on compact sets.

Equation (1.1) is nowadays called the (classical) Loewner ODE.

Definition 1.8.1. A family of univalent functions ( ft : D −→ C)t∈[0,∞) such that

• ft(0) = 0, f ′t (0) = et,

• fs(D) ⊂ ft(D) for any 0 ≤ s ≤ t < ∞

is a classical Loewner chain.

We define ϕs,t := f−1
t ◦ fs.

Definition 1.8.2. A family of holomorphic functions (ϕs,t : D −→ D) such that

• ϕs,s = idD for any s ≥ 0,

• ϕs,t = ϕu,t ◦ ϕs,u for any 0 ≤ s ≤ u ≤ t < ∞,

• ϕs,t(0) = 0, ϕ′s,t(0) = es−t

is a classical evolution family

We will see that ϕs,t is univalent for any 0 ≤ s ≤ t < ∞.
Set G(w, t) := −w p(w, t), where p(w, t) =

1+k(t)w
1−k(t)w with |k(t)| = 1 for every t ≥ 0.

Exercise 1.8.5. For any w ∈ D, t ≥ 0 we have<e p(w, t) ≥ 0.

Definition 1.8.3. A classical Herglotz vector field G(z, t) is a function G : D × [0,∞) −→ C (= TD) such
that

1. z 7−→ G(z, t) is holomorphic for any t ≥ 0

2. t 7−→ G(z, t) is measurable for any z ∈ D

3. G(z, t) = −z p(z, t) where

(a) p(0, t) = 1
(b) <e p(z, t) ≥ 0

We will see that given a classical Loewner chain we get a unique classical evolution family and
viceversa. Moreover, given a classical Herglotz vector field we can get a unique classical evolution
family and viceversa. The bridge between these last objects is given by the Loewner ODE:

∂ϕs,t

∂t
= G(ϕs,t(z), t).
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1.9 Loewner’s Theorem

Given a single-slit map f ∈ S, denote by ft(z) = etz + . . . the standard parametrization; given s < t
we define ϕs,t = f−1

t ◦ fs. We also denote the image of the tip of the slit with λ(t) := f−1
t (ψ(t)).

Exercise 1.9.1. Show that f−1
t is continuous at ψ(t).

The exercise is not so trivial, use the following result:

Definition 1.9.1. Let f : D −→ C be a continuous function, {Cn} a family of Jordan arcs with Cn ⊂ D, such
that

1. diam(Cn) > δ > 0 for any n,

2. f |Cn → const as n→∞.

Then the family {Cn} is called a family of Koebe arcs for f .

Theorem 1.9.1 (Koebe). A univalent function f : D −→ C has no Koebe arcs.

Proof of Theorem 1.8.1. (1) We show that limt→∞ etϕs,t(z) = fs(z).

By the Growth Theorem (applied to e−t ft(z) ∈ S), we have

et
|z|

(1 + |z|)2 ≤ | ft(z)| ≤
et
|z|

(1 − |z|)2 , |z| < 1; (1.2)

for w ∈ C given, there is t� 1, such that w ∈ ft(D); let z = f−1
t (w), then by (1.2) we have

(
1 −

∣∣∣ f−1
t (w)

∣∣∣)2
≤ et

∣∣∣∣∣∣ f−1
t (w)

w

∣∣∣∣∣∣ ≤ (
1 +

∣∣∣ f−1
t (w)

∣∣∣)2
≤ 4, (1.3)

which implies that
∣∣∣ f−1

t (w)
∣∣∣ ≤ 4e−t

|w| → 0 uniformly as t→∞.

Then, by (1.3), limt→∞ et | f
−1
t (w)|
|w| = 1 uniformly on compact sets and so

{
et ft(w)

w

}
is a normal family

converging uniformly on compact sets to the constant function 1, for

et f−1
t (w)

w

∣∣∣∣
w=0

= et( f−1
t )′(0) = 1;

hence et f−1
t (w)→ w uniformly.

Setting w = fs(z), we get limt→∞ etϕS,t(z) = fs(z) uniformly on compact sets.

(2) We have to derive the differential equation (1.1).

We define Φs,t(z) := log ϕs,t(z)
z , choosing the branch of log in such a way that

Φs,t(0) = log es−t = s − t.

Exercise 1.9.2. Show that Φ is holomorphic in D and continuous on D.

As λ(s) belongs to the unit circle and it is mapped to the tip of the slit by ϕs,t, we can take two
points eiα, eiβ on the circle such that the arc from eiα to eiβ contains λ(s) and

ϕs,t(∂D − arc(eiα, eiβ)) ⊂ ∂D, ϕs,t(arc(eiα, eiβ)) = Js,t,

where Js,t is the slit ending in ϕs,t(λ(s)).
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Hence we see that

<e Φs,t(z) =

0 if z ∈ ∂D − arc(eiα, eiβ)
< 0 if z ∈ arc(eiα, eiβ)

Now we use the Poisson formula to get

Φs,t(z) =
1

2π

∫ β

α
<e (Φs,t(eiθ))

eiθ + z
eiθ − z

dθ + i=m Φs,t(0)︸       ︷︷       ︸
0

.

Remark 1.9.1.

s − t = Φs,t(0) =
1

2π

∫ β

α
<e (Φs,t(eiθ))dθ.

Given now 0 ≤ m ≤ s ≤ t < ∞,

Φs,t(ϕm,s(z)) = log
ϕs,t(ϕm,s(z))
ϕm,s(z)

= log
ϕm,t(z)
ϕm,s(z)

and the LHS is also equal to

1
2π

∫ β

α
<e Φ(eiθ)︸     ︷︷     ︸

<0

eiθ + ϕm,s(z)
eiθ − ϕm,s(z)

dθ mean value thm
=

=
1

2π

(∫ β

α
<e Φ(eiθ)dθ

) (
<e

eiη + ϕm,s(z)
eiη − ϕm,s(z)

+ i=m
eiσ + ϕm,s(z)
eiσ − ϕm,s(z)

)
,

where eiη and eiσ are in the arc from eiα and eiβ.

When t → s, the arc (eiα, eiβ) goes to λ(s) (this fact is true but requires a certain care to be proven
correctly). Hence eiη and eiσ go to λ(s) as well, so that

lim
t→s

1
t − s

log
ϕm,t(z)
ϕm,s(z)

= lim
t→s

1
t − s

(
1

2π

∫ β

α
<e Φs,t(eiθ)dθ

)
︸                        ︷︷                        ︸

Φs,t(0)=s−t

λ(s) + ϕm,s(z)
λ(s) − ϕm,s(z)

= −
1 + 1

λ(s)ϕm,s(z)

1 − 1
λ(s)ϕm,s(z)

;

on the other hand,

1
t − s

(logϕm,t(z) − logϕm,s(z))→
∂
∂s

logϕm,s(z) =
1

ϕm,s(z)
∂ϕm,s(z)
∂s

.

Exercise 1.9.3. Prove the differentiability for s→ t, s ≤ t.

(3) We have to show that t 7−→ λ(t) is continuous.

We use Schwarz’ reflection principle to extend holomorphically the function

ϕs,t : C − arc(eiα, eiβ) −→ C − (Js,t ∪ J∗s,t),

where J∗s,t is the reflection of Js,t.

By Koebe’s 1
4 -Theorem (as et−sϕs,t(z) ∈ S), ϕs,t(D) ⊃ D 1

4 es−t , so that Js,t ∩D 1
4 es−t = ∅.

Hence for any w ∈ Js,t, |w| > 1
4 es−t and for any w ∈ J∗S,t, |w| < 4et−s.

Moreover,

lim
z→∞

ϕs,t(z)
z

= lim
z→0

z
ϕs,t(z)

=
1

ϕ′s,t(0)
= et−s,
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as for |z| > 1, ϕs,t(z) = 1
ϕs,t(1/z) .

By the maximum principle, ∣∣∣∣∣ϕs,t(z)
z

∣∣∣∣∣ ≤ 4et−s

on C − arc(eiα, eiβ), so that

lim
t−→s

∣∣∣∣∣ϕs,t(z)
z

∣∣∣∣∣ ≤ 4

and so
{
ϕs,t(z)

z

}
is a normal family on C − arc(eiα, eiβ).

Let ϕ be a limit function of
{
ϕs,t(z)

z

}
t↓s

; as the arc goes to λ(s), it follows that ϕ is a holomorphic

function ϕ : C − {λ(s)} −→ CP1 with |ϕ(z)| ≤ 4, so that (exercise) ϕ is constant and equal to
ϕ(0) = limt→s ϕ′s,t = limt→s es−t = 1.

Then ϕs,t(z)→ z uniformly on compact sets in C − {λ(s)}, when t→ s.

Fix s ≥ 0, ε > 0, let δ > 0 be such that 0 < t− s < δ, then the arc(eiα, eiβ) ⊂ Dε(λ(s)); set C := ∂Dε(λ(s),
C̃ := ϕs,t(C); as C is a compact set, ϕs,t|C

t→s
−−−→ z, so that for t ↓ s, diam(C̃) ≤ 3ε.

Then, if z ∈ C,

|λ(s) − λ(t)| ≤ |λ(s) − z| + |z − ϕs,t(z)| + |ϕs,t(z) − λ(t)| ≤ ε + ε + 3ε.

Hence limt↓s λ(t) = λ(s).
Example 1.9.1. Get lims↑t λ(s) = λ(t).

�

1.10 Tutorial

Exercise 1.10.1. Let Γ = [−∞,−1/4], f (z) = z
(1−z)2 ; find the classical Loewner chain for f . Find k(t) in the

Loewner equation.

Solution. If we multiply by et we get the Loewner chain.
As λ(t) = f−1

t (ψ(t)) = f−1
t

(
−

et

4

)
, we want to find z such that

−
et

4
= et z

(1 − z)2 ,

whence z = −1. �

Exercise 1.10.2. Take f : D −→ D holomorphic such that f (0) = 0.

• If f is not a rotation, then f ◦n converges uniformly on compact sets to the map (z 7−→ 0).

• If λ = f ′(0) , 0, show that

σn(z) :=
f ◦n(z)
λn

is converging to a unique holomorphic σ : D −→ C such that σ(0) = 0, σ′(0) = 1 and σ ◦ f = λσ.

Moreover σ is univalent if and only if f is.

Solution. For any r > 0, there is c = c(r) such that for any z ∈ Dr,

| f (z)| < c|z|.

Let C be such that | f (z) − λz| ≤ C|z|2, then∣∣∣∣∣∣ f n+1(z)
λn+1

−
f n(z)
λn

∣∣∣∣∣∣ =
1
|λ|n+1

| f n+1(z) − λ f n(z)| ≤
C
|λ|n+1

| f n(z)|2.

As we can have c(r) such that c(r)2 < c(r) < |λ| for some r, we can get to the solution. �
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1.11 Background notions and results

Definition 1.11.1. A real analytic semigroup of holomorphic self-maps in D is a family

φt : [0,∞) ×D −→ D

such that

(1) φ0 = idD,

(2) φs+t = φt ◦ φs for any s, t ∈ [0,∞),

(3) for any t ≥ 0, z 7−→ φt(z) is holomorphic,

(4) φt
t→s
−−−→ φs uniformly on compact sets,

(5) t 7−→ φt(z) is real analytic.

Properties (1),(2), (3) and (4) say that φ is a continuous morphism between the semigroups (R+,+)
(with the Euclidean topology) and (Hol(D,D), ◦) with the topology of uniform convergence.

Exercise 1.11.1. 1. Assume φt0(0) = 0 for some t0 > 0 and, then, if φt0 is not a rotation, prove that
φt(0) = 0 for any t ≥ 0.

If φt0 is a rotation, prove that φt is a rotation for t ≥ 0.

2. If φt0 is not a rotation, t0 > 0, φt0(0) = 0, prove that if λt := φ′t(0) then λt = e−at with<e a > 0 (it
can be assumed that φt is univalent for t ≥ 0).

3. There is a unique univalent function h : D −→ C such that h(0) = 0, h′(0) = 1 and such that

h ◦ φt = e−ath.

Show that (following Poincaré)

(a) for fixed t0 > 0 there is a unique h in C[[z]],

(b) solve the homological equation: suppose φt(z) = λtz+ak(t)zk + . . ., k ≥ 2, look for pk(z) = z+αzk

such that
pk ◦ φt = (λtz + bk+1(t)zk+1 + . . .) ◦ pk(z);

show that there exists α ∈ C which does not depend on t;

(c) set h̃(z) = limk→∞ pk ◦ pk−1 ◦ · · · ◦ p1, show that h̃ ◦ φt = λt̃h with h̃ ∈ C[[z]], hence prove that
h̃ = h.

Exercise 1.11.2. Given a semigroup (φt) with φt(0) = 0 and φ′t(0) = e−t, then (φs,t := φt−s) is a classical
evolution family.

It follows that evolution families are a dynamical generalization of semigroups.

1.12 Properties of classical Loewner’s chains

Lemma 1.12.1. Consider P := { f : D −→ H holomorphic, f (0) = 1}, which is called the Carathéodory class,
then

1.
1 − |z|
1 + |z|

≤ | f (z)| ≤
1 + |z|
1 − |z|

∀ |z| < 1
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2.
1 − |z|
1 + |z|

≤ <e f (z) ≤
1 + |z|
1 − |z|

3.

| f ′(z)| ≤
2<e f (z)
1 − |z|2

≤
2

(1 − |z|)2 .

Remark 1.12.1. With H we denote the domain {<e w > 0}.

Exercise 1.12.1. Show that P is compact.

Lemma 1.12.2. Let ( ft) be a classical Loewner chain; then

1.
et |z|

(1 + |z|)2 ≤ | ft(z)| ≤ et |z|
(1 − |z|)2

2.
et 1 − |z|

(1 + |z|)3 ≤ | f
′

t (z)| ≤ et 1 + |z|
(1 − |z|)3

3.
| fs(z) − ft(z)| ≤

8|z|
(1 − |z|)4

(et
− es) |z| < 1, t ≥ s,

it follows that ft is absolutely continuous uniformly on compact sets.

Dimostrazione. We prove 3. For s ≤ t, define

ps,t(z) =
1 + es−t

1 − es−t

z − φs,t(z)
z + φs,t(z)

with ϕs,t = f−1
t ◦ fs.

Exercise 1.12.2. ps,t ∈ P for any 0 ≤ s ≤ t < ∞.

By 1. of Lemma 1.12.1
1 + es−t

1 − es−t

∣∣∣∣∣z − ϕs,t(z)
z + ϕs,t(z)

∣∣∣∣∣ ≤ 1 + |z|
1 − |z|

,

hence, by Schwarz’ Lemma (|ϕs,t(z)| < |z|),

|z − ϕs,t(z)| ≤
1 + |z|
1 − |z|

1 − es−t

1 + es−t |z + ϕs,t(z)| ≤ 2|z|(1 − es−t)
1 + |z|
1 − |z|

Remark 1.12.2. ¿From here we get that ϕs,t is absolutely continuous in 0 ≤ s ≤ t < ∞ uniformly on
compact sets.

Then

| ft(z) − fs(z)| = | ft(z) − ft(ϕs,t(z))| =

∣∣∣∣∣∣
∫ z

ϕs,t(z)
f ′t (ζ)dζ

∣∣∣∣∣∣ 2. of 1.12.1
≤ et 1 + |z|

(1 − |z|)3 |z − ϕs,t(z)| ≤

≤ et 1 + |z|
(1 − |z|)3 2|z|(1 − es−t)

1 + |z|
1 − |z|

�

Theorem 1.12.3. 1. If ( ft) is a classical Loewner chain, then there exists a unique classical evolution family
(ϕs,t) such that fs = ft ◦ ϕs,t for 0 ≤ s ≤ t < ∞.
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2. If (ϕs,t) is a classical evolution family, there exists a unique classical Loewner chain ( ft) such that
fs = ft ◦ ϕs,t.

Dimostrazione. The first statement is almost trivial. Let’s prove 2.; the idea of Ch. Pommerenke is
to show that fs(z) = limt→∞ etϕs,t(z). However this method works only for classical evolution families
(fixing 0). Here we give a different proof based on the extension of the inverse of a univalent mapping,
as taken from [LAK10].

Extension of the inverse of a univalent map. Given complex manifolds X and Y of complex dimension n
and a univalent function F : X −→ Y, the claim is that there exists a complex manifold Z of complex
dimension n and G : Y −→ Z such that G is biholomorphic and

1. X ↪−→ Z is an open set,

2. G ◦ F = idX.

Indeed, define Z := X t (Y − F(X)) as a set and a bijection H : Z −→ Y

H(z) =

F(z) z ∈ X
z z ∈ Y − F(X)

Exercise 1.12.3. Show that there is a unique structure of complex manifold on Z such that H is a
biholomorphism.

