
Math 250A: Groups, rings, and fields.

H. W. Lenstra jr.

1. Prerequisites

This section consists of an enumeration of terms from elementary set theory and algebra.

You are supposed to be familiar with their definitions and basic properties.

Set theory. Sets, subsets, the empty set ∅, operations on sets (union, intersection,

product), maps, composition of maps, injective maps, surjective maps, bijective maps, the

identity map 1X of a set X, inverses of maps. Relations, equivalence relations, equivalence

classes, partial and total orderings, the cardinality #X of a set X. The principle of math-

ematical induction. Zorn’s lemma will be assumed in a number of exercises. Later in the

course the terminology and a few basic results from point set topology may come in useful.

Group theory. Groups, multiplicative and additive notation, the unit element 1 (or

the zero element 0), abelian groups, cyclic groups, the order of a group or of an element,

Fermat’s little theorem, products of groups, subgroups, generators for subgroups, left cosets

aH, right cosets, the coset spaces G/H and H\G, the index (G : H), the theorem of

Lagrange, group homomorphisms, isomorphisms, automorphisms, normal subgroups, the

factor group G/N and the canonical map G→ G/N , homomorphism theorems, the Jordan-

Hölder theorem (see Exercise 1.4), the commutator subgroup [G,G], the center Z(G) (see

Exercise 1.12), the group AutG of automorphisms of G, inner automorphisms.

Examples of groups: the group SymX of permutations of a setX, the symmetric group

Sn = Sym{1, 2, . . . , n}, cycles of permutations, even and odd permutations, the alternating

group An, the dihedral group Dn = 〈(1 2 . . . n), (1 n−1)(2 n−2) . . .〉, the Klein four group

V4, the quaternion group Q8 = {±1,±i,±j,±ij} (with ii = jj = −1, ji = −ij) of order

8, additive groups of rings, the group Gl(n,R) of invertible n× n-matrices over a ring R.

Occasionally the structure theorem of finite abelian groups and finitely generated

abelian groups will be assumed known.

Ring theory. Rings, subrings, homomorphisms. We adopt the convention that the

existence of a unit element 1 is part of the definition of a ring. Likewise, subrings of a ring

R are required to contain the unit element of R, and ring homomorphisms are required

to map 1 to 1. Products of rings, zero-divisors, units, the group R∗ of units of a ring R.

Ideals, operations on ideals (sum, intersection, product), generators for ideals, principal

ideals, the factor ring R/a, congruence modulo an ideal. Domains, prime ideals, maximal

ideals. Principal ideal rings, unique factorization domains.

Examples: the ring Z of integers, the ring Z/nZ of integers modulo n, the zero ring,

polynomial rings R[X1, . . . , Xn], the endomorphism ring EndA of an abelian group A (see

Exercise 1.23), the ring M(n,R) of n×n-matrices over a ring R, the division ring (or skew

field) H of quaternions, the group ring R[G] of a group G over a ring R (see Exercise 1.25),
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the ring R[[X]] of formal power series over a ring R. (see Exercise 1.26).

Field theory. Fields, the field Q(R) of fractions of a domain R, the prime field, the

characteristic char k of a field k, algebraic and transcendental elements over a field, alge-

braic and finite extensions, the degree [l : k], the irreducible (or minimum) polynomial fαk
of an element α algebraic over k, the isomorphism k(α) ∼= k[X]/fαk k[X], splitting fields.

Examples: the fields Q, R, and C of rational, real, and complex numbers, respec-

tively, the field Fp = Z/pZ (for p prime), finite fields Fq (for q a prime power), the field

k(X1, . . . , Xn) of rational functions in n indeterminates over a field k.

1. Exercises

1.1 (Left axioms). Let G be a set, 1 ∈ G an element, i:G→ G a map, and m:G×G→ G

another map; instead of m(x, y) we write xy, for x, y ∈ G.

(a) Suppose that for all x, y, z ∈ G one has

1x = x, i(x)x = 1, (xy)z = x(yz).

Prove that G is a group with multiplication m.

(b) Suppose that for all x, y, z ∈ G one has

x1 = x, i(x)x = 1, (xy)z = x(yz).

Does it follow that G is a group with multiplication m? Give a proof or a counterexample.

1.2. Let u, U , v, V be subgroups of a group G. Assume that u is a normal subgroup of

U and that v is a normal subgroup of V . Prove that u(U ∩ v) is a normal subgroup of

u(U ∩ V ), that (u ∩ V )(U ∩ v) is a normal subgroup of U ∩ V , that (u ∩ V )v is a normal

subgroup of (U ∩ V )v, and that there are group isomorphisms

u(U ∩ V )/
(
u(U ∩ v)

) ∼= (U ∩ V )/
(
(u ∩ V )(U ∩ v)

) ∼= (U ∩ V )v/
(
(u ∩ V )v

)
.

1.3. A normal tower of a group G is a sequence (ui)
r
i=0 of subgroups ui of G for which r is

a non-negative integer, each ui−1 is a normal subgroup of ui (for 0 < i ≤ r), and u0 = {1},
ur = G. A refinement of a normal tower (ui)

r
i=0 is a normal tower (wj)

t
j=0 with the property

that there is an increasing map f : {0, 1, 2, . . . , r} → {0, 1, 2, . . . , t} such that for all i one

has ui = wf(i). Two normal towers (ui)
r
i=0 and (vj)

s
j=0 are called equivalent if there is a

bijection g: {1, 2, . . . , r} → {1, 2, . . . , s} such that for all i one has ui/ui−1
∼= vg(i)/vg(i)−1.

Prove the Schreier refinement theorem: any two normal towers of a group have

equivalent refinements.

1.4. A group is called simple if it has exactly two normal subgroups (namely {1} and the

group itself). A composition series of a group is a normal tower (ui)
r
i=0 for which every

group ui/ui−1 is simple.
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(a) Prove the Jordan-Hölder theorem: any two composition series of a group are

equivalent.

(b) Exhibit a group that does not have a composition series.

(c) Classify all simple abelian groups.

1.5. (a) Prove that, up to isomorphism, there are precisely 9 groups of order smaller than 8.

Which are they? Formulate the theorems that you use.

(b) How many pairwise non-isomorphic groups of order 8 are there? Prove the cor-

rectness of your answer.

1.6. Let H, N be groups, and let ψ:H → AutN be a group homomorphism. Instead of

ψ(h)(x) we shall write hx, for h ∈ H, x ∈ N .

(a) Prove that the set N ×H with the operation

(x, h) · (y, h′) = (x · hy, hh′)

is a group. This group is called the semidirect product of H and N (with respect to ψ),

notation: N oH.

(b) Prove that N may be viewed as a normal subgroup of NoH, and that (NoH)/N

is isomorphic to H.

(c) Is the direct product a special case of the semidirect product?

1.7. (a) Let G be a group, let H be a subgroup of G, and let N be a normal subgroup of G.

Suppose that the composition of the inclusion H ⊂ G with the natural map G→ G/N is

an isomorphism H
∼−→ G/N . Prove that there is a group homomorphism ψ:H → AutN

such that the map N oH → G sending (x, h) to xh is a group isomorphism.

(b) Let N1 and N2 be two normal subgroups of a group G with N1 ∩N2 = {1}. Prove

that for all x ∈ N1, y ∈ N2 one has xy = yx.

1.8. Prove that S4 is isomorphic to V4 o S3 with respect to some isomorphism ψ:S3 →
AutV4.

1.9. A subgroup H of a group G is called characteristic (in G) if for all automorphisms ϕ

of G one has ϕH = H.

(a) Prove that any characteristic subgroup of a group is normal.

(b) Give an example of a group and a normal subgroup that is not characteristic.

1.10. (a) Let H be a subgroup of a group G, and let J be a characteristic subgroup of H.

Prove: if H is normal in G then J is normal in G, and if H is characteristic in G then J

is characteristic in G.

(b) If H is a normal subgroup of a group G, and J is a normal subgroup of H, does

it follow that J is normal in G? Give a proof or a counterexample.
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1.11. (a) Prove that there is a non-abelian group G of order 8 with the property that every

subgroup of G is normal.

(b) Does there exist a group that has exactly one subgroup that is not normal? Give

an example, or prove that no such group exists.

1.12. Let G be a group. By Z(G) we denote the center of G, i. e.:

Z(G) = {x ∈ G : for all y ∈ G one has xy = yx}.

(a) Prove that the commutator subgroup [G,G] and the center Z(G) of G are char-

acteristic subgroups of G.

(b) Prove that every subgroup of G that contains [G,G] or is contained in Z(G) is

normal in G.

(c) Prove: the group G/Z(G) is cyclic if and only if G is abelian.

1.13. Let G be a group.

(a) Prove that the group of inner automorphisms of G is a normal subgroup of AutG

that is isomorphic to G/Z(G).

(b) Suppose that Z(G) = {1}. Prove that Z(AutG) = {1}.

1.14. Let G be a group. An anti-automorphism of G is a bijective map ϕ:G→ G such that

for all x, y ∈ G one has ϕ(xy) = ϕ(y)ϕ(x). Write AntG for the set of anti-automorphisms

of G.

(a) Prove that AutG ∪ AntG is a group, the group operation being composition of

maps.

(b) Suppose that G is non-abelian. Prove that AutG ∪ AntG is isomorphic to the

product of AutG and a group of order 2.

1.15. Let G be a group with the property that x = x−1 for all x ∈ G.

(a) Prove that G is abelian.

(b) Call a subset S ⊂ G independent if for every finite non-empty subset T of S one

has
∏

t∈T t 6= 1. Use Zorn’s lemma to prove that G contains an independent subset S that

is maximal in the sense that the only independent subset U of G with S ⊂ U ⊂ G is S

itself.

(c) Suppose that S is a maximal independent subset of G. Prove that for every x ∈ G
there is a unique finite subset S(x) of S with the property that x =

∏

s∈S(x) s. Prove also

that for x, y ∈ G one has S(xy) = S(x)4 S(y); here the symmetric difference A4 B of

two subsets A and B of a set C is defined by A4B = {x ∈ C : x ∈ A and x /∈ B} ∪ {x ∈
C : x /∈ A and x ∈ B}.

1.16. Let G be a group. Prove: AutG = {1} if and only if G has order 1 or 2.
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1.17 (Goursat’s lemma). Let G1 and G2 be groups, and let H ⊂ G1×G2 be a subgroup.

Prove that there are subgroups H1, H2 of G1, G2 (respectively), normal subgroups N1, N2

of H1, H2 (respectively), and a group isomorphsim ψ:H1/N1
∼−→ H2/N2, such that H is

the ‘graph’ of ψ in the sense that

H = {(x, y) : x ∈ H1, y ∈ H2, ψ(xN1) = yN2}.

Are H1, H2, N1, N2, and ψ uniquely determined by H?

1.18. (a) Let G be a group, and let x ∈ G have order 2. Prove: 〈x〉 is normal in G if and

only if x ∈ Z(G).

(b) Let G be a finite group of odd order, and let x ∈ G have order 17. Prove: 〈x〉 is

normal in G if and only if x ∈ Z(G).

1.19. (a) Let G be a finite abelian group of squarefree order (i. e., the order is not divisible

by the square of a prime number). Prove that G is cyclic.

(b) Let G be a cyclic group. Prove that AutG is abelian.

1.20. In this problem we write G′ = [G,G] for a group G, and G′′ = (G′)′, G′′′ = (G′′)′.

Let G be a finite group of squarefree order. Prove that G′′ = G′′′. (Hint : study a

naturally defined map G→ Aut(G′′/G′′′).) Note: one can actually show that for any finite

group G of squarefree order one has G′′ = {1}; see Exercise 3.27.

1.21. Let R be a commutative ring. Two ideals a, b of R are said to be coprime if a+b = R.

(a) Prove: two ideals a, b are coprime if and only if there exist a ∈ a and b ∈ b with

a + b = 1, and if and only if the map R → (R/a) × (R/b) sending x to (x + a, x + b) is

surjective.

(b) Let a1, a2, . . . , at, b1, b2, . . . , bu be ideals of R, and suppose that ai and bj are

coprime for every i, j. Prove that the ideals a1a2 · · · at and b1b2 · · ·bu are coprime.

1.22. Let R be a commutative ring.

(a) Prove the Chinese remainder theorem: if a, b are coprime ideals of R, then

the map R→ (R/a)× (R/b) from Exercise 1.21(a) induces a ring isomorphism R/(ab)→
(R/a)× (R/b).

(b) Formulate and prove a version of the Chinese remainder theorem for pairwise

coprime ideals a1, a2, . . . , at of R.

1.23. Let A be an additively written abelian group. An endomorphism of A is a group

homomorphism A→ A. Denote by EndA the set of all endomorphisms of A.

(a) Prove that EndA is a ring, with sum and product defined as follows: (f + g)(x) =

f(x) + g(x), (fg)(x) = f
(
g(x)

)
, for f , g ∈ EndA, x ∈ A. What goes wrong if A is not

abelian?
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(b) Prove that EndV4 is isomorphic to the ring of 2× 2-matrices over the field F2 =

Z/2Z.

1.24. (a) Show that each ring R is isomorphic to a subring of the ring EndR+ of endo-

morphisms of the additive group R+ of R.

(b) Let R be a ring of which the additive group is cyclic. Prove that R, as a ring, is

isomorphic to Z/nZ for some non-negative integer n.

1.25. Let R be a ring and G a group. The group ring R[G] of G over R is the set of all

formal expressions
∑

g∈G rgg, where rg ∈ R for all g ∈ G, and rg = 0 for all but finitely

many g ∈ G. Sum and product are defined by

(∑

g∈G
rgg

)

+
(∑

g∈G
sgg

)

=
∑

g∈G
(rg+sg)g,

(∑

g∈G
rgg

)

·
(∑

g∈G
sgg

)

=
∑

g∈G

( ∑

a,b∈G,ab=g
rasb

)

g.

Prove that this is indeed a ring, and give necessary and sufficient conditions in terms of R

and G for R[G] to be commutative.

1.26. Let R be a ring and X a symbol. The ring R[[X]] of formal power series in X over R

is the set of all formal expressions
∑∞
i=0 riX

i, where ri ∈ R for all i ≥ 0. Sum and product

are defined by

( ∞∑

i=0

riX
i
)

+
( ∞∑

i=0

siX
i
)

=
∞∑

i=0

(ri + si)X
i,

( ∞∑

i=0

riX
i
)

·
( ∞∑

i=0

siX
i
)

=
∞∑

i=0

( i∑

j=0

rjsi−j
)

Xi.

Prove that this is indeed a ring, and that the polynomial ring R[X] can be viewed as a

subring of R[[X]].

1.27. Let R be a commutative ring.

(a) Use Zorn’s lemma to prove: R has a maximal ideal if and only if R is not the zero

ring.

(b) Prove that the union of all maximal ideals of R is equal to the set R − R∗ of

non-units of R.

1.28. Let a rng be an additively written abelian group R equipped with an associative

bilinear map R×R→ R that is multiplicatively written (bilinearity means a(b+c) = ab+ac

and (a + b)c = ac + bc for all a, b, c ∈ R; so a rng differs from a ring only in that

no multiplicative identity is required to exist). Commutativity, ideals, and maximality of

ideals are defined for rngs as they are for rings.
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Show that there exists a non-zero commutative rng that has no maximal ideal.

1.29. Let R be a commutative ring. The Jacobson radical J(R) of R is defined to be the

intersection of all maximal ideals of R. Prove that J(R) equals the set of all a ∈ R with

the property that for all r ∈ R the element 1 + ra is a unit of R.

1.30. Let R be a commutative ring, and let S ⊂ R be a multiplicative set, i. e.: 1 ∈ S, and

st ∈ S whenever s, t ∈ S.

(a) Define the relation ∼ on R × S by (x, s) ∼ (y, t) if and only if there exists u ∈ S
with utx = usy. Prove that ∼ is an equivalence relation.

(b) Denote by S−1R the set of equivalence classes of ∼, and the class of (r, s) by

r/s. Prove that there is a unique commutative ring structure on S−1R with the following

two properties: (i) the map R→ S−1R sending r to r/1 is a ring homomorphism; (ii) the

product of r/s and s/1 is r/1, for each (r, s) ∈ R× S.

(c) Prove that S−1R is the zero ring if and only if 0 ∈ S.

1.31. Let R be a commutative ring, and let S ⊂ R be a multiplicative set with 0 /∈ S.

Prove that R has a prime ideal p with p ∩ S = ∅.
1.32. An element x of a ring is called nilpotent if there exists a positive integer n with

xn = 0. The nilradical
√

0R of a commutative ring R is the set of nilpotent elements in R.

Let R be a commutative ring. Prove that
√

0R is an ideal of R, and that it is equal to

the intersection of all prime ideals of R.

1.33. An element e of a ring is called idempotent if e2 = e. Let R be a commutative ring,

and write B(R) for the set of its idempotents.

(a) We call R connected if R 6= {0} and there do not exist non-zero rings R1 and R2

such that R ∼= R1 ×R2 (as rings). Prove that R is connected if and only if the cardinality

of B(R) equals 2.

(b) Prove that B(R) is a ring with addition & defined by e1&e2 = e1 + e2− 2e1e2 and

the multiplication taken from R.

1.34. A Boolean ring is a ring A with the property that B(A) = A.

(a) Let A be a Boolean ring. Prove that A is commutative, and that there is a ring

homomorphism F2 → A.

(b) Prove that for every commutative ring R, the ring B(R) defined in Exercise 1.33

is Boolean.

1.35. Let R be a commutative ring, and let B(R) be as in Exercise 1.33.

(a) Prove that (e1−e2)n = e1−e2 for all e1, e2 ∈ B(R) and all positive odd integers n.

(b) Prove that for each positive integer n there exists a polynomial f ∈ XnZ[X] with

f − 1 ∈ (X− 1)nZ[X]; that any such f satisfies f ≡ X mod (X2−X)Z[X]; and that there

is a unique such f of degree smaller than 2n. Find that unique f for n = 2.
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(c) Let
√

0R denote the nilradical of R. Show that the natural map R → R/
√

0R

induces a bijection B(R)→ B(R/
√

0R).

1.36. Let X be a set, and let P (X) be the set of all subsets of X. Define an addition and

a multiplication on P (X) by A + B = A4 B (see Exercise 1.15(c)) and A · B = A ∩ B,

for A, B ⊂ X. Prove that these operations make P (X) into a ring, and that this ring is

Boolean.

1.37. Let R be a Boolean ring.

(a) Prove: if a ⊂ R is an ideal, then a is maximal if and only if a is prime, and if and

only if R/a ∼= F2.

(b) Let X be the set of prime ideals of R. Prove that R is isomorphic to a subring of

the ring P (X) defined in Exercise 1.36.

1.38. Let X be a set, and let P (X) be as in Exercise 1.36. A filter on X is a non-empty

subset F ⊂ P (X) with the properties (i) if A ∈ F , B ⊂ X are such that A ⊂ B, then

B ∈ F ; and (ii) if A, B ∈ F , then A ∩ B ∈ F . An ultrafilter on X is a filter U on X

with ∅ /∈ U with the property that the only filters F on X with U ⊂ F are F = U and

F = P (X).

(a) Let F ⊂ X. Prove: F is a filter if and only if {A ⊂ X : X −A ∈ F} is an ideal of

the ring P (X) (here X −A denotes the complement of A in X).

(b) Prove: every filter F on X with ∅ /∈ F is contained in an ultrafilter on X.

(c) Suppose that U is an ultrafilter on X. Prove that for any A ⊂ X one has either

A ∈ U or X − A ∈ U , but not both.

(d) Suppose X is infinite. Prove that there is an ultrafilter on X that does not contain

any finite set.

1.39. Let R be a finite ring. Prove that there are integers n, m with n > m > 0 such that

for all x ∈ R one has xn = xm.

1.40. Let T be a subring of a finite ring R. Prove: T ∗ = T ∩ R∗. Give a counterxample

when the finiteness condition is omitted.

1.41. Let R be a finite commutative ring, and for a maximal ideal m ⊂ R let the norm

Nm be the cardinality of the residue class field R/m of m. Prove that

#R∗ = #R ·
∏

m

(

1− 1

Nm

)

,

with m ranging over the set of maximal ideals of R.

1.42. Let R be a commutative ring, and let T ⊂ R be a subring for which the index (R : T )

of additive groups is finite. Define a = {x ∈ R : xR ⊂ T}.
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(a) Prove that a is an R-ideal that is contained in T .

(b) Prove that R/a is finite.

(c) Compute a in the case R = Z[(1 +
√
−3)/2] and T = Z[

√
−3].

2. Actions of groups

Let G be a group and X a set. An action of G on X is a map G×X → X, (σ, x) 7→ σx,

satisfying the two axioms

1x = x, σ(τx) = (στ)x

for all x ∈ X, σ, τ ∈ G. If an action of G on X is given, then G is said to act on X, and

X is called a G-set.

An action is also called an operation, a permutation action, or a left action. A right

action of G on X is a map G×X → X, (σ, x) 7→ xσ, satisfying x1 = x and (xσ)τ = x(στ)

for all x ∈ X, σ, τ ∈ G. Since there is an easy dictionary between right and left actions

(see Exercise 2.1(a)), only one of the two needs to be considered.

If X is a G-set, then one readily checks that the map fσ:X → X sending x to σx

is bijective, with two-sided inverse fσ−1 ; also, the map G → SymX sending σ to fσ is a

group homomorphism. Conversely, any group homomorphism ψ:G→ SymX gives rise to

an action of G on X, by σx =
(
ψ(σ)

)
(x). Hence giving an action of G on X is equivalent

to giving a group homomorphism G→ SymX.

If X and Y are G-sets, then a G-map or map of G-sets X → Y is a map f :X → Y

satisfying f(σx) = σ(fx) for all σ ∈ G, x ∈ X. The composition of two G-maps (if defined)

is a G-map, and the identity map from any G-set to itself is a G-map. A G-isomorphism

is a bijective G-map, and a G-automorphism of a G-set X is a G-isomorphism from X to

itself. Two G-sets X and Y are called (G-)isomorphic, notation X ∼=G Y , if there exists a

G-isomorphism X → Y .

Examples. (i) For any set X, the group SymX and any of its subgroups acts on X in

an obvious manner. If R is a ring and n is a non-negative integer, then Gl(n,R) acts on

Rn: namely, let Ax for A ∈ Gl(n,R) and x ∈ Rn be the usual product of a matrix and

a vector; likewise, if m is another non-negative integer, then Gl(n,R) acts on the set of

n ×m-matrices over R by matrix multiplication. If R is any ring, then R∗ acts on R by

the multiplication in the ring; in this example, right multiplication by any element of R is

an R∗-map from R to itself.

(ii) Let G be any group. There are at least three naturally occurring actions G×G→ G

of G on G itself. The first is left multiplication: (σ, τ) → στ (the product in the group).

The second is right multiplication (σ, τ) → τσ−1; note that the inverse of σ is taken,

since otherwise we would have a right action (cf. Exercise 2.1(a)). The third action is by

conjugation: (σ, τ) → στσ−1. We write στ = στσ−1, the exponent being on the left, so

that the second axiom takes the shape σ(τx) = στx. For conjugation, many group theorists
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prefer the corresponding right action (σ, τ) 7→ σ−1τσ = τσ; the second axiom of a right

action then takes the familiar shape (xσ)τ = xστ . Likewise, G acts by conjugation on the

set of subgroups H of G, by σH = σHσ−1.

(iii) Let G be a group, and let H be a subgroup of G. Then H acts on G by left

multiplication, and in fact H acts in this way on any union of right cosets Ha ⊂ G of

H in G; for example, any line in a vector space that passes through the origin acts by

translation on any line that is parallel to it.

(iv) Let again G be a group, H a subgroup of G, and let G/H = {aH : a ∈ G} be

the set of left cosets of H in G. Then G acts on G/H by a(bH) = (ab)H. One needs to

check that this is well-defined, and that it is an action, but both are easy. The natural map

G→ G/H sending a to aH is a G-map.

(v) Let n ∈ Z, n ≥ 3. Then the maps σ, τ :C→ C defined by σz = e2πi/nz and τz = z̄

are bijective. In SymC, they satisfy σn = τ2 = 1C and τστ−1 = σ−1. One deduces that

they generate a subgroup of SymC that is isomorphic to the dihedral group Dn. Thus Dn

acts on C.

Actions of subgroups. Let a group G act on a set X. For any subgroup H of G, an

action of H on X is induced: just restrict the map G×X → X to H ×X. More generally,

if f :K → G is a group homomorphism of some group K to G, then an action of K on X

is induced “via f”: one defines σx to be f(σ)x, for σ ∈ K, x ∈ X. For example, the three

actions of G on G that we defined under (ii) all come from the single action of G×G on G

that is defined by (σ, τ)ρ = σρτ−1, via three embeddings G→ G×G: the two “coordinate”

embeddings σ 7→ (σ, 1) and σ 7→ (1, σ), and the “diagonal” embedding σ 7→ (σ, σ).

Actions on subsets. A subset Y of a G-set is called stable under the action of G, or a

G-subset, if for all σ ∈ G and y ∈ Y one has σy ∈ Y .

Trivial, free, and faithful actions. Any group G can be made to act on any set X

by putting σx = x for all σ ∈ G and x ∈ X; this is called the trivial action, and the

corresponding G-set X is called trivial. An action of G on X (or the G-set X itself) is

called free if for all σ ∈ G, σ 6= 1, and all x ∈ X one has σx 6= x; and it is called faithful if

for all σ ∈ G, σ 6= 1, there exists x ∈ X with σx 6= x. For some obvious properties of these

notions, see Exercise 2.2.

Fixed points. Let G be a group and X a G-set. A fixed point (or fixpoint) of X is an

element x ∈ X with the property that for all σ ∈ G one has σx = x. The set of all fixed

points is denoted by XG or, if there is danger of confusion with some other use of the

exponential notation (see Exercise 2.4), by FixGX. It is an example of a G-subset of X.

Orbits. Let G be a group and X a G-set. Two elements x, y ∈ X are said to be

equivalent under G if there exists σ ∈ G with σx = y; one readily checks that this is indeed

an equivalence relation. The equivalence classes of this equivalence relation are called the

orbits of X under G, or of the action of G on X. The orbit containing a given element

10



x ∈ X is equal to Gx = {σx : σ ∈ G}. Thus, X can be written as a disjoint union
⋃

xGx,

where x ranges over a set of representatives for the orbits. Each of these orbits is a G-subset

of X. For example, if a subgroup H of G acts on G by left multiplication, then the orbits

are the right cosets Ha, a ∈ G, and H\G is the set of orbits of G under H. In general,

the set of orbits of X under G should be denoted by G\X, so as to be consistent with

the notation H\G; but one often sees the notation X/G, which should really be reserved

for right actions. If one provides G\X with the trivial G-action, then the natural map

X → G\X that sends x to the orbit Gx is a G-map.

Stabilizers. Let G be a group, X a G-set, and x ∈ X. The stabilizer Gx of x in G is

defined by

Gx = {σ ∈ G : σx = x}.

(This is also called the isotropy group or decomposition group of x.) One readily checks

that Gx is a subgroup of G. For example, if X = G/H for some subgroup H ⊂ G, and

x = H ∈ X, then we have Gx = H. For τ ∈ G one has

Gτx = τGxτ
−1.

To prove this, let σ ∈ G. Then: σ ∈ Gτx ⇔ στx = τx ⇔ τ−1στx = x ⇔ τ−1στ ∈ Gx ⇔
σ ∈ τGxτ−1.

The structure of orbits. Let G be a group acting on itself by left multiplication, let X

be a G-set, and let x ∈ X. Then the map G→ X sending σ to σx is a G-map. The image

of this map is the orbit Gx containing x. Further, σ and τ have the same image if and only

if σx = τx, if and only if τ−1σx = x, if and only if τ−1σ ∈ Gx, if and only if σGx = τGx.

Therefore the map G→ X induces an isomorphism

G/Gx
∼−→ Gx, σGx 7→ σx

of G-sets. Thus every orbit is G-isomorphic to a left coset space for a subgroup. Counting

the cardinalities of both sets one finds that

#Gx = (G : Gx).

Transitive G-sets. Let G be a group. A G-set X is called transitive if there is exactly

one orbit of X under G; or, equivalently, if X 6= ∅ and for any two elements x, y ∈ X there

exists σ ∈ G with σx = y. For example, if X = G/H for some subgroup H ⊂ G, then

G/H is a transitive G-set. The following result expresses that this is the only example, up

to isomorphism.

11



Proposition. For every transitive G-set X there is a subgroup H of G with X ∼=G G/H,

and X determines H uniquely up to conjugacy.

Proof. Let x ∈ X. Then we have X = Gx, so by what we proved above we have X =

Gx ∼=G G/Gx, which proves the first assertion, with H = Gx. Replacing x by τx one sees

that one also has X = Gτx ∼=G G/Gτx = G/τGxτ
−1, so Gx may be replaced by any

conjugate. Conversely, suppose that K is a subgroup of G with X ∼=G G/K. Since K is

the stabilizer of an element of G/K, it is also the stabilizer of an element of X; the latter

element is of the form τx for some τ ∈ G, so we have K = Gτx = τGxτ
−1. This proves

the proposition.

General G-sets. Let G be a group. The proposition just proved shows that if we “know”

all subgroups of G, then we “know” all transitive G-sets. We now pass to general G-sets.

An arbitrary G-set X can be written as the disjoint union of its orbits, each of which is a

transitive G-set. Thus, if R ⊂ X is a set of representatives for the orbits, then there is a

G-isomorphism

X ∼=G

∐

x∈R
G/Gx,

where
∐

denotes disjoint union. Counting the cardinalities of both sets one finds the

important formula

#X =
∑

x∈R
(G : Gx).

Example. Let G be a group, acting on itself by conjugation. The orbits are then

called the conjugacy classes of G. The stabilizer of x ∈ G is equal to the centralizer

CG(x) = {g ∈ G : gx = xg} of x in G. The cardinality of the conjugacy class containing x

equals
(
G : CG(x)

)
, and if R ⊂ G contains exactly one element from each conjugacy class,

then we have

#G =
∑

x∈R

(
G : CG(x)

)
.
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2. Exercises

2.1. Let G be a group and X a set.

(a) Let G×X → X be a map, written as (σ, x) 7→ xσ. Prove that this map is a right

action if and only if the map G×X → X sending (σ, x) 7→ xσ−1 is a left action.

(b) Let G×X → X be a left action. Prove that it is a right action if and only if the

induced action of [G,G] on X is trivial.

2.2. Prove: (a) the trivial action of a group G on a set X is free if and only if G = {1}
or X is empty; (b) any free action of a group on a non-empty set is faithful; (c) an action

of a group G on a set X is faithful if and only if the corresponding map G → SymX is

injective; (d) if X is a trivial, free, or faithful G-set, then for any subgroup H of G it is

also trivial, free, or faithful (respectively) when considered as an H-set.

2.3. Let X be the set {1, 2, 3, 4}, which is naturally acted upon by S4. Let Y be the set of

all splittings of X into two subsets of size 2, i. e.

Y =
{
{A,B} : A,B ⊂ X,A ∩ B = ∅,#A = #B = 2

}
.

(a) Determine #Y .

(b) Show that from the action of S4 on X one obtains in a natural way an action of

S4 on Y , and that the corresponding map S4 → SymY is surjective. What is the kernel

of this map?

2.4. Let G be a group, and let X and Y be G-sets. Write Y X for the set of all maps

X → Y . Show that Y X is a G-set, the action being defined by (σf)(x) = σ
(
f(σ−1x)

)
, for

σ ∈ G, f ∈ Y X , x ∈ X. Prove also that FixG(Y X) is the set of G-maps X → Y .

2.5. Let G be a group, N ⊂ G a normal subgroup, and X a G-set.

(a) Prove that there are unique actions of G on XN and on N\X for which the

inclusion map XN ⊂ X and the natural map X → N\X are G-maps. Show also that

these actions are induced by actions of G/N on XN and on N\X, via the canonical map

G→ G/N .

(b) Suppose that H ⊂ G is a subgroup, and let X be the G-set G/H. Suppose that

there is a G-action on XH for which the inclusion XH ⊂ X is a G-map, or that there is

a G-action on H\X for which the natural map X → H\X is a G-map. Prove that H is

normal in G.

2.6. Let G be a group acting on a set X. Prove that the number of G-subsets of X equals

2#(G\X).

2.7. Suppose that the quaternion group Q of order 8 acts faithfully on a set X. Prove:

X ≥ 8. Which other groups of order 8 have this property?
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2.8. Let G be a group, and let X be a G-set. We call X primitive if (i) X is transitive,

(ii) #X > 1, and (iii) if Y is a G-set with #Y > 1, and f :X → Y is a surjective G-map,

then f is bijective.

Prove that X is primitive if and only if there is a maximal subgroup H of G with

X ∼=G G/H; here a subgroup H of a group G is called maximal if there are precisely two

different subgroups K of G with H ⊂ K ⊂ G (namely, K = H and K = G).

2.9. Let G be a group, let H be a subgroup of G, and let N be the kernel of the group

homomorphism G→ Sym(G/H) corresponding to the natural action of G on G/H. Prove

that N is a normal subgroup of G that is contained in H, and that every normal subgroup

of G contained in H is contained in N .

2.10. Let G be a group, and let H be a subgroup of finite index n in G. Prove that G has

a normal subgroup N contained in H for which (H : N) divides (n− 1)!. What does this

come down to in the case n = 2?

2.11. Let G be a finite group of order greater than 1, and let p be the smallest prime

number dividing the order of G.

(a) Prove: any subgroup of G of index p is normal in G and contains [G,G].

(b) Prove: any normal subgroup of order p is contained in Z(G).

2.12. Decide whether the following statement is true, by giving a proof or a counterex-

ample. Let G be a group, H a subgroup of finite index n, and let m be a positive integer.

Suppose that for all h ∈ H one has hm = e. Then for all g ∈ G one has gnm = e.

2.13. (a) Determine all finite groups, up to isomorphism, that have at most 3 conjugacy

classes.

(b) Let k be a positive integer. Prove that, up to isomorphism, there are only finitely

many finite groups that have exactly k conjugacy classes.

2.14 (Burnside’s lemma). Let G be a finite group acting on a finite set X. Prove:

#(G\X) =
1

#G
·
∑

σ∈G
#{x ∈ X : σx = x}.

2.15. If a group G acts on a finite set X, and an element σ of G induces a permutation of

X that is a product of t pairwise disjoint cycles of lengths n1, n2, . . . , nt (also counting

cycles of length 1), then we say that σ has type (n1, n2, . . . , nt) in its action on X.

Let D ⊂ R3 be a regular dodecahedron, and let G be the group of rotations σ of

3-space with σD = D. (No reflections are allowed; so if 0 is the center of gravity of D,

then each σ ∈ G is given by an orthogonal 3× 3-matrix with determinant +1.) Denote by

F the set of 2-dimensional faces of D; so #F = 12.
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(a) Argue geometrically that G is a finite group of order 60, and that G, in its action

on F , has

1 element of type (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1),

15 elements of type (2, 2, 2, 2, 2, 2),

20 elements of type (3, 3, 3, 3), and

24 elements of type (1, 1, 5, 5).

(b) (Counting colored dodecahedra.) Let F be as above, and let C be a finite set (of

“colors”). Let G act trivially on C, and let G act on the set CF of functions F → C as

in Exercise 2.4. One can think of an element of CF as a way of coloring the faces of D

with the colors from C; then two elements of CF are in the same G-orbit if and only if

the corresponding colored dodecahedra are the same up to rotation. Thus #(G\CF ) is the

number of “essentially” different colorings. Prove that this number is given by

n12 + 15n6 + 44n4

60
.

2.16. Prove that the group G from Exercise 2.15 is isomorphic to the alternating group A5.

2.17. Let G be a group, and let H be a subgroup of G. The normalizer NG(H) of H

in G is defined by NG(H) = {g ∈ G : gH = Hg}, and the centralizer CG(H) of H by

CG(H) = {g ∈ G : for all x ∈ H one has gx = xg} =
⋂

x∈H CG(x).

(a) Let G act by conjugation on the set of subgroups of G. Prove that NG(H) is the

stabilizer of H under this action.

(b) Prove: H and CG(H) are normal subgroups of NG(H), and NG(H)/CG(H) is

isomorphic to a subgroup of AutH.

2.18 (the Burnside ring). Let G be a group, and let X, Y be G-sets. The disjoint union

X q Y is the G-set whose underlying set is the disjoint union of X and Y , the G-action

being the unique one for which the two natural inclusions X → X q Y and Y → X q Y
are G-maps. The product X×Y is the G-set whose underlying set is the cartesian product

of X and Y , the G-action being the unique one for which the two natural projections

X × Y → X and X × Y → Y are G-maps. Now let G be finite. Write B ′(G) for the set of

G-isomorphism classes of finite G-sets, the isomorphism class of X being denoted by [X].

Define an addition and a multiplication on B′(G) by

[X] + [Y ] = [X q Y ], [X] · [Y ] = [X × Y ].

(a) Prove that B′(G) satisfies all usual axioms for a commutative ring, with the

exception of the existence of additive inverses. What is the zero element of B ′(G)? What

is the unit element?
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(b) Construct a ring B(G) by formally adjoining negatives, imitating the construction

of the field of fractions. This ring is called the Burnside ring of G. To which known ring

is B(G) isomorphic if G = {1}?
(c) Prove that the additive group of B(G) is isomorphic to Zk, where k is the number

of conjugacy classes of subgroups of G.

2.19. Let G be a finite group, and keep the notation from Exercise 2.18.

(a) Prove: for every subgroup H ⊂ G there is a ring homomorphism B(G)→ Z that

maps the class [X] of any finite G-set X to # FixH X.

(b) Prove: if two finite G-sets X and Y are such that for every subgroup H ⊂ G one

has # FixH X = # FixH Y , then one has X ∼=G Y .

(c) Let k be as in Exercise 2.18(c). Prove that there is an injective ring homomorphism

B(G) → Zk, the ring operations in Zk being componentwise. What is the image of this

map if G is cyclic of prime order?

2.20. Let G and J be groups, and let Y be a J -set. The wreath product G o J of G and J

(relative to Y ) is defined as follows. Let GY be the set of functions f :Y → G, made into a

group by (f1f2)(y) = f1(y)f2(y), for f1, f2 ∈ GY , y ∈ Y . For σ ∈ J , f ∈ GY , let σf ∈ GY
map y to f(σ−1y) (cf. Exercise 2.4). Now G o J is defined to be the semidirect product

GY o J (see Exercise 1.6).

(a) Express #(G o J) is terms of #G, #J , and #Y .

(b) Suppose that #G = #J = #Y = 2, the action of J on Y being non-trivial. Prove:

G o J ∼= D4.

(c) Let X be a G-set. Prove that X × Y becomes a G o J -set through

(f, σ)(x, y) = (f(y)x, σy),

for f ∈ GY , σ ∈ J , x ∈ X, y ∈ Y .

(d) Prove: X × Y is a transitive G o J -set if and only if X is a transitive G-set and Y

is a transitive J -set; and if Y 6= ∅, then X × Y is a faithful G o J -set if and only if X is a

faithful G-set and Y is a faithful J -set.

2.21. Let G be a group acting transitively on a set X.

(a) Let H ⊂ G be the stabilizer of some x ∈ X. Prove that the group AutGX of

G-automorphisms of X is isomorphic to NG(H)/H, where NG(H) is the normalizer of H

in G (see Exercise 2.17).

(b) Let G act on itself by left multiplication. Prove: AutGG ∼= G.

(c) Let n be a positive integer, and let the G-set Y be the disjoint union of n copies

of X. Prove that AutG Y is isomorphic to the wreath product (AutGX) o Sn relative to

the Sn-set {1, 2, . . . , n} (see Exercise 2.20 for wreath products).
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2.22. Let G be a finite group. Prove the identity

∑

Y

t#Y

# AutG Y
= exp

(∑

X

t#X

# AutGX

)

in the ring Q[[t]] of formal power series in t with rational coefficients; here Y ranges

over all finite G-sets, up to isomorphism, X ranges over all transitive finite G-sets, up to

isomorphism, and for f ∈ tQ[[t]] one defines exp f =
∑∞
n=0 f

n/n! ∈ 1 + tQ[[t]].

2.23. (a) Let G be a group acting transitively on a set X with #X > 1, and let H ⊂ G

be the stabilizer of some x ∈ X. Let the G-set Y be the disjoint union of two copies of X.

Prove that Y has an H-automorphism that is not a G-automorphism.

(b) Let G be a group, and let H ⊂ G be a subgroup with H 6= G. Construct a group

K and two group homomorphisms G→ K that agree on H but not on all of G.

2.24. Let G be a group, and let X be a finite G-set. As in Exercise 2.4, let XZ be the

G-set of all maps Z→ X, with G acting trivially on Z. We call an element f ∈ XZ a cycle

if there exist σ ∈ G and x ∈ X such that for all i ∈ Z one has f(i) = σix.

(a) Prove that the set C of cycles is a G-subset of XZ.

(b) Prove: #(G\C) = #X.

2.25. Let G be a group, and let H ⊂ G be a subgroup. For x, y ∈ G we write x ∼H y to

mean that there exists z ∈ H such that for all i ∈ Z one has xiH = zyiH.

(a) Prove that ∼H is an equivalence relation on G, that H is one of the equivalence

classes, and that for x, y ∈ G one has x ∼H y if and only if x−1 ∼H y−1.

(b) Prove that H is normal in G if and only if for all x, y ∈ G one has: x ∼H y ⇔
xH = yH.

(c) Prove that every equivalence class of ∼H has the same cardinality as H.

2.26. Let f :G1 → G2 be a group homomorphism.

(a) The graph Γf of f is defined by Γf = {
(
x, f(x)

)
: x ∈ G1} ⊂ G1 ×G2. Prove that

this is a subgroup of G1 ×G2.

(b) Suppose that G1 and G2 are finite, and let n be a positive integer. Prove that

#{(x, y) ∈ G1 ×G2 : f(xn) = yn} ≡ 0 mod #G1.

17



3. Sylow theorems

Let p be a prime number. A p-group is a finite group of which the order is a power of p;

the zeroth power p0 = 1 is allowed, so the trivial group {1} is a p-group for all primes p.

Other example: the Klein four group V4 is a 2-group.

A p-subgroup of a group is a subgroup that is a p-group. Sylow theory studies p-

subgroups of finite groups. Examples: V4 and D4 are 2-subgroups of S4; for any prime

number p and any integer n ≥ 0 the set of upper triangular n× n-matrices over Fp with

1’s on the diagonal is a p-subgroup of Gl(n,Fp).

Theorem 3.1. Let p be a prime number, G a finite group, H a p-subgroup, and m a

non-negative integer. Suppose that (G : H) is of the form npm for some positive integer n.

Then G has a subgroup J with H ⊂ J ⊂ G and #J = pm ·#H, and the number of such

subgroups J is 1 mod p.

Proof. The second statement implies the first, since any number that is 1 mod p is non-zero.

So it suffices to prove the second statement. For this purpose, let

X = {S ⊂ G : #S = pm ·#H, SH = S},

where SH = {sh : s ∈ S, h ∈ H}. We count X in two ways. The first is by a direct

combinatorial argument. The condition SH = S is equivalent to S being a union of left

cosets aH; and #S = pm·#H then means that it is a union of pm different such cosets. Thus

#X is the same as the number of subsets of G/H of cardinality pm, and by #(G/H) = npm

we find

#X =

(
npm

pm

)

.

The second way of counting X makes use of the action of G on X defined by gS = {gs :

s ∈ S}; this is indeed a well-defined action, since #gS = #S = pm and gSH = gS. As we

saw in the previous section, #X equals the sum of the cardinalities of the orbits of this

action. Fix S ∈ X for the moment. The orbit containing S has cardinality (G : GS), where

GS is the stabilizer of S. Since S is closed under left multiplication by elements of GS , it

is the union of a certain number of right cosets GSa of GS . Because #S = pm ·#H is a

power of p, that number of cosets is a power of p as well; say it is pi(S), with i(S) ≥ 0.

Then we have #GS = #S/pi(S) = pm ·#H/pi(S), and the cardinality of the orbit is given

by

(G : GS) = #G/#GS = npi(S).

Now let S range over a set R of representatives for the orbits. Adding up the numbers

(G : GS) we obtain #X, so
(
npm

pm

)

=
∑

S∈R
npi(S).
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If we take this modulo np, then on the right only those S remain for which i(S) = 0; these

come in orbits of cardinality n, so we obtain
(
npm

pm

)

≡ #{S ∈ X : i(S) = 0} mod np.

Let again S ∈ X. By definition of i(S), we have i(S) = 0 if and only if S consists of a single

right coset of GS , and this occurs if and only if S is a right coset Ka of some subgroup

K ⊂ G of order pm ·#H (then GS = K). But a subset of a group is a right coset of some

subgroup if and only if it is a left coset of some subgroup (proof: Ka = a · a−1Ka). Hence

for S ∈ X we have:

i(S) = 0⇔ S is a left coset aJ of some subgroup J of G of order pm ·#H.
If J ⊂ G is a subgroup of G of order pm · #H, then a left coset aJ belongs to X if and

only if J ⊃ H, as one readily checks. Since each J gives n cosets we can now conclude:

(∗)
(
npm

pm

)

≡ n ·#{J : J is a subgroup of order pm ·#H of G containing H} mod np.

This holds whenever p, G, H, m, n satisfy the hypotheses of the theorem. In particular,

when we fix p, m, and n, it holds if G is cyclic of order npm and H = {1}; in that case,

there is exactly one subgroup J of order pm, so (∗) tells us
(
npm

pm

)

≡ n mod np.

Now that we know what
(
npm

pm

)
modulo np is, we go back to (∗) for the case of general G

and H, and we find that

(∗) n ≡ n ·#{J : J is a subgroup of order pm ·#H of G containing H} mod np.

Dividing by n we obtain the second assertion of the theorem. This proves 3.1.

The idea of the proof just given is due to H. Wielandt; the trick with the cyclic group

was invented by J. McLaughlin.

Corollary 3.2. If G is a finite group and q is a prime power dividing #G, then G has a

subgroup of order q.

Proof. Apply Theorem 3.1 to H = {1} and pm = q. This proves 3.2.

The condition that q be a prime power cannot be omitted in 3.2: see Exercises 3.1

and 3.21.

Let p be a prime number, and let G be a finite group. A Sylow p-subgroup (or p-Sylow

subgroup) of G is a subgroup of G whose order equals the largest power of p dividing the

order of G (Ludvig Sylow, Norwegian mathematician, 1832–1918). It follows from 3.2 that

every finite group has a Sylow p-subgroup for each prime number p. The following result

gives more information about Sylow subgroups.
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Theorem 3.3. Let p be a prime number and let G be a finite group. Then we have:

(a) the number of Sylow p-subgroups of G is a divisor of #G that is 1 mod p;

(b) each p-subgroup of G is contained in some Sylow p-subgroup of G;

(c) any two Sylow p-subgroups of G are conjugate in G.

Proof. Assertion (b) follows from Theorem 3.1, with H equal to the given p-subgroup and

m such that pm ·#H equals the highest power of p dividing #G. For (c), let S1 and S2 be

two Sylow p-subgroups of G, and consider the natural action of S1 on G/S2. Each orbit

has cardinality equal to the index of some subgroup of S1, which is a power of p; that

power of p is either divisible by p or equal to 1, and the latter occurs only for the fixed

points. Thus, adding up the lengths of all orbits, we obtain

#(G/S2) ≡ # FixS1
(G/S2) mod p.

Since #S2 is the highest power of p dividing #G, the number on the left is non-zero

modulo p. Hence the number on the right is non-zero, i. e., the group S1 fixes some element

aS2 of G/S2 and is therefore contained in the stabilizer of aS2 in G, which is aS2a
−1. But

S1 and S2 have the same order, so we actually have S1 = aS2a
−1. This proves (c).

Let G act by conjugation on the set of all of its subgroups. From (c) we see that the

set of Sylow p-subgroups is a single orbit under this action. Therefore the number of Sylow

p-subgroups equals the cardinality of that orbit, which by Section 2 is a divisor of #G

(it is actually equal to
(
G : NG(S1)

)
, the normalizer NG(S1) being defined as in Exercise

2.17). This proves the first part of (a); the second part of (a) follows from Theorem 3.1,

with H = {1} and pm equal to the highest power of p dividing #G. This proves 3.3.

Theorems stating that finite groups have “many” p-subgroups are useful because p-

groups are usually much easier to handle than general finite groups. See Exercises 3.10,

3.12, and 3.13 for a few strong properties of p-groups.

Example: groups of order 42. We illustrate the usefulness of Sylow subgroups in deter-

mining the structure of finite groups. Let G be a group of order 42 = 2 · 3 · 7, and for each

p ∈ {2, 3, 7} let S(p) be a Sylow p-subgroup of G; it is cyclic of order p. By Theorem 3.3,

the number of subgroups of G conjugate to S(7) is a divisor of 42 that is 1 mod 7; the only

such divisor is 1, so S(7) is a normal subgroup of G. Therefore S(3)S(7) is a subgroup of

order 21 of G, and applying Exercise 1.7(a)—with S(3)S(7), S(3), S(7) in the roles of G,

H, N respectively—one deduces that S(3)S(7) is the semidirect product of S(3) and S(7)

with respect to some group homomorphism S(3)→ AutS(7); here AutS(7) ∼= F∗7 is cyclic

of order 6. If that group homomorphism is trivial then S(3)S(7) is cyclic of order 21; if it

is non-trivial then its image is the unique subgroup of AutS(7) of order 3, and S(3)S(7) is

the unique non-abelian group of order 21 (up to isomorphism; cf. Exercise 3.5(b)). In both

cases, S(3)S(7) is normal in G because it is of index 2. Again by Exercise 1.7(a), now with

S(2) and S(3)S(7) in the roles of H and N , the entire group G is the semidirect product of
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S(3)S(7) and S(2) with respect to some group homomorphism S(2)→ Aut
(
S(3)S(7)

)
. If

that group homomorphism is trivial then G is the product of S(3)S(7) and a cyclic group

of order 2; this gives two possibilities for G, up to isomorphism. Next suppose that the map

S(2)→ Aut
(
S(3)S(7)

)
is non-trivial. Its image is a subgroup of order 2 of Aut

(
S(3)S(7)

)
;

if S(3)S(7) is abelian, then the group Aut
(
S(3)S(7)

) ∼= (Z/21Z)∗ ∼= F∗3×F∗7 has three sub-

groups of order 2, which gives three possibilities for G. If S(3)S(7) is non-abelian, then one

checks that Aut
(
S(3)S(7)

)
has, up to conjugacy, only one subgroup of order 2; and from

this one deduces that there is only one possibility left for G, up to isomorphism. Modulo

this verification, and the verification that all groups obtained are pairwise non-isomorphic,

we conclude that there are exactly six groups of order 42, up to isomorphism.

Often one can simplify the work by invoking additional theorems. For example, 42

is squarefree, and any group of squarefree order is the semidirect product of two cyclic

groups (Exercise 3.27).

3. Exercises

3.1. Prove that the alternating group A4 of order 12 does not have a subgroup of order 6.

3.2. Let G be a finite group, and let for each prime number p a Sylow p-subgroup S(p) of

G be chosen. Prove that G is generated by the subgroups S(p), as p ranges over all prime

numbers.

3.3. Let G be a finite group, and let S ⊂ G be a Sylow p-subgroup for some prime number p.

Prove: S is normal in G if and only if S is characteristic in G.

3.4. (a) Prove that, up to isomorphism, there are precisely 19 groups of order smaller

than 12. Which are they?

(b) Let G be a group of order 12. Prove that G has a normal Sylow p-subgroup for

some p ∈ {2, 3}.
(c) How many pairwise non-isomorphic groups of order 12 are there? Prove the cor-

rectness of your answer.

3.5. Let p and q be prime numbers with p > q.

(a) Prove: if G is a group of order pq, then G has a normal Sylow p-subgroup.

(b) Prove: if q does not divide p − 1, then every group of order pq is cyclic; and if q

does divide p− 1, then there is a unique non-cyclic group of order pq, up to isomorphism,

and it is non-abelian.

3.6. Prove that any group of order 1001 is cyclic.

3.7. A group is called solvable if it has a normal tower (ui)
r
i=0 (see Exercise 1.3) for which

every group ui/ui−1 is abelian.
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(a) Prove: if G is a solvable group, then every subgroup H is solvable, and G/N is

solvable for every normal subgroup N of G.

(b) Prove: every solvable group G has a normal tower (vi)
t
i=0 for which every vi is

characteristic in G and every group vi/vi−1 is abelian.

3.8. (a) Prove that every group of order smaller than 60 is solvable.

(b) Prove that the group A5 is a group of order 60 that is not solvable.

3.9. Let G be a group of order 60 that is not solvable. The purpose of this exercise is to

show that G is isomorphic to A5.

(a) Prove that G is simple (see Exercise 1.4) and that G has precisely six Sylow

5-subgroups.

(b) Using the action of G on the set of its Sylow 5-subgroups, show that there is an

embedding of G as a subgroup in A6.

(c) Using the action of A6 on A6/G, show that there is group homomorphism A6 → S6

that induces an isomorphism G → A5; here A5 is identified with the subgroup of S6

consisting of all even permutations of {1, 2, 3, 4, 5, 6} that fix 6.

3.10. Let p be a prime number, and let G be a p-group.

(a) Prove: every maximal subgroup of G (as in Exercise 2.8) has index p and is normal

in G. (Hint : use Exercise 2.11(a).)

(b) Prove that G is solvable.

3.11. Let p be a prime number, G a p-group, and X a finite G-set. Prove: #XG ≡
#X mod p; here XG = FixGX.

3.12. Let p be a prime number.

(a) Prove: if G is a p-group of order greater than 1, then Z(G) 6= {1}.
(b) Prove: if G is a p-group, and N ⊂ G is a normal subgroup of order greater than

1, than N ∩ Z(G) 6= {1}.

3.13. A group G is called supersolvable is it has a normal tower (ui)
r
i=0 for which every ui

is normal in G and every group ui/ui−1 is cyclic.

(a) Give an example of a finite group that is solvable but not supersolvable.

(b) Prove: if p is a prime number, then every p-group is supersolvable.

3.14. (a) Prove that for every prime number p there are exactly two groups of order p2,

up to isomorphism, and that they are both abelian.

(b) Prove that for every prime number p there are exactly five groups of order p3, up

to isomorphism.

3.15. Let p be a prime number, G a finite group, and S a Sylow p-subgroup of G.
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(a) Prove: if N a normal subgroup of G, then S ∩N is a Sylow p-subgroup of N , and

the image of S in G/N is a Sylow p-subgroup of G/N .

(b) Prove: ifH is a subgroup of G, then there is a conjugate T of S in G such that T∩H
is a Sylow p-subgroup of H. Can one always take T = S? Give a proof or a counterexample.

3.16. Let p, G, and S be as in the previous exercise, and let N be a normal subgroup of G.

(a) Prove: if S ∩N is normal in N , then it is also normal in G.

(b) Prove: NG
(
NG(S)

)
= NG(S), the notation being as in Exercise 2.17.

3.17 (Frattini argument). Let p be a prime number, G a finite group, N a normal

subgroup of G, and P a Sylow p-subgroup of N . Prove: N ·NG(P ) = G.

3.18. Let k be a finite field, and denote by p its characteristic. Let G = k+
o k∗ be the

semidirect product of the additive group k+ and the multiplicative group k∗ of k, the

action of the latter on the former being multiplication in k.

(a) Prove that G is isomorphic to the subgroup {
(
a
0
b
1

)
: a ∈ k∗, b ∈ k} of Gl(2, k).

(b) Prove that G has a normal Sylow p-subgroup.

(c) Let l be a prime number different from p. Prove that G has a cyclic Sylow l-

subgroup. For which l is the Sylow l-subgroup normal in G?

3.19. Supply the details of the classification of groups of order 42 given in the text. Where

does the cyclic group of order 42 appear in this classification? And the dihedral group

D21? And the group F7 o F∗7 from Exercise 3.18?

3.20. Let k and G be as in Exercise 3.18, and let n be a positive integer. Prove that G has

a subgroup of order n if and only if there are positive integers n1 and n2 satisfying

n = n1n2, n1 divides #k, n2 divides #k∗, n1 ≡ 1 mod n2.

3.21. Suppose that n is a positive integer with the property that every finite group of

order divisible by n has a subgroup of order n. Prove that n is a prime power. (Hint : use

Exercise 3.20.)

3.22 (Sylow subgroups of linear groups). Let n be a non-negative integer, k a finite

field, and p and q the characteristic and the cardinality of k, respectively.

(a) Prove: # Gl(n, k) =
∏n−1
i=0 (qn − qi).

(b) Prove that the upper triangular matrices in Gl(n, k) with 1’s on the diagonal form

a Sylow p-subgroup of Gl(n, k).

3.23 (Sylow subgroups of Sn). Let p be a prime number, and let n be a non-negative

integer. Write n in base p, i. e., write n =
∑

i≥0 cip
i with ci ∈ {0, 1, . . . , p− 1} for all i and

ci = 0 for all but finitely many i.
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(a) Prove that the exponent of the highest power of p dividing n! is
(
n−∑

i ci
)
/(p−1).

(b) Let k be a positive integer, and denote by Cp a cyclic group of order p. Denote by

W (p, k) the iterated wreath product (· · · ((Cp o Cp) o Cp) · · ·) o Cp; here the sign o appears

k − 1 times, Cp appears k times, and each wreath product (see Exercise 2.20) is taken

relative to the Cp-set Cp, the action being left multiplication. Give a formula for the order

of W (p, k), and prove that W (p, k) is isomorphic to a Sylow p-subgroup of the symmetric

group Spk .

(c) Describe a Sylow p-subgroup of the symmetric group Sn in terms of the groups

W (p, i) and the numbers ci.

3.24. Let G be a finite group. Let G act on itself by left multiplication, and let G→ SymG

be the corresponding group homomorphism.

(a) Prove: the image of G in SymG contains an odd permutation if and only if any

Sylow 2-subgroup of G is cyclic and non-trivial.

(b) Prove: if G has a cyclic Sylow 2-subgroup, then N = {x ∈ G : x has odd order} is

a characteristic subgroup of odd order of G, and G/N is cyclic of 2-power order.

3.25 (the Verlagerung). Let G be a group, and let H be a subgroup of finite index n

of G. We write H̄ for the abelian group H/[H,H], and ρ for the natural map H → H̄. The

Verlagerung (or transfer) VerG→H :G→ H̄ is defined as follows. Write G = a1H ∪ a2H ∪
· · · ∪ anH, and for each g ∈ G and i ∈ {1, 2, . . . , n} let j = j(g, i) be such that gai ∈ ajH,

say gai = ajhg,i, with hg,i ∈ H; then VerG→H(g) =
∏n
i=1 ρ(hg,i) ∈ H̄.

(a) Prove: this definition is independent of the choice of the coset representatives ai,

and VerG→H is a group homomorphism.

(b) Let g ∈ G have type
(
n(1), . . . , n(t)

)
in its action on G/H, as in Exercise 2.15; for

each j ∈ {1, 2, . . . , t}, let ai(j)H belong to the jth cycle, which has length n(j). Prove that

one has

VerG→H(g) =
t∏

i=1

ρ
(
a−1
i(j)g

n(j)ai(j)
)
.

3.26. Let G be a finite group of order greater than 1, and let p be the smallest prime

number dividing #G. Let S be a Sylow p-subgroup of G, and suppose that S is cyclic.

(a) Let H ⊂ S be a subgroup. Prove that the normalizer NG(H) of H in G is equal

to the centralizer CG(H) of H in G.

(b) Suppose that x, y are elements of S that are conjugate in G. Prove: x = y.

(c) Let VerG→S :G → S/[S, S] = S be as in Exercise 3.25. Prove that the restriction

of VerG→S to S is an automorphism of S, and that N = {x ∈ G : x has order not divisible

by p} is a characteristic subgroup of G with G/N ∼= S.

3.27. Let G be a finite group of squarefree order.
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(a) Prove that G is solvable. (Hint : use Exercise 3.26(c).)

(b) Prove that G′′ = {1}, the notation being as in Exercise 1.20.

(c) Prove that G is the semidirect product of two cyclic groups.

3.28. Let n be the product of all prime numbers p with 50 < p < 100. Prove that every

group of order n is cyclic.

3.29. Let n be a positive integer, and write ϕ(n) = #(Z/nZ)∗. Prove: every group of order

n is cyclic if and only if n and ϕ(n) are relatively prime.

4. Exact sequences

In this section we restrict to abelian groups (but see Exercise 4.1), and we write them

additively. A homomorphism f :A→ B of abelian groups will often be written as A
f→ B,

or simply as A→ B if the map is clear from the context, or no notation is required for it.

We call a sequence

A
f→ B

g→ C

of homomorphisms exact if im f = ker g. Denoting the zero group by 0, we have:

(i) 0→ B
g→ C is an exact sequence if and only if g is injective;

(ii) A
f→ B → 0 is exact if and only if f is surjective;

(iii) 0→ A
f→ B → 0 is exact if and only if f is an isomorphism;

(iv) 0→ B → 0 is exact if and only if B = 0.

In general, a sequence of homomorphisms A1 → A2 → A3 → . . .→ An is called exact

at Ai (where 1 < i < n) if Ai−1 → Ai → Ai+1 is exact. The entire sequence is exact if

it is exact at each Ai for 1 < i < n. We use the same terminology for infinite sequences

A1 → A2 → A3 → . . ., . . . → A1 → A2 → A3 → . . ., etc. An exact sequence of the form

0→ A→ B → C → 0 is known as a short exact sequence. In this case, A→ B is injective,

so that we can view A as a (normal) subgroup of B, and the map B → C is surjective

with kernel A, so that we have B/A
∼−→ C.

We digress to define commutativity of diagrams. A diagram

A
f−→ B

ϕ



y



yψ

C
g−→ D

is said to be commutative if ψ ◦ f = g ◦ ϕ. In general, a diagram consisting of abelian

groups and homomorphisms between them is said to be commutative if any two ‘paths’

in the diagram that start at the same point in the diagram and end at the same point as

25



well, define the same map between the groups standing at those points. (To make this into

a rigorous definition, one first needs to define what a ‘diagram’ is; this may be done later.)

One can embed any homomorphism B
g→ C in a unique way (up to isomorphism) in an

exact sequence 0→ A→ B
g→ C → D → 0, namely by taking A = ker g andD equal to the

cokernel cok g = C/g(B) of g, the maps A→ B and C → D being the inclusion map and

the canonical map, respectively. This exact sequence is called the kernel-cokernel sequence.

The uniqueness statement means that for any exact sequence 0→ A→ B
g→ C → D → 0

there are unique isomorphisms A
∼−→ ker g and D

∼−→ cok g for which the diagram

0 −→ A −→ B −→ C −→ D −→ 0


y



y



y



y

0 −→ ker g −→ B −→ C −→ cok g −→ 0

is commutative; here the vertical arrows starting at A and D are the isomorphisms, and

those starting at B and C are the identity maps. Note that if B and C are finite we have

the relation #A ·#C = #B ·#D (see Exercise 4.2).

There are many ‘diagram lemmas’, which make assertions about exact sequences that

are combined into commutative diagrams. As an example we present the most important

one, which is called the snake lemma.

Snake lemma. Any commutative diagram with exact rows

P −→ Q −→ R −→ 0


y



y



y

0 −→ X −→ Y −→ Z
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can be embedded in a commutative diagram

0 0 0


y



y



y

A
f−→ B

g−→ C


y



y



y

P
m−→ Q −→ R −→ 0

α



y β



y



y

0 −→ X −→ Y −→ Z

ϕ



y



y



y

D
i−→ E

j−→ F


y



y



y

0 0 0

with exact rows and columns; in addition, there is a homomorphism C → D such that

the sequence A → B → C → D → E → F is exact. Also, if 0 → P → Q is exact, then

0 → A → B is exact; and if Y → Z → 0 is exact then E → F → 0 is exact; and if both

conditions are satisfied, then 0→ A→ B → C → D → E → F → 0 is exact.

Remark. Drawing the arrow C → D into the diagram one sees the ‘snake’ appear.

Proof. We first construct exact sequences A→ B → C and D → E → F . It is obvious

that we can construct f , g, i, and j as induced homomorphisms. For example, treating

A and B as the subgroups kerα and kerβ of P and Q, respectively, we define f as the

restriction of m to A. By commutativity of PQYX, we have mA ⊂ ker β, so f maps A to

B and is a homomorphism.

What requires proof is im f = ker g and im i = ker j. This is done by “diagram

chasing”. We illustrate this on the latter case. By exactness, X maps to 0 in Z, and hence

to 0 in F . By commutativity, it follows that we have j ◦ i ◦ ϕ = 0 (the zero map). But

ϕX = D, so we have (j ◦ i)(D) = 0. Thus im i ⊂ ker j. To show the opposite inclusion, let

e ∈ ker j ⊂ E. Because Y → E is onto, there is y ∈ Y mapping to e. Let y 7→ z ∈ Z. From

y 7→ e 7→ 0 ∈ F we see, by commutativity of Y ZFE, that z maps to 0 ∈ F , i. e., z is in the

kernel of the map Z → F . Some r ∈ R maps to z and some q ∈ Q maps to r, by exactness

of R → Z → F and Q → R → 0, respectively. Let q 7→ y′ ∈ Y . By commutativity of

QRZY we must have y′ 7→ z. Now define y′′ = y − y′. Firstly, y′′ 7→ 0 ∈ Z so y′′ belongs

to the kernel of the map Y → Z. