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FIXED POINTS OF COMMUTING HOLOMORPHIC MAPS
WITHOUT BOUNDARY REGULARITY

FILIPPO BRACCI

Abstract. We identify a class of domains of Cn in which any two commuting
holomorphic self-maps have a common fixed point.

1. Introduction

In 1964 A.L. Shields [22] proved that a family of continuous functions mapping
the closed unit disk into itself, holomorphic in the open disk and commuting under
composition, has a common fixed point. Subsequently several authors have gen-
eralized the result to different types of domains in Cn (see [1, 7] and references
therein). Generally the proofs require two different approaches depending on the
fact that the maps have or not fixed points in the interior of the domain. The
case in which the maps have fixed points in the domain is solved by studying the
properties of the fixed points set (see [1, 4]), and the hypothesis on the regularity
at the boundary of the elements of the family is insignificant. When a map has no
fixed points in the domain, then one usually exploits a Wolff-type Lemma, which
-roughly speaking- says that the map “squashes” the domain into a unique point
of the boundary, producing a boundary fixed point for all the family.
The aim of this paper is to produce existence theorems of common fixed points for
commuting holomorphic maps in a wide class of domains in Cn, and without any
assumption about the regularity of the maps at the boundary. We deal with two
commuting holomorphic self-maps, f and g, of a domain Ω ⊂ Cn -but our method
works for a bigger family as well- under the hypothesis that f has no fixed points
in Ω and with no assumption on the boundary regularity of f and g. Since f has
no fixed points in Ω, if we want to produce a fixed point, it has to belong to ∂Ω.
Being f not necessarily continuous up to the boundary we firstly have to specify
what “boundary fixed point” means. For the moment it is enough to think ”fixed”
in the sense of non-tangential limits, since then one applies the results by Čirca
[9], Stein [23] and Cima and Krantz [8] to get “admissible” (in some sense) limits
available (see section 2). The main part of this work is to find suitable hypotheses
on Ω to make f and g have a common boundary fixed point. In sight of the pre-
vious results (see [6, 7]) we put on Ω three reasonable hypotheses. The first and
the second hypotheses on Ω are substitutes of the Wolff and Wolff-Denjoy Lemmas.
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The third one is a kind of Julia’s Lemma involving the Kobayashi pseudodistance
kΩ of Ω (see Def. 2.2). Under these hypotheses we produce a common boundary
fixed point for f and g (see Th. 2.7). To make this machinery non-abstract we give
some examples and applications, both rediscovering old results and producing some
new ones (for instance we show that Theorem 2.7 holds in m-convex domains and
strongly pseudoconvex contractible domains, and we give a new proof of a result
by Heins [14] generalizing it to the unit ball of Cn).

2. Preliminaries and Statements

Let ∆ be the unit open disk of C and let Ω ⊂ Cn be a domain. The Kobayashi
pseudometric κΩ : TΩ → R+ is defined by:

∀z ∈ Ω, ∀v ∈ TzΩ κΩ(z; v) = inf {|ξ| | ∃ϕ ∈ Hol(∆,Ω) : ϕ(0) = z, dϕ0(ξ) = v} .

The Kobayashi pseudodistance kΩ : Ω × Ω → R+ on Ω is the integrated form of
κΩ. For general properties of the Kobayashi pseudodistance and pseudometric we
refer the reader to Jarnicki-Pflug [16]. In particular we recall that kΩ is contracted
by holomorphic maps, i.e. if f ∈ Hol(Ω,Ω) then kΩ(f(z), f(w)) ≤ kΩ(z, w) for all
z, w ∈ Ω.

Definition 2.1. Let Ω be a bounded domain in Cn, z0 ∈ Ω, x ∈ ∂Ω and R > 0.
The small horosphere Ez0(x,R) and the big horosphere Fz0(x,R) of center x, pole
z0 and radius R are defined by:

Ez0(x, R) :=
{

z ∈ Ω | lim sup
w→x

[kΩ(z, w)− kΩ(z0, w)] <
1
2

log R

}
.

Fz0(x,R) :=
{

z ∈ Ω | lim inf
w→x

[kΩ(z, w)− kΩ(z0, w)] <
1
2

log R

}
.

In a sense that can be made precise (see section 3 and [1]), every statement
on boundary fixed points of f ∈ Hol(Ω,Ω) is a statement on the behaviour of
horospheres under the action of f . For instance if Ω = ∆, then E0(x, R) =
F0(x, R) =

{
z ∈ ∆ | (|x− z|2) · (1− |z|2)−1

}
are the classical horocycles. More-

over f(E0(x,R)) ⊂ E0(x,R) ∀R > 0 if and only if f has no fixed points and there
exists {zk} ⊂ ∆ such that zk → x and f(zk) goes to x faster than zk does. Keeping
this in mind, we have the following:

Definition 2.2. Let Ω be a domain in Cn. we say that

(1) Ω has the property D if for every f ∈ Hol(Ω,Ω) , the sequence of iterates
{fk} is compactly divergent if and only if f has no fixed points in Ω.

(2) Ω has the property W if for every f ∈ Hol(Ω,Ω) such that {fk} is compactly
divergent then {fk} converges uniformly on compacta to a constant map
Ω 3 z 7→ c ∈ ∂Ω.

(3) Ω has the property J if for every f ∈ Hol(Ω,Ω) such that there exists {wk} ⊂
Ω converging to x ∈ ∂Ω for which there exists y ∈ ∂Ω with f(wk) → y and

(2.1) lim sup
k→∞

[kΩ(z0, wk)− kΩ(z0, f(wk))] < ∞

for some z0 ∈ Ω, then f has non-tangential limit y at x.
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Example 2.3. (1) The unit disk ∆ of C have the properties D and W (Wolff-
Denjoy Theorems, see Denjoy [12] and Wolff [24]), and the property J
(Julia’s Lemma, see Julia [17]). This is the reason we dub D,W and J the
properties stated above.

(2) The unit ball Bn of Cn has the properties D and W (see MacCluer [19]),
and the property J (see Rudin [21]).

(3) Any convex domain has the property D (see Abate [1]) but in general a
convex domain does not have properties W and J. For instance the bidisk
∆2 fails to have the property W (check for the map (z, w) 7→ (z, (1 + w) ·
(3 − w)−1)) and the property J. An example of this last assertion can be
built as follows. Let {an} be the sequence defined by an := (1−1/n4) ·ei/n.
It’s easy to see that

∞∑
n=1

1− |an|
|1− an|2 = S < ∞.

Starting summing up from N > 1 if necessary, we can suppose S ≤ 1.
Then Frostman’s Theorem (see Frostman [13]) implies that the Blaschke
product B with zero-sequence {an} has radial limit λ ∈ ∂∆ at 1 (and we
suppose λ = 1 up to multiply by λ). Moreover B′ has radial limit S ≤ 1
at 1. Hence B has non-tangential limit 1 at 1 (in fact 1 is the Wolff point
of B) but limn→∞B(an) = 0. Now let γ be a parabolic automorphism
of ∆ with Wolff point 1. Consider f : ∆2 → ∆2 defined by f(z1, z2) :=
(γ(z1), B(z1)). Obviously f has non-tangential limit (1, 1) at (1, 0). Now
consider {zn} ⊂ ∆2 given by zn := (an, 0). Then limn→∞ f(zn) = (1, 0).
Since ω(0, B(an)) ≡ 0, a simple computation shows that

k∆2(0, zn)− k∆2(0, f(zn)) = ω(0, an)− ω(0, γ(an)).

Now from the very definition of ω it follows

lim
n→∞

[ω(0, an)− ω(0, γ(an))] = lim
n→∞

1− |γ(an)|
1− |an| .

This last limit is finite since by Julia’s Lemma (1−|γ(an)|2)·(1−|an|2)−1 =
|(1−γ(an)) ·(1−an)−1|2 which tends to [γ′(1)]2 = 1 as n tends to ∞. Then
the property J doesn’t hold.

(4) Strongly convex domains have the properties D, W and J (see Abate [1]).
(5) A bounded convex domain Ω in Cn is called m-convex if there exist two

constants C > 0 and m ∈ (0, +∞) such that for every v ∈ Cn it holds
rΩ(z; v) ≤ C[d(∂Ω, z)]1/m for all z ∈ Ω, where rΩ(z; v) is the radius of the
largest analytic disk centered at z, tangent to v and contained in Ω, and
d(∂Ω, z) is the euclidean distance from z to ∂Ω. The m-convex domains
satisfy properties D and W (see Mercer [20]) and, as we see in the next
section, they also satisfy the property J.

(6) Weakly pseudoconvex contractible domains with real-analytic or smooth
boundary in C2 have the properties D and W (see Zhang-Ren [25]).

(7) Strongly pseudoconvex contractible domains with C3 boundary in Cn have
the properties D and W (see Ma [18], Huang [15] and Abate [3]); they also
have property J as we prove in the next section.
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Remark 2.4. (i) It is easy to verify that if the property J holds for a z0 ∈ Ω,
then it holds for any z ∈ Ω.

(ii) Abate ([1], Prop. 2.4.15) proved that if Ω is bounded and f ∈ Hol(Ω,Ω)
is such that there exists {wk} ⊂ Ω converging to x ∈ ∂Ω for which there
exists y ∈ ∂Ω with f(wk) → y and for which equation (2.1) holds, then
f(Ez0(x,R)) ⊆ Fz0(y, αR), where

1/2 log α = lim inf
w→x

[kω(z0, w)− kΩ(z0, f(w))],

and α is sometimes called “boundary dilatation coefficient” of f at x.
(iii) If Ω is complete hyperbolic and if f ∈ Hol(Ω,Ω) is such that there exists

{wk} ⊂ Ω converging to x ∈ ∂Ω for which it holds equation (2.1) then there
exists y ∈ ∂Ω such that f(wk) → y. Hence if Ω is complete hyperbolic,
the hypothesis on the existence of y ∈ ∂Ω such that f(wk) → y in the
statement of the property J is redundant.

(iv) If {w′k} is a second sequence in Ω which satisfies the hypothesis of the
property J, then f(w′k) → y; that is f(zk) → y not only for {zk} non-
tangential, but also for those {zk} for which

lim sup
k→∞

[kΩ(z0, zk)− kΩ(z0, f(wk)] < +∞

holds. Then f has actually J-limit y at x (see Cor.1.8 of [7]).

As is known, in multidimensional spaces, the natural approach regions for limits
to the boundary are not cones (i.e non-tangential limits) but broader regions called
“admissible regions”. Generally, once we have radial limit at a point, then a Lindelöf
principle assures the existence of limits along complex tangential directions (for a
discussion of this matter see Abate [2]). To be more precise, depending on the
domain Ω, assuring non-tangential limits gives us “admissible limits” in the sense
of Abate’s special and restricted limits ([1]), Cima and Krantz hypoadmissible limits
([8]), Čirca’s ([9]) or Stein’s ([23]) admissible limits. We don’t want to enter into
details here, but from now on, we say admissible limits leaving to the reader the
choice of the approach regions he prefers (and that the hypothesis on Ω allow).

Remark 2.5. If Ω is F-convex (see Definition 3.2) then we can actually consider
admissible limits in the sense of Abate’s K-regions (see [1, 2]), since condition (2.1)
assures existence of J-limits and then one can reason as in the proof of Thm.2.7.14(i)
of [1].

First of all we need this lemma:

Lemma 2.6. Let Ω be a domain in Cn with the properties D, W and J. Let f ∈
Hol(Ω,Ω) be a map with no fixed points in Ω. If x ∈ ∂Ω is the point defined by the
property W, then f has admissible limit x at x.

Proof. Using the contractive properties of holomorphic maps with respect to the
Kobayashi pseudodistance, it is easy to see that the sequence wk := fk(z0) satisfies
the hypothesis of property J. ¤

Theorem 2.7. Let D be a domain in Cn having properties D, W and J. Let f, g ∈
Hol(Ω,Ω) be such that f ◦g = g ◦f and Fix(f) = ∅. Then there exists x ∈ ∂Ω such
that f and g have admissible limit x at x.
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Proof. Since f has no fixed points in Ω, then {fk} is compactly divergent by prop-
erty D and therefore it converges to a constant map Ω 3 z 7→ x ∈ ∂Ω by property
W. Let z0 ∈ Ω and put wk := fk(z0). Then wk → x and

lim sup
k→∞

[kΩ(z0, wk)− kΩ(z0, g(wk)] = lim sup
k→∞

[kΩ(z0, f
k(z0))− kΩ(z0, f

k(g(z0))] ≤

lim sup
k→∞

[kΩ(fk(z0), fk(g(z0))] ≤ kΩ(z0, g(z0)),

where the above inequalities are motivated by the facts that f commutes with g
and that holomorphic maps are contractions for the Kobayashi pseudodistance of
Ω.
Furthermore limk→∞ g(wk) = limk→∞ fk(g(z0)) = x. Then g has non-tangential
limit x at x by property J. Recalling Lemma 2.6 and the above discussion on
admissible limits, we complete the proof. ¤

Remark 2.8. If the domain Ω satisfies only properties W and J, then Theorem 2.7
holds also by replacing the hypothesis on f to have no fixed points with the hy-
pothesis on {fk} to be compactly divergent.

3. The property J

The aim of this section is to make clear the meaning of property J and to prove
assertions 5 and 7 of Example 2.3. We start by recalling:

Proposition 3.1 (Abate). Let Ω be a bounded domain in Cn, let z0 ∈ D and let
f ∈ Hol(Ω,Ω) . If {wk} ⊂ Ω, wk → x ∈ ∂Ω, if f(wk) → y ∈ ∂Ω and if

lim
k→∞

[kΩ(z0, wk)− kΩ(z0, f(wk))] ≤ 1
2

log α < ∞,

for some α > 0, then for each R > 0 it holds

f(Ez0(x,R)) ⊂ Fz0(y, αR).

Then property J is a stronger request than Proposition 3.1. Indeed -miming
Abate [1]- we show that in some complete hyperbolic F-convex domains property
J follows from Proposition 3.1. Let us give first the following:

Definition 3.2 (Abate). A domain Ω ⊂⊂ Cn is called F-convex if for every x ∈ ∂Ω

Fz0(x,R)
⋂

∂Ω ⊆ {x}
holds for every R > 0.

Example 3.3. (1) Any strongly pseudoconvex domain with C2 boundary is
F-convex (Abate [3]).

(2) Any weakly pseudoconvex domain in C2 with real analytic boundary is
F-convex (Zhang-Ren [25]).

(3) Any m-convex domain is F-convex (Mercer [20]).

Now we need the following lemma (see [1], [16]):

Lemma 3.4. Let Ω be a bounded C2 domain in Cn, z0 ∈ Ω and x ∈ ∂Ω.
(i) There exists a constant C > 0 such that for all z ∈ Ω it holds

kΩ(z0, z) ≤ C − 1
2

log d(z, ∂Ω).
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(ii) There exist C > 0 and ε > 0 such that for all z1, z2 ∈ Ω
⋂

B(x, ε) it holds

kΩ(z1, z2) ≤ C − 1
2

∑

j=1,2

log d(zj , ∂Ω) +
1
2

∑

j=1,2

log (d(zj , ∂Ω) + ‖z1 − z2‖) .

Proposition 3.5. Let Ω be a bounded C2 F-convex domain in Cn and let z0 ∈ Ω.
If for any x ∈ ∂Ω there exist constants C and ε > 0 (depending on x) such that

(3.1) kΩ(z0, z) ≥ C − 1
2

log d(z, ∂Ω), ∀z ∈ B(x, ε)
⋂

Ω

then Ω has the property J.

Remark 3.6. A domain Ω as in Proposition 3.5 is complete hyperbolic, for Ω is
hyperbolic since it is bounded and equation (3.1) implies that the Kobayashi balls
are relatively compact.

Proof. Let f ∈ Hol(Ω,Ω) . Suppose that {wk} ⊂ Ω, wk → x ∈ ∂Ω, limk→∞ f(wk) =
y ∈ ∂Ω and

lim sup
k→∞

[kΩ(z0, wk)− kΩ(z0, f(wk))] < ∞.

By Proposition 3.1 it follows that there exists α > 0 such that for all R > 0

(3.2) f(Ez0(x,R)) ⊂ Fz0(y, αR).

Now, let {zk} ⊂ Ω be such that zk → x non-tangentially, i.e. such that there exists
L > 0 such that

‖zk − x‖
d(zk, ∂Ω)

≤ L < ∞.

By Lemma 3.4(ii) and by (3.1) it follows that there exists K > 0 such that

lim sup
w→x

[kΩ(zk, w)− kΩ(z0, w)] ≤ 1
2

log
(

1 +
‖zk − x‖
d(zk, ∂Ω)

)
+

1
2

log ‖zk − x‖+ K ≤
1
2

log(1 + L) +
1
2

log ‖zk − x‖+ K,

and the last term tends to −∞ as k → ∞. Therefore, for each R > 0, it follows
that {zk} ⊂ Ez0(x,R) eventually, and hence, by (3.2), that {f(zk)} ⊂ Fz0(y, αR)
eventually. If we prove that the limit points of {f(zk)} must belong to ∂Ω, then
since Ω is F-convex, it will result

lim
k→∞

f(zk) ∈ ∂Ω
⋂

Fz0(y, R) ⊆ {y},
and hence limk→∞ f(zk) = y.
So, let y be a limit point of {f(zk)}, that is, suppose limm→∞ f(zkm) = y. By
Lemma 3.4(i) it follows that

kΩ(z0, f(zkm)) ≤ C +
1
2

log
1

d(f(zkm), ∂Ω)
,

and then y ∈ Ω if and only if, for every m,

(3.3) kΩ(z0, f(zkm)) ≤ K < ∞.

The domain Ω being hyperbolic means that the topology of Ω coincides with the
one induced by kΩ. So if ε > 0, if B(y, ε) is the Kobayashi ball of center y and radius
ε and if {f(zkm)} ⊂ B(y, ε) eventually, then by (3.3) it follows that {f(zkm)} ⊂
B(z0, ε + K), eventually. Then we have
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(1) {f(zkm)} ⊂ Fz0(y, R) for all R > 0, eventually,
(2) {f(zkm

)} ⊂ B(z0, C) for some C > 1, eventually.
But if we choose R = exp(2C)−1 it follows that

Fz0(y,R)
⋂

B(z0, C) = ∅.
And this is a contradiction. ¤

Corollary 3.7. Let Ω ⊂⊂ Cn be a F-convex domains with C2 boundary which
satisfies properties D and W. Let f, g ∈ Hol(Ω,Ω) be such that f ◦ g = g ◦ f and f
has no fixed points in Ω. If the point x ∈ ∂Ω defined by the property W for f is a
strongly pseudoconvex point then f and g have admissible limit x at x.

Proof. The point x being strongly pseudoconvex implies that equation (3.1) holds
(see, e.g. [25]), then Proposition 3.5 assures that Ω has property J, and then
Theorem 2.7 applies. ¤

More specifically we have the two following examples:

Corollary 3.8. Let Ω ⊂⊂ Cn be a m-convex C2 domain. Let f, g ∈ Hol(Ω,Ω) be
such that f ◦ g = g ◦ f and f has no fixed point in Ω. Then there exists x ∈ ∂Ω
such that f and g have admissible limit x at x.

Proof. The only thing to prove is that Ω satisfies equation (3.1). But this follows
from Mercer [20]. ¤

Corollary 3.9. Let Ω ⊂⊂ Cn be a strongly pseudoconvex contractile C2 domain.
Let f, g ∈ Hol(Ω,Ω) be such that f ◦ g = g ◦ f and f has no fixed point in Ω. Then
there exists x ∈ ∂Ω such that f and g have admissible limit x at x.

Proof. The result follows from Abate [1] (in which equation (3.1) is proved for
strongly pseudoconvex domains) and from the above remarks. ¤

Remark 3.10. If Ω is a weakly pseudoconvex domain in C2 with real-analytic or
smooth boundary, it is known that Ω satisfies equation (3.1) for almost all points
of ∂Ω (since the strongly pseudoconvex points are dense in ∂Ω, see [25]). However,
we don’t know if Ω has the property J.

4. Using property J in old contexts

In this section we give an example of possible uses of property J in the form
stated in Definition 2.2 in contexts where property J was known in different suites.
In particular we give a new proof of a well-known Heins’ Theorem, that is

Theorem 4.1 (Heins). Let γ ∈ Aut(∆) be hyperbolic, and f ∈ Hol(∆,∆) be such
that

f ◦ γ = γ ◦ f.

Then either f is a hyperbolic automorphism of ∆ with the same fixed points as γ,
or f = id∆.

Our proof of Heins’ Theorem is not simpler than the original one (see [14]), but
it has the value that it doesn’t require any explicit knowledge of the automorphisms
group of ∆. For this reason our proof can be translated to prove an analogous result
in the unit ball Bn (see also [11] and [10]).



8 F. BRACCI

Proof. Suppose f 6= id∆. Up to conjugation we can assume that γ has fixed points
1 and −1 and γk(z) → 1 for any z ∈ ∆ (i.e. 1 is the Wolff point of γ). Notice that
γ−1 commutes with f :

γ−1 ◦ f = γ−1 ◦ f ◦ γ ◦ γ−1 = γ−1 ◦ γ ◦ f ◦ γ−1 = f ◦ γ−1.

Now, since ∆ satisfies properties D, W and J (see Example 2.3), we can apply
Theorem 2.7 (with g equals, respectively, to γ and to γ−1) in order to obtain that f
has non-tangential limits 1 at 1 and −1 at −1. By the classical Schwarz Lemma it
follows that f has no fixed points in ∆ and furthermore it is easy to verify that either
1 or −1 is the Wolff point of f (otherwise γ would have three different boundary
fixed points). Suppose w.l.o.g. f has Wolff point 1. Equation (2.1) assures that f
has finite boundary dilatation coefficients at 1 and −1, call them df (−1) and df (1).
Recall that if x ∈ ∂∆ the “boundary dilatation coefficient” of f at x is defined by

1
2

log df (x) := lim inf
w→x

[k∆(0, w)− k∆(0, f(w))].

Notice that this is not the classical definition, but it agrees with the classical
one. Arguing as in the proof of Theorem 2.7 -letting wk = (γ−1)k(z)- we see
that 1/2 log df (−1) ≤ k∆(z, f(z)) for any z ∈ ∆. From the definition of k∆ -the
Poincaré distance of ∆- and a straightforward calculation we have

(4.1) df (−1) ≤ 1 + |Φz(f(z))|
1− |Φz(f(z))|

where Φz(w) is the Möebius transformation of ∆ which brings z to 0. In particular
we can choose to evaluate equation (4.1) for z = r, r → 1−. From the expression of
Φr(f(r)) and from the classical Julia-Wolff-Carathéodory Theorem (see e.g. [1]) it
follows that df (−1) ≤ 1/df (1) (for details see Lemma 3.6 of [7]). Now, the Behan’s
Lemma (a version of Julia’s Lemma, see Lemma 8 of Behan [5]) implies that f is a
hyperbolic automorphism. ¤

A word-by-word translation of the previous proof allows the following theorem
(first discovered by de Fabritiis and Gentili [11]):

Theorem 4.2. Let Bn be the unit ball of Cn. Let γ be an hyperbolic automorphism
of Bn and let f be a holomorphic self-map of Bn which commutes to γ. Then, up
to conjugation with automorphisms, it holds

(a) z1 7→ f1(z1, 0, . . . , 0) is a hyperbolic automorphism of ∆.
(b) f2(z1, 0, . . . , 0) = . . . = fn(z1, 0, . . . , 0) = 0 for any z1 ∈ ∆.
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9. E.M. Čirca The theorems of Lindelöf and Fatou in Cn. Math. USSR Sbornik 21 (1973),
4, 619-639.

10. C. de Fabritiis Commuting holomorphic functions and hyperbolic automorphisms. Proc.
Amer. Math. Soc. 124 (1996), 3027-3037.

11. C. de Fabritiis, G. Gentili On holomorphic maps which commute with hyperbolic automor-
phisms To appear in Advances Math.

12. A. Denjoy Sur l’ itération des fonctions analytiques. C.R. Acad. Sci. Paris 182 (1926),
255-257.

13. O. Frostman Sur les produits de Blaschke. Kungl. Fysiogr. Sälsk. i Lund. Försh. 12 (1942),
169-182.

14. M.H. Heins A generalization of the Aumann-Carathodory “Starrheitssatz”. Duke Math. 8
(1941), 312-316.

15. X. Huang A non-degeneracy property of extremal mappings and iterates of holomorphic
self-mappings. Annali Scuola Norm. Sup. Pisa Cl. Sci. (4) 21, 3 (1994), 399-419.

16. M. Jarnicki, P. Pflug Invariant distances and metrics in complex analysis. W. de Gruyter,
Berlin-New York 1993.

17. G. Julia Extension nouvelle d’un lemme de Schwarz. Acta Math. 42 (1920), 349-355.
18. D. Ma On iterates of holomorphic maps. Math. Z. 207 (1991), 417-428.

19. B.D. MacCluer Iterates of holomorphic self-maps of the unit ball in CN . Mich. Math. J.
30 (1983), 97-106.

20. P. R. Mercer Complex geodesics and iterates of holomorphic maps on convex domains in
Cn. Trans. Amer. Math. Soc. 338, 1 (1993), 201-211.

21. W. Rudin Function theory in the Unit Ball of Cn. Springer, Berlin 1980.
22. A.L. Shields On fixed points of commuting analytic functions. Proc. Amer. Math. Soc. 15

(1964), 703-706.
23. E.M. Stein Boundary behaviour of holomorphic functions of several complex variables.

Princeton University Press, Princeton, 1972.
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