Then it is enough to define G := H−1.
Start now with any biholomorphism f0 : D −→ D, for example the identity, then by the previous

construction we can find Riemann surfaces N1,N2, . . . isomorphic to D such that the following diagram
commutes

D

∼f0(=id)
��

ϕ0,1 // D

∼f̃1
��

ϕ1,2 // D
ϕ2,3 //

∼f̃2
��

D

∼f̃3
��

D

f̃n ∼
��

ϕn,n+1 // D

f̃n+1 ∼

��
(D =) f0(D)

ϕ0,1◦ f−1
0

66

� � // N1

ϕ1,2◦ f̃−1
1

88

� � // N2
� � // N3 Nn

� � // Nn+1

Then we can define N =
⋃

n≥1 Nn which is an abstract Riemann surface, simply connected and
non-compact. Then the (abstract) Riemann mapping theorem implies that there is a biholomorphism
G from N to either C or D. We take G such that 0 = f0(0) ↪−→ N1 ↪−→ N2 ↪−→ · · · ↪−→ N is sent to 0.

Define fn := G ◦ f̃n which goes from D to either D or C. Anyway, the function fn : D −→ C is
univalent. By construction, fn+1 ◦ ϕn,n+1 = fn for any n ∈ N; let t ≥ 0, consider n ∈ N such that n ≥ t,
define

ft := fn ◦ ϕt,n

and for t ≤ n ≤ m we have

fm◦ϕt,m = fm◦(ϕn,m◦ϕt,n) = fm◦(ϕm−1,m◦· · ·◦ϕn,n+1)◦ϕt,n = fm−1◦(ϕm−2,m−1◦· · ·◦ϕn,n+1)◦ϕt,n = fn◦ϕt,n.

Hence G(N) =
⋃

t≥0 ft(D) and fs(D) ⊂ ft(D) for any s ≤ t. Moreover f0 = ft ◦ ϕ0,t for any t ≥ 0 and,
as λ = f ′0(0) , 0 we differentiate the equality to get

λ = f ′0(0) = f ′t (0)ϕ′0,t(0) = e−t,

so that, up to replace ft with ft
λ , we see that ft(0) = 0, f ′t (0) = et and so ft is a classical Loewner chain.

Exercise 1.12.4. Show that G(N) = C.
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Open question: Given an evolution family ϕs,t : B2
−→ B2, does there exists a Loewner chain

associated to ϕs,t with image in C2? Leandro Arosio [Aro10] proved that if ϕs,t(0) = 0 with d(ϕs,t)0 =
e(s−t)A with

A =

(
λ1 0
0 λ2

)
, <eλ j < 0,

then the question has positive answer.

Uniqueness. Suppose (1t) is another classical Loewner chain such that 1t ◦ϕs,t = 1s for 0 ≤ s ≤ t. Define
h(z) := 1t ◦ f−1

t (z) for z ∈ ft(D).

Remark 1.12.3. For any z ∈ C, there is t(z) ≥ 0 such that z ∈ ft(D) for any t ≥ t(z).

Exercise 1.12.5. The function h does not depend on t, i.e. if s ≤ t and z ∈ fs(D), then 1s◦ f−1
s (z) = 1t◦ f−1

t (z).
As a consequence, h : C −→ C is a biholomorphism.

Remember that Aut(C) = {z 7−→ az + b, a , 0}, so that h(z) = az + b; as h ◦ ft = 1t, then ft(0) = 1t(0)
implies that b = 0; moreover, as f ′t (0) = et = 1′t(0), we have a = 1. This proves uniqueness. �

1.13 The Loewner-Kufarev PDE

Theorem 1.13.1. Let ( f n
t ) be a sequence of classical Loewner chains. Then there is a subsequence ( f nk

t ) which
converges uniformly on compact sets to a classical Loewner chain ( ft).

Dimostrazione. By Theorem 1.12.3, the sequence ( f n
t ) corresponds uniquely to a sequence (ϕn

s,t). The
family {ϕn

s,t} are uniformly bounded on compact sets for any n ∈ N. Hence ϕs,t(z) is uniformly
continuous on {|z| ≤ 1 − 1/m} × {0 ≤ s ≤ t ≤ m}.

Then the Ascoli-Arzelà Theorem implies that there is a converging subsequence ϕnk
s,t → ϕs,t (a

diagonal argument is needed).
Keep ( ft) corresponding to (ϕs,t) (which is a classical evolution family). Then f nk

t → ft, for f n,k
t is

uniformly convergent on K × [0,T] b D × [0,T].
If f nk

t converges to another function 1t, then f nk
t ◦ϕ

nk
s,t = f nk

s implies the equality 1t ◦ϕs,t = 1s and by
uniqueness of the associated Loewner chain, we have 1t ≡ ft. �

Corollary 1.13.2. Let f ∈ S, then there exists a classical Loewner chain ( ft) such that f0 = f .

Dimostrazione. As single-slit maps are dense in S, we can find a sequence of single-slit maps f k

converging to f . Then use the parametric representation to construct classical Loewner chains ( f k
t ) for

f k.
Theorem 1.13.1 implies that ( f nk

t )→ ft uniformly and f nk
0 = f k

→ f uniformly, so that f0 = f . �

Estimates 1.12.2 show that t 7−→ ft is locally absolutely continuous in t, uniformly on compact sets
of D and the same holds for t 7−→ ϕs,t.

If ( ft) is a Loewner chain with f0 a single-slit map, by differentiating the equality

fs = ft ◦ ϕs,t,

we get
0 = ˙ft(ϕs,t(z)) + f ′t (ϕs,t(z))G(ϕs,t(z), t) for a.e. t ≥ 0,

where G(z, t) = −z p(z, t), with p(z, t) =
1+k(t)z
1−k(z)t . Then we deduce the Loewner-Kufarev PDE

˙ft(z) = f ′t (z)z
1 + k(t)z
1 − k(t)z

a.e. t ≥ 0, for any z ∈ D.

Remark 1.13.1. We should be more careful when we claim differentiability. Actually we get it a posteriori.
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Exercise 1.13.1. Given z0 ∈ D, define

Fz0 :=
{
u : D −→ R− : u is subharmonic, lim

z→z0
|u(z) − log |z − z0|| < ∞

}
.

Let Gz0(z) := supu∈Fz0
u(z).

• Show that Gz0 is harmonic in D − {z0}, and Gz0(eiθ) = 0 for any θ ∈ R.

(Gz0 ∈ Fz0) is called the Green function of D.

• Show that if f : D −→ D is holomorphic, G f (z0)( f (z)) ≤ Gz0(z) for any z ∈ D (and = holds if and
only if f is an automorphism).

• Compare G with the Poincaré distance.

Remark 1.13.2. A function u : D −→ R− which is upper semi-continuous and such that

u(z0) ≤
1

2π

∫ 2π

0
u(z0 + ρeiθ)dθ,

is said to be subharmonic.
w is harmonic in a domain D if and only if w is subharmonic and for any u ∈ subh(D), u|∂Dρ(z0) ≤

w|∂Dρ(z0) implies that u ≤ w in Dρ(z0).

1.14 Loewner’s Theory and the Bieberbach Conjecture

If f ∈ S, f (z) = z +
∑

j≥2 a jz j, we can use Loewner’s Theorem to show that |a2| ≤ 2 (and similarly
can be done to show |a3| ≤ 3).

As single-slit maps are dense in S, we can prove it for this class of functions. Given f , we associate
the classical Loewner chain ( ft). Then Loewner’s Theorem gives us

˙ft(z) = f ′t (z) z p(z, t) ∀ t ≥ 0, (1.4)

where ft(z) = etz +
∑

j≥2 a j(t)z j, p(z, t) =
1+k(t)z
1−k(t)z and t 7−→ k(t) ∈ ∂D is continuous.

The function p is in the Carathéodory class P and p(z, t) = 1 +
∑
∞

n=1 cn(t)zn. From (1.4), we get

etz +
∑
j≥2

ȧ j(t)z j =

et +
∑
j≥2

ja j(t)z j−1

 z

1 +

∞∑
n=1

cn(t)zn

 =

etz +
∑
j≥2

ja j(t)z j


1 +

∑
n≥1

cn(t)zn

 ;

looking at the coefficient of z2, we have

ȧ2(t) = etc1(t) + 2a0(t) t ≥ 0,

so that
e−2tȧ2(t) − 2e−ta2(t) = e−tc1(t)

which corresponds to
d
dt

[
e−2ta2(t)

]
= e−tc1(t)

and by integration ∫ τ

s

d
dt

(
e−2ta2(t)

)
dt =

∫ τ

s
e−tc1(t)dt.
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Now, for any z ∈ K b D and any t ≥ 0, we have | e−t ft(z)︸ ︷︷ ︸
∈S

| ≤M, hence there exists M j > 0 such that

e−t
|a j(t)| ≤M j for any t ≥ 0,

so that the limit

lim
τ→∞

∫ τ

s

d
dt

(
e−2ta2(t)

)
dt

exists and it is equal to
e−2ta2(t)

∣∣∣
t=+∞︸          ︷︷          ︸

0

−e−2sa2(s).

Hence

a2(s) = −e2s
∫
∞

s
c1(t)e−tdt. (1.5)

We claim that |c1(t)| ≤ 2 for any t ≥ 0. Then equality (1.5) implies that |a2| = |a2(0)| ≤ 2.
The claim follows from the following:

Lemma 1.14.1. Let p ∈ P, p(z) = 1 +
∑

j≥1 c jz j, then |c j| ≤ 2 for any j.

Dimostrazione. Given a holomorphic function f : D −→ H = {<e w ≥ 0}, we have the Herglotz’
representation formula: there exists a non-decreasing function µ : [0, 2π] −→ R such that µ(2π) − µ(0) =
<e f (0) and

f (z) =

∫ 2π

0

eit + z
eit − z

dµ(t) + i=m f (0).

The reader may prove this formula as an exercise (Hint: define µ(r, t) := 1
2π

∫ t
0 <e f (reiθ)dθ, 0 <

r < 1, 0 ≤ t ≤ 2π, taking into account that<e f (z) is harmonic, let r go to 1).

Exercise 1.14.1. Use Herglotz’ formula to prove the Growth Theorem for the Carathéodory Class
(Lemma 1.12.1).

If p ∈ P, Herglotz’ formula gives

p(z) =

∫ 2π

0

eit + z
eit − z

dµ(t) µ(2π) − µ(0) = 1;

expanding the integrand we get

c j = 2
∫ 2π

0
e−i jtdµ(t),

so that

|c j| ≤ 2
∫ 2π

0
|e−i jt
|dµ(t) = 2

∫ 2π

0
dµ(t) = 2(µ(2π) − µ(0)) = 2.

�

1.15 Generalized Loewner chains

Definition 1.15.1. A family (ϕs,t)0≤s≤t<∞ of holomorphic maps ϕs,t : D −→ D is a Ld-evolution family if

1. ϕs,s = idD,

2. ϕs,t = ϕu,t ◦ ϕs,u for any 0 ≤ s ≤ u ≤ t < ∞,
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3. for any z ∈ D, T > 0, there exists kz,T ∈ Ld([0,T],R+) such that

|ϕs,u(z) − ϕs,t(z)| ≤
∫ t

u
kz,T(ζ)dζ ∀ o ≤ s ≤ T.

Example 1.15.1. Given d ≥ 1, λ : [0,∞) −→ R+ absolutely continuous and increasing with λ̇ ∈
Ld
`oc([0,∞),R) (we can write λ ∈ ACd

`oc), then ϕs,t(z) := eλ(s)−λ(t)z is a Ld-evolution family.

Proposition 1.15.1. A classical evolution family (ϕs,t) is a L∞-evolution family.

Dimostrazione. Define hs,t(z) =
ϕs,t(z)

z for z , 0, which we can extend holomorphically on D by hs,t(0) :=
ϕ′s,t(0) = es−t.

Remark 1.15.1. By Schwarz’ Lemma, if f : D −→ D is holomorphic with f (0) = 0 and f ′(0) = λ ∈ (0, 1],
then<e (1 − f (z)/z) ≥ 0 (exercise).

Then the function 1−hs,t(z)
1−hs,t(0) is in P, so that we can use the Growth Theorem for P to have

|1 − hs,t(z)| ≤
1 + |z|
1 − |z|

(1 − hs,t(0) =
1 + |z|
1 − |z|

es(e−s
− e−t) ≤

1 + |z|
1 − |z|

eT(e−s
− e−t);

therefore

|ϕs,u(z)︸ ︷︷ ︸
w∈D

−ϕs,t(z)︸︷︷︸
ϕu,t(w)

| ≤

∣∣∣∣∣1 − ϕu,t(w)
w

∣∣∣∣∣ ≤ 1 + |w|
1 − |w|

eT(e−ue−t).

By Schwarz’ Lemma, |ϕs,u(z)| ≤ |z| and, as t 7−→ 1+t
1−t is an increasing function for t ∈ (0, 1),

|ϕs,u(z) − ϕs,t(z)| ≤
1 + |z|
1 − |z|

eT(e−u
− e−t) ≤

1 + |z|
1 − |z|

eT(t − s).

�

Definition 1.15.2. Let d ≥ 1. A weak holomorphic vector field of order d is a function

G : D × [0,∞) −→ C(' TD)

such that

1. for any z ∈ D, the function t ∈ [0,∞) 7−→ G(z, t) is measurable,

2. for any t ∈ [0,∞), the function z ∈ D 7−→ G(z, t) is holomorphic,

3. for any K b D, T > 0, there exists kK,T ∈ Ld([0,T],R+) such that

|G(z, t)| ≤ kK,T(t) ∀ z ∈ K, a.e. t ∈ [0,T].

Exercise 1.15.1. Use the Cauchy Formula to show that if G(z, t) is a Ld-weak holomorphic vector field
in D, then for any K b D and T > 0, there exists k̂K,T ∈ Ld([0,T],R+) such that

|G(z, t) − G(w, t)| ≤ k̂K,T(t)|z − w| ∀ z,w ∈ K, a.e. t ∈ [0,T].

By the Carathéodory Theory of ODE’s, it follows that for any (z, s) ∈ D× [0,∞) there exist a unique
I(z, s) ∈ (s,∞] and a unique x : [s, I(z, s)) −→ D such that

1. x is locally absolutely continuous in [s, I(z, s)),
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2. x is the solution to the problem ẋ(t) = G(x(t), t) for a.e. t
x(s) = z

3. the interval [s, I(z, s)) is maximal (when I(z, s) < ∞maximality corresponds to limt→I(z,s)ω(x(s), x(t)) =
∞).

Definition 1.15.3. I(z, s) si called the escaping time and t 7−→ x(t) is the positive trajectory of G.

Definition 1.15.4. Let G(z, t) be a Ld-weak holomorphic vector field in D. We say that G is a Ld-Herglotz
vector field if for a.e. t ∈ [0,∞), the Cauchy problemẏ(ξ) = G(y(ξ), t)

y(0) = z

has a (necessarily unique) solution y : [0,∞) −→ D.

Definition 1.15.5. A holomorphic vector field H : D −→ C is said to be semi-complete (or H is an
infinitesimal generator) if for every z ∈ D, its flow ΦH

z (t) is defined for any t ≥ 0.

Remark 1.15.2. We recall that the flow of a vector field H is defined by dΦH
z

dt = H(ΦH
z (t))

ΦH
z (0) = z

Exercise 1.15.2. Show that ΦH
z (t + s) = ΦH

ΦH
z (t)

(s) = ΦH
ΦH

z (s)
(t).

The following results are in [FBDM08].

Theorem 1.15.2. 1. For every Ld-evolution family (ϕs,t) in D, there exists a Ld-Herglotz vector field G(z, t)
such that

∂ϕs,t

∂t
(z) = G(ϕs,t(z), t) ∀ z ∈ D, a.e. t ≥ s. (1.6)

Moreover, if H(z, t) is another Herglotz vector field satisfying (1.6), then G( · , t) = H( · , t) for a.e. t ≥ 0.

2. Conversely, for any Ld-Herglotz vector field G(z, t) in D, there exists a unique Ld-evolution family (ϕs,t)
such that (1.6) is satisfied.

Definition 1.15.6. A function p : D × [0,∞) −→ C is a Ld-Herglotz function if

1. for any z ∈ D, the function t ∈ [0,∞) 7−→ p(z, t) ∈ Ld
`oc([0,∞),C),

2. for any t ∈ [0,∞), the function z ∈ D 7−→ p(z, t) is holomorphic,

3. for any z ∈ D and a.e. t ≥ 0,<e p(z, t) ≥ 0.

Theorem 1.15.3. G(z, t) is a Ld-Herglotz vector field if and only if there exists a Ld-Herglotz function p(z, t)
and a measurable function τ : [0,∞) −→ D such that

G(z, t) = (z − τ(t))(τ(t)z − 1)p(z, t) ∀ z ∈ D, a.e. t ≥ 0.

Moreover, the Ld-Herglotz function p(z, t) is uniquely determined by G(z, t) up to a zero measure set in t, while
τ is uniquely determined up to a zero measure set for those t such that G(z, t) , 0.
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When we deal with the classical Loewner vector field, we have

G(z, t) = −z
1 + zk(t)
1 − zk(t)

and τ(t) ≡ 0.

Definition 1.15.7. A Ld-Loewner chain is a family ( ft) of functions ft : D × [0,∞) −→ C such that

1. for every t ≥ 0, z 7−→ ft(z) is univalent,

2. for every 0 ≤ s ≤ t < ∞, fs(D) ⊂ ft(D),

3. for every K b D and T > 0, there exists kK,T ∈ Ld([0,T],R+) such that

| ft(z) − fs(z)| ≤
∫ t

s
kK,T(ξ) dξ ∀ z ∈ K, 0 ≤ s ≤ t ≤ T.

The following result is in [MDCG10] (for a different proof see also [LAK10].)

Theorem 1.15.4. 1. Let (ϕs,t) be a Ld-evolution family, then there exists a Ld-Loewner chain ( ft) such that

fs = ft ◦ ϕs,t ∀ 0 ≤ s ≤ t < ∞. (1.7)

If (1t) is another Loewner chain satisfying (1.7) then, setting Ω :=
⋃

t≥0 ft(D) and Ω′ :=
⋃

t≥0 1t(D),
there exists a biholomorphic map Φ : Ω −→ Ω′ such that 1t = Φ ◦ ft.

2. Given a Ld-Loewner chain ( ft), the family ϕs,t := f−1
t ◦ fs is a Ld-evolution family and (1.7) holds.

Corollary 1.15.5. We have the Loewner-Kufarev PDE

∂ fs
∂s

(z) = −
∂ fs
∂z

(z)G(z, s) for a.e. s ≥ 0. (1.8)

Exercise 1.15.3. Give an example of Ld-Loewner chain ( ft) such that
⋃

t≥0 ft(D) is not biholomoprhic to
C.

Definition 1.15.8. A (continuous) one-parameter semigroup

Φ : (R+
0 ,+) −→ (Hol(D,D), ◦)

is a semigroup morphism which is continuous with respect to the Euclidean topology on R+
0 and the topology of

uniform convergence on compact sets on Hol(D,D).
Explicitly,

1. Φ0 = idD,

2. Φt+s = Φt ◦Φs,

3. Φt
t→t0
−−−→ Φt0 uniformly.

Theorem 1.15.6 (Berkson-Porta). Let (Φt) a one-parameter semigroup of holomorphic self-maps of D. Then

1. t 7−→ Φt(z) is real analytic for any z ∈ D,

2. there exists a unique holomorphic vector field G : D −→ C(= TD) such that

∂Φt(z)
∂t

(z) = G(Φt(z)).
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Remark 1.15.3. The same problem can be studied for complex time, but monodromy problems may
(often) arise.

Theorem 1.15.7 (Flow-box Theorem). Consider a domain Ω ⊂ Cn and a holomorphic map F : Ω −→ Cn.
Let K b Ω, then there exist δ > 0 and an open neighbourhood U of K and a map X : (−δ, δ) × U −→ Ω such
that X is real analytic in (t, z), it is holomorphic in z for fixed t and it verifies∂X

∂t (t, z) = F(X(t, z))
X(0, z) = z

Moreover X is unique.

As a consequence of the Flow-box Theorem, we get that if G is a semicomplete holomorphic vector
field then it generates a one-parameter semigroup.

Proof of Theorem 1.15.6. Take K b D. Let α ∈ (0, 1) and let K̂ be the convex hull of Φ([0, α] × K). Note
that K̂ is compactly contained in D.

Let 0 < µ� 1, let δ ∈ (0, α] such that

sup
z∈K̂

|Φ′t(z) − 1| < µ ∀ t < δ.

Exercise 1.15.4. Prove that such a δ exists.

Then, for any z ∈ K, t ∈ [0, δ], we have

|Φ2t(z) − 2Φt(z) + z| =

∣∣∣∣∣∣
∫

[z,Φt(z)]

d
ds

[Φt(ζ) − ζ]dζ

∣∣∣∣∣∣ ≤ µ |Φt(z) − z| .

Hence,

|Φ2t(z) − z| = |2 (z −Φt(z)) − (Φ2t(z) − 2Φt(z) + z)| ≥ 2 |z −Φt(z)| − |Φ2t(z) − 2Φt(z) + z| ≥
≥ 2 |Φt(z) − z| − µ |Φt(z) − z| = (2 − µ) |Φt(z) − z| . (1.9)

We take (2 − µ)−1
≤ 2−2/3; moreover, for k ∈ N such that 2kδ

≥ 1, we set

M := 22k/3 sup
{
|Φt(z) − z| : z ∈ K, t ∈ [2−k, 1]

}
.

From (1.9), we get

|Φt(z) − z| ≤
1

2 − µ
|Φ2t(z) − z| ≤ 2−2/3

|Φ2t(z) − z| . (1.10)

We claim that
|Φt(z) − z| ≤M t2/3

∀ t ∈ [0, 1], z ∈ K. (1.11)

Indeed,

a) for t ∈ [2−k, 1],
|Φt(z) − z| ≤ 2−2k/3M = (2−k)2/3M ≤ t2/3M;

b) for t ∈ [0, 2−k), there is m ∈ N such that 1 > 2mt ≥ 2−k, so that

|Φt(z) − z| ≤ 2−2/3
|Φ2t(z) − z| ≤ (2−2/3)m(2−k)2/3M ≤ t2/3M.
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We argue in the same way for a compact convex set K1 such that K1 ⊃ int(K̂) so that we find M1 > 0
such that

|Φt(z) − z| ≤M1t2/3
∀ t ∈ [0, 1], z ∈ K1.

Using Cauchy inequalities, we find M̃ > 0 such that

|Φ′t(z) − 1| ≤ M̃t2/3
∀ z ∈ K̂, t ∈ [0, 1]. (1.12)

Then

|Φ2t(z) − 2Φt(z) + z| ≤
∫

[z,Φt(z)]

∣∣∣∣∣ d
ds

Φt(ζ) − ζ
∣∣∣∣∣ |dζ| (1.12)

≤ M̃t2/3
|Φt(z) − z|

(1.11)
≤ MM̃t4/3.

For any z ∈ K, t ∈ [0, 1) we obtain∣∣∣∣∣Φ2t(z) − z
2t

−
Φt(z) − z

t

∣∣∣∣∣ =
1
2t
|Φ2t(z) − 2Φt(z) + z| ≤

M̃Mt4/3

2t
=

M̃Mt1/3

2
,

so that
lim
n→∞

Φ2−n(z) − z
2−n =: G(z)

exists uniformly on compact sets.
G : D −→ C is holomorphic, since for t0 > 0, Φ([0, t0) × {z0}) is compact in D,

Φ2−n (Φt(z0)) −Φt(z0)
2−n

unif
−−−→ G (Φt(z0)) ∀ t ∈ [0, t0].

Let now F(t) :=
∫ t

0 Φs(z)ds, then
∫ t

0 Φs+2−n(z)ds = F(t + 2−n) − F(2−n) and

lim
n→∞

F(t + 2−n) − F(t)
2−n =

∫ t

0
G(Φs(z))ds

or

Φt(z) − z =

∫ t

0
G(Φs(z))ds,

as desired. �

We have established an explicit correspondence between semigroups and infinitesimal generators
G. It easy to check that G(0) = 0 if and only if Φt(0) = 0. In this situation, discs centered at 0 are
mapped by any Φt into smaller discs with the same center.

Given the hyperbolic distance, we can look at it as a function ω : D × D −→ R+ that is C∞ on
D ×D − diag(D ×D). Then, if Φt maps discs centered at 0 into smaller discs centered at 0 for all t ≥ 0,
it follows that the differential of the Poincaré distance is contracted by the infinitesimal generator. A
similar argument holds even if the semigroup does not fix any point. Namely,

Theorem 1.15.8. A holomorphic map G : D −→ C is an infinitesimal generator if and only if

(dω)(z,w)(G(z),G(w)) ≤ 0 for any z,w ∈ D, z , w.

Exercise 1.15.5 (**). Using Theorem 1.15.8 prove directly the Berkson-Porta Formula: a holomorphic
vector field G : D −→ C is an infinitesimal generator if and only if there exist τ ∈ D and a holomorphic
function p : D −→ H such that

G(z) = (z − τ)(τz − 1)p(z).

The Berkson-Porta Formula is unique [Hint: let G be an infinitesimal generator given by G(z) =

(z − τ)(τz − 1)p(z) with τ ∈ D and p : D −→ H holomorphic. If G(z) = (z − σ)(σz − 1)q(z), with σ ∈ D
and q : D −→ H holomorphic then

p(z) =
(z − σ)(σz − 1)
(z − τ)(τz − 1)

q(z) : D −→ H

If τ ∈ D, uniqueness follows at once. If τ ∈ ∂D and σ , τ, multiply both sides by 1 − |z| and apply the
Growth Theorem to get a contradiction.]
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Open question: Characterize semi-complete holomorphic vector field in higher dimension.
In higher dimension, one can replace the Poincaré distance with the Kobayashi distance (a natural

distance contracted by holomorphic mappings), see [BDM10], from where Theorem 1.15.8 is also taken.

Proof of Theorem 1.15.8. If G is an infinitesimal generator, then the Flow-box Theorem gives a semigroup
(φt). For z , w fixed, define h(t) := ω(φt(z), φt(w)). We will prove later that one-parameter semigroups
are injective: for any t ≥ 0, φt : D −→ D is univalent. Then

h(t + s) = ω(φt(φs(z)), φt(φs(w))) ≤ ω(φs(z), φs(w)) = h(s) ∀ t, s ≥ 0,

so that t 7−→ h(t) is an increasing function which is C∞ by the Berkson-Porta Theorem.
Then

0 ≥ ḣ(0) =
d
dt
ω(φt(z), φt(w))|t=0 = dω(φ0(z),φ0(w)(φ̇0(z), φ̇0(w)) = dω(z,w)(G(z),G(w)).

Conversely, define  dx
dt = G(x(t))
x(0) = w

(1.13)

and let xw : [0, δw) −→ D be the maximal solution to (1.13). We show that δw = ∞ for any w ∈ D.
Given z , w in D, set 1(t) := ω(xz(t), xw(t)) which is a well-defined function, real analytic on

[0, δz ∧ δw) and xz(t) , xw(t) for any t, by the uniqueness of the solution of the Cauchy problem. We
have

1′(t) = dω(xz(t),xw(t))(ẋz, ẋw) = dω(xz(t),xw(t))(G(xz),G(xw)) ≤ 0

by the hypothesis. It follows that 1 is non-increasing, whence δz = δw, for if δz > δw, then

lim
t→δw

ω(xz(t), xw(t)) = ∞

(as xw(δw) reaches the unit circle, while xz(δw) does not) but the distance between xz(t) and xw(t) does
not increase in time. Contradiction.

Hence, we can set δ := δz = δw > 0. By the Flow-box Theorem, φ : D × [0, δ) −→ D is real-analytic
in t and holomorphic in z.

If δ < ∞, then we can take t ∈ (δ, 2δ) and δ > s > 0 such that t − s < δ. Define

φ̃t(z) :=

φt(z) if t < s
φt−s(φs(z)) if t ≥ s

which is well defined for any t ∈ [0, δ′) with δ′ > δ, contradicting maximality of the solution. �

Exercise 1.15.6. Let Φt be a one-parameter semigroup (in D), define ϕs,t := Φt−s for 0 ≤ s ≤ t < ∞. Show
that (ϕs,t) is a L∞-evolution family (Hint: use the Berkson-Porta Formula).

Proposition 1.15.9. Let (ϕs,t) be a Ld-evolution family. Then for any 0 ≤ s ≤ t < ∞, ϕs,t is injective.

Dimostrazione. Suppose that for some 0 < s0 < t0 and z0 , w0 in D, we have ξ = ϕs0,t0(z0) = ϕs0,t0(w0).
Let

t1 := inf{t ∈ [s0, t0] : ϕs0,t(z0) = ϕs0,t(w0)}.

Then, as it can be easily proved that limt↓s0 ϕs0,t = ϕs0,s0 = id uniformly on compact sets (exercise),
we must have t1 > s0. For t ∈ (s0, t0),

ϕt,t1(ϕs0,t(z0)) = ϕt,t1(ϕs0,t(w0)),

so that ϕt,t1 is not injective.
We leave as a further exercise to prove that limt↑t1 ϕt,t1 = ϕt1,t1 uniformly on compact sets,

contradicting the injectivity of the identity function. �
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Exercise 1.15.7. If (φt) is a one-parameter semigroup, then φt is injective for any t ≥ 0.

Theorem 1.15.10. Let G(z, t) be a Ld-Herglotz vector field. Then G(z, t) is semi-complete, namely ∀ (z, s) ∈
D × [0,∞), the escaping time I(z, s) = ∞.

Dimostrazione. Consider ẋ(t) = G(x(t), t)
x(s) = z

Call φs,z : [s, I(z, s)) −→ D the maximal positive trajectory.
Let w ∈ D; assume I(z, s) ≤ I(w, s) and define the absolutely continuous function

h(t) := ω
(
φs,z(t), φs,w(t)

)
.

As G( · t) is an infinitesimal generator for a.e. t ≥ 0, Theorem 1.15.8 implies that

(dω)(φs,z(t),φs,w(t))
(
G

(
φs,z(t)

)
,G

(
φs,w(t)

))
≤ 0 for a.e. t ≥ 0.

Therefore ḣ(t) ≤ 0 for a.e. t ≥ 0 and so h(t) ≤ h(s) for any t ∈ [s, I(z, s)).
Suppose to have a strict inequality I(z, s) < I(w, s); when t → I(z, s), we have φs,z(t) → ∂D, while

φs,z(t)→ φs,w(I(z, s)) ∈ D.

Thus, φs,w(t) ∈ K for any t ∈ [s, I(z, s)] and so h(t)
t→I(z,s)
−−−−−→ ∞, contradicting the fact that h(t) ≤ h(s) <

∞. Then I(z, s) = I(w, s).
Let I := I(0, 0) > 0, let s < I and set z := φ0,0(s). Consider s < t < I(0, s) ∧ I, then

φs,z(t) = φs,φ0,0(s)(t)
uniqueness of ODE

= φ0,0(t)

and
ω

(
φs,0(t), φ0,0(t)

)
= ω

(
φs,0(t), φs,z(t)

)
= h(t) ≤ h(s) = ω(0, z) = ω

(
0, φ0,0(s)

)
.

Arguing as before, we get I(0, s) = I for any s < I
We prove that there exists δ > 0 such that I(0, s) ≥ s + δ for any s ∈ [0, I), whence I = ∞.

Let 0 < r < 1 and let kr,I+2, k̂r,I+2 ∈ Ld([0, I + 2],R+) be such that

|G(z, t)| ≤ kr,I+2(t) and |G(z, t)−G(w, t)| ≤ ĥr,I+2(t)|z−w| for any z,w ∈ ∂Dr and for a.e. t ∈ [0, I+2]. (1.14)

The integral functions

u 7−→
∫ u

0
kr,I+2(ξ) dξ, u 7−→

∫ u

0
k̂r,I+2(ξ) dξ

are absolutely continuous, so that there is δ ∈ (0, 1) such that for any s ∈ [0, I + 1]∫ s+δ

s
kr,I+2(ξ) dξ ≤ r and

∫ s+δ

s
k̂r,I+2(ξ) dξ ≤ r

hold.
Thus, if f : [s, s + δ] −→ Dr is a measurable function, then∣∣∣∣∣∣

∫ t

s
G( f (ξ), ξ) dξ

∣∣∣∣∣∣ ≤
∫ t

s

∣∣∣G( f (ξ), ξ)
∣∣∣ dξ ≤

∫ t

s
kr,I+2(ξ) dξ ≤ r ∀ t ∈ [s, s + δ]. (1.15)
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For s ∈ [0, I + 1], we define by recursion, for t ∈ [s, s + δ],
x1,0(t) := 0

xs,n(t) :=
∫ t

s G(xs,n−1(ξ), ξ) dξ

By (1.15), we have |xs,n(t)| ≤ r, whence

|xs,n(t) − xs,n−1(t)| ≤
∫ t

s
|G(xs,n−1(ξ), ξ) − G(xs,n2(ξ), ξ)| dξ

(1.14)
≤

∫ t

s
k̂r,I+2(ξ)|xs,n−1(ξ) − xs,n−2(ξ)| dξ ≤

≤ max
ξ∈[s,s+δ]

|xs,n−1(ξ) − xs,n−2(ξ)|
∫ t

s
k̂r,I+2(ξ) dξ ≤ r max

ξ∈[s,s+δ]
|xs,n−1(ξ) − xs,n−2(ξ)|.

Thus, the sequence {xs,n} is a Cauchy sequence in the Banach space C0([s, s + δ],C) and converges
uniformly to a continuous function x : [s, s + δ] −→ C.

Since |G(xs,n(t), t)| ≤ kr,I+2(t), the Lebesgue’s Dominated Convergence Theorem gives

x(t) =

∫ t

s
G(x(ξ), ξ) dξ ∀ t ∈ [s, s + δ].

By the uniqueness of the ODE solution, φs,0 = x on [s, s + δ]. Then I(0, s) ≥ s + δ and I = ∞, as
desired. �

2 Dynamics of univalent functions of the disc (S. Dı́az-Madrigal)

Given ϕ ∈ Hol(D,D), we denote by ϕn the n-th iteration of ϕ. For z ∈ D, we want to study

lim
n→∞

ϕn(z).

2.1 Two particular examples: The automorphic case

Consider ϕ ∈ Aut(D) which is not trivial (i.e. different from the identity); then we know ϕ = λαa
with |λ| = 1 and αa(z) = a−z

1−az . Searching for the fixed points of ϕ, some computations show that
λαa(z) = z has two only possibilities:

• elliptic case: there exists τ ∈ D such that ϕ(τ) = τ,

• non-elliptic case: there is τ1 (or τ1 , τ2) ∈ ∂D such that ϕ(τi) = τi.

To go further, we need to introduce a fundamental notion in dynamics. We present it in the abstract
setting of two arbitrary sets Ω and Ω̂.

Definition 2.1.1 (Conjugation). Given f : Ω −→ Ω and a bijective map 1 from Ω̂ onto Ω, we define
f̂ = 1−1

◦ f ◦ 1, which trivially verifies f̂n = 1−1
◦ fn ◦ 1, and say that f and f̂ are conjugated by the

intertwinning map 1. From the dynamical point of view, the study of the sequence ( fn) is indistinguishable from
the study of ( f̂n).

We talk of semi-conjugation when we only have 1 (not necessarily injective) such that 1◦ f̂ = f ◦1. For
instance, we met semi-conjugation in 1.5.1 where we showed that given φ ∈ Hol(D,D) with φ(0) = 0,
|φ′(0)| = λ ∈ (0, 1), then there exists σ ∈ Hol(D,C) such that σ ◦ φ = λσ. In other words, φ (on D) was
conjugated with the function λz (on σ(D)).
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Coming back to our problem, we notice that, in the elliptic case, it was showed in 1.5.1 that ϕ
is conjugated to a rotation. Namely, using ατ and applying Schwarz’ Lemma, we obtain that ϕ is
conjugated with φ(z) = λz, where |λ| = 1 and different from one. Clearly, φn(z) = λnz does not
converge to a single point (depends on the value of λ).

Hence, we are forced to introduce another basic notion in dynamics and, as before, we present it
in an abstract setting.

Definition 2.1.2. Given a metric space X and a sequence (xn) ⊂ X, we define the ω-limit of this sequence as

ω(xn) :=
{
x ∈ X : ∃nk ↑ ∞ such that lim

k−→∞
xnk = x

}
.

A sequence has a limit if and only if its ω-limit reduces to a single point.
If λ = e2πiq with q ∈ Q−Z (asϕ , id), thenω(φn(z)) consists of a finite number of points on the circle

C(0, |z|) (for z , 0) and its cardinal does not depend on z. When q is irrational, then it is well-known
that ω(φn(z)) = C(0, |z|).

This certainly closes the analysis of (φn(z)). The following step is to conjugate back the ω-limit of
φn(z) to that of ϕn(z). This leads to the Hyperbolic Geometry of the unit disc; recall that we can define
the hyperbolic pseudo-distance as ω̃(z1, z2) = |αz1(z2)|. Then,

ω(ϕn(z)) = CH(τ, ω(τ, z)) = {w ∈ D : ω̂(w, τ) = ω̂(z, τ)}.

Let us pass to the non-elliptic case. Conjugating with adequate Cayley maps, we can move our
study from automorphisms of the unit disc to automorphisms of the right half-plane fixing∞.

Remark 2.1.1. The Cayley map (associated with τ ∈ ∂D) is the map στ(z) = τ+z
τ−z , z ∈ D. It is a

biholomorphism from D onto H which is also a bicontinuous function from D to H. Notice that σ
maps τ to∞.

The conjugated map is of the form φ(w) = αw + ib with α > 0 and b ∈ R. We distinguish two cases.

• Suppose α = 1. Then b , 0 and φn(w) = w + inb→∞ so ω(φn(z)) = {∞};

• When α , 1, we may even assume that φ(w) = βw, with β > 1. It follows also thatω(φn(z)) = {∞}.

The difference between the above two possibilities is how the sequence enters into the ω-limit: in
the first case we have tangency, in the second one we have transversality.

It is straightforward to pass the above study in the right half-plane to the unit disc. Namely, the
following theorem holds.

Theorem 2.1.1. Let ϕ be a holomorphic automorphism of the unit disc without fixed points (in the unit disc).
Then, there exists τ ∈ ∂D such that ϕn(z)→ τ, for every z ∈ D.

2.2 The (general) discrete case

Consider ϕ ∈ Hol(D,D) which is non-trivial. Then we classify similarly elliptic and non-elliptic
maps regarding the fixed points of ϕ.

Suppose that ϕ has an inner fixed point (elliptic case); up to conjugation, we can suppose that the
fixed point is 0. Then |φ′(0)| ≤ 1. In the case of equality, we are in the case of a rotation and this was
studied in the previos section. When |φ′(0)| < 1, then Exercise 1.10.2 gives φn(z)→ 0 for any z ∈ D.

Suppose now that ϕ has no inner fixed points.

Theorem 2.2.1 (Denjoy-Wolff (Boundary case)). There exists τ ∈ ∂D such that ω(ϕn(z)) = {τ}.
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Dimostrazione. Bearing in mind the former section (indeed, the last theorem of that section) we may
and do assume that ϕ is not an automorphism.

Step I: Construction of τ.
Given r ∈ (0, 1), define ϕr := rϕ; we have |rϕ(z)| ≤ r and ϕr : D(0, r) −→ D(0, r). By Brower’s Fixed

Point Theorem, there exists τr ∈ D(0, r) such thatϕr(τr) = τr. Then we can take rn ↑ 1 so that τrn ↑ τ ∈ D
which lies actually on the circle (otherwise ϕ would have a fixed point in D).

Step II: Aut(D) ∩ ωHol(D,C)(ϕn) = ∅.

Suppose that it is not true and take h ∈ Aut(D)∩ωHol(D,C)(ϕn), then we can take a sequence ϕnk

k
−→ h

uniformly on compact sets and we set, for nk > 1, φk := ϕnk−1.

Montel’s Theorem gives that φk`
`
−→ 1 uniformly, where 1 ∈ Hol(D,C); as |φk` | ≤ 1, we have |1| ≤ 1

in D, so that either 1 is constant or 1(D) ⊂ D.
We write

φk` ◦ ϕ = ϕnk`−1 ◦ ϕ = ϕnk`

and taking limits we have 1 ◦ ϕ = h which gives that 1(D) ⊂ D and ϕ is injective.
Writing in the other sense ϕ ◦ φk` = ϕnk`

and taking limits again, we have ϕ ◦ 1 = h so that ϕ is
surjective and ϕ ∈ Aut(D), giving a contradiction.

Step III: For any K > 0, ϕ(Hor(τ,K)) ⊂ Hor(τ,K), where Hor(τ,K) denotes the horocycle{
z ∈ D :

|z − τ|2

1 − |z|2
< K

}
= D

( 1
K + 1

τ,
K

K + 1

)
.

Horocycles are deep related to the open discs associated with the hyperbolic metric (so also to the
pseudo-hyperbolic metric).

Namely, for a ∈ D and r ∈ (0, 1), set D̂H(a, r) := {z ∈ D : ω̃(a, z) < r}; then it can be proved (exercise)
that

D̂H(a, r) =

{
z ∈ D :

|1 − az|2

1 − |z|2
<

1 − |a|2

1 − r2

}
.

Note the similarity with the definition of horocycles.
By Schwarz’ Lemma, if φ ∈ Hol(D,D) with φ(0) = 0, then |φ(z)| ≤ |z| for any z ∈ D. This statement

is equivalent to the fact that φ(D(0, r)) ⊂ D(0, r) and henceforth φn(D(0, r)) ⊂ D(0, r).
If φ ∈ Hol(D,D) is such that φ(τ) = τ ∈ D, the same proves that φ(D̃H(τ, r)) ⊂ D̃H(τ, r).
In fact, this holds for any h ∈ Hol(D,D) and a ∈ D:

h(DH(a, r)) ⊂ DH(h(a), r).

We pass to prove Step III. We are going to use the above statement. We have ϕrn(τrn) = τrn for any
n ∈ N. Fix z0 ∈ D and set tn = ω̃(z0, τrn). Then,

ϕrn

(
D̃H(τrn , tn)

)
⊂ D̃H(τrn , tn),

which gives
|1 − ϕrn(z0)τrn |

2

1 − |ϕrn(z0)|2
≤

1 − |τrn |
2

1 − t2
n

and, taking the limits on both sides,

|1 − ϕ(z0)τ|
1 − |ϕ(z0)|2

≤
|1 − z0τ|2

1 − |z0|2
.

Step IV: We have (it is enough) to prove that ωHol(D,C)(ϕn) = {τ}, i.e. we have to show that for any

(nk) ↑ ∞ there exists (mk) ⊂ (nk) such that ϕmk

k
−→ τ.
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Take an arbitrary subsequence (ϕnk), then by Montel’s Theorem, (mk) ⊂ (nk) and ϕmk

k
−→ 1 ∈

Hol(D,C). As |ϕn| ≤ 1, we have |1| ≤ 1 in D, so that, by the Open Mapping Theorem, either 1 is
constant or 1(D) ⊂ D. This gives the following alternatives:

(i) 1 = p ∈ ∂D,

(ii) 1 ≡ p ∈ D,

(iii) 1(D) ⊂ D and 1(D) is an open set.

Using Step II, it is possible to prove that case (iii) is impossible (exercise). Case (ii) cannot occur
neither: consider K > 0 with Hor(τ,K) = p. Then, by Step III, necessarily any limit of (ϕnk(z)) must
belong to Hor(τ,K).

It remains (i); then, using again Step II, ϕn(Hor(τ,K)) ⊂ Hor(τ,K) so the limit of ϕnk(z) must belong
to Hor(τ,K). Therefore, p ∈ Hor(τ,K) ∩ ∂D. This implies p = τ. �

2.3 The rational (also continuous or autonomous) case

In the previous section we have been considering ϕn, with n a natural number. This is usually
called in dynamics, the discrete setting. A question, going back at least to Abel’s times is if it is possible
to give a reasonable/coherent meaning to ϕn, for n rational or even real.

The fundamental fact is to look at the semigroup property ϕn+m = ϕn ◦ ϕm of discrete iteration. If
we want this property to hold for continuous time too we must impose thatϕs+t = ϕs ◦ ϕt s, t ≥ 0

ϕ0 = idD
.

However, this is not enough to create a fruitful theory as the following example shows.

Example 2.3.1. Consider any non-measurable function θ : [0 +∞) −→ ∂D verifyingθ(s + t) = θ(s)θ(t) s, t ≥ 0
θ(0) = 1

.

and consider ϕt(z) = eiθ(t)z. Clearly, the above properties are satisfied but the properties of the ϕt with
respect to t are really bad.

Therefore we also ask for some kind of continuity in t. Namely, we add the condition limt→0 ϕt(z) =

z for any z ∈ D, which is equivalent to the request that ϕs
s→t
−−−→ ϕt in Hol(D,C). In this way, we arrive

to the concept of semigroups of holomorphic functions in the unit disc (see again Definition 1.15.8). In
this case, we wonder about the behaviour of ϕt(z) for t→∞.

It is knownϕt(z) can be differentiated (in fact, they are real-analytic) in t and can be seen as solutions
to problems of the form ẇ = F(w)

w(0) = z

with F holomorphic in D, which is an autonomous dynamical system in D and the flow is semi-
complete on the right: Tz = ∞ for any z ∈ D.

Conversely, given any autonomous dynamical system on D of such a form, the flow defines (in a
natural way) a semigroup of holomorphic functions in the unit disc.

As it was shown in Exercise 1.15.5, those semi-complete vector fields in the unit disc are those of
the form G(z) = (z − τ)(τz − 1)p(z), with τ ∈ D and p ∈ Hol(D,C) with<e p ≥ 0.

What about the limit ϕt(z) for t→∞? We have either
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(i) ∃ t0 > 0 such that ϕt0 is a (non-trivial) elliptic automorphism, or

(ii) ∀ t > 0, ϕt is not an elliptic automorphism.

For (i), there exists τ ∈ D with ϕt(τ) = τ and ω(ϕt(z)) = CH(τ, ω(z, τ)) so that we can think of
rotations (in the hyperbolic sense).

For (ii), we have a continuous version of the Denjoy-Wolff Theorem.

Theorem 2.3.1. There exists τ ∈ D such that limt→∞ ϕt(z) = τ for any z ∈ D.

Dimostrazione. Set ϕ = ϕ1. Then, by the Denjoy-Wolff Theorem, there exists τ ∈ D such that ϕn(z)→ τ.
Indeed, this happens for any sequence (qn) of natural numbers converging to∞.

Now take (tn) an arbitrary sequence of real numbers converging to∞. Then, we write tn = [tn]+pn,
pn ∈ [0, 1] and consider a subsequence (nk) such that pnk → p0 ∈ [0, 1].

Then by semigroup properties, ϕtnk
(z) = ϕ[tnk ](ϕpnk

(z))→ τ. That is, there is always a subsequence
of (ϕtn) converging to τ so the proof is done. �

2.4 The non-autonomous case

First of all, we recall the basic question about asymptotic behaviour in the non-autonomous setting.
Consider now non-autonomous dynamical systemsẇ = F(w, t) t ∈ I an interval

w(s) = z
(Pz,s)

with F( · , t) ∈ Hol(D,C) and F(z, · ) good (at least measurable on t). The solutions Φz,s(t) are defined
for t ∈ [s,Tz,s), where s < Tz,s ≤ +∞ (Tz,s is called the escaping time).

We wonder which is the behaviour of Φz,s(t) when t→ Tz,s.
In the theory of generalized Loewner chains, we have found semi-complete vector fields of the form

G(z, t) = (z−τt)(τtz−1)p(z, t). Moreover, we know that, as a matter of fact, solutions to the corresponding
problems (Pz,s) are the evolution families ϕs,t(z). We recall that they verify the properties

1. ϕs,s = idD,

2. ϕs,t = ϕu,t ◦ ϕs,u for 0 ≤ s ≤ u ≤ t,

3. for any z ∈ D and T > 0, there is a k ∈ Lp such that

|ϕs,u(z) − ϕs,t(z)| ≤
∫ t

u
k(ξ)dξ for 0 ≤ s ≤ u ≤ t ≤ T.

So, what about ϕs,t(z) for t→∞? We fix z ∈ D, s ≥ 0; we restrict to the case τt ≡ const.
Let’s suppose τ ∈ D (τ = 0); then we have three situations:

(i) for any z ∈ D and s ≥ 0, ϕs,t → 0

(ii) for any s ≥ 0, ϕs,t → hs with hs a univalent map from D to D

(iii) for any s ≥ 0 and z ∈ D, ω(ϕs,t(z)) ⊂ C(0, rs,z) and it is not a point.

This latter case splits again:

(a) for any z ∈ D and s ≥ 0, ω(ϕs,t(z)) = C(0, rs,z) and rs,z ∈ (0, 1)
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(b) for any z ∈ D and s ≥ 0, ω(ϕs,t(z)) is a closed proper arc of C(0, rs,z) with the same (hyperbolic)
angular extend

Definition 2.4.1. The angular extend is defined to be

θ :=
length arc

radius

and its hyperbolic analogous is

θ :=
(hyperbolic) length arc

sinh r
.

Case (i) happens if and only if for every (resp. for some) z ∈ D, <e p(z, · ) < L1([0,∞)). This fact
clarifies some results in Loewner theory and rational iteration. Indeed, in classical Loewner’s Theory,
since

fs(z) = lim
t→∞

ϕs,t(z)
et−s

converges, we have (i). Now, note p(0, t) = 1 and
∫ t

0 <e p(0, s) ds = t→∞.
In the semigroup case (τ = 0) and if (ϕt) is not elliptic-automorphic (there is t0 > 0 such that ϕt0 is

elliptic and an automorphism), also clearly we have (i). Now, note<e p(z) = p0 , 0 and∫ t

0
<e p(z, s)ds =

∫ t

0
p0 ds = p0 t→∞.

For the boundary case τ ∈ ∂D, the alternative turns out to be the following:

(i) for any z ∈ D and s ≥ 0, ϕs,t(z)→ τ for t→∞,

(ii) for any s ≥ 0, ϕt,s → hs univalent with hs(D) ⊂ D,

(iii) for any s ≥ 0 and z ∈ D, ω(ϕs,t(z)) ⊂ ∂Hor(τ,Ks,z), with Ks,z > 0 and it is not a point.

This last case splits again:

(a) for any z ∈ D and s ≥ 0, ω(ϕs,t(z)) = ∂Hor(τ,Kr,s),

(b) for any z ∈ D and s ≥ 0, ω(ϕs,t(z)) is a proper arc with τ as one of the end-points,

(c) for any z ∈ D and s ≥ 0, ω(ϕs,t(z)) is a proper arc contained in D with the same horocycle-
angular extend.

By horocycle-angular extend, we mean the angular extend from the horocycle point of view; that is

hyperbolic length of the arc
Kr,s

.
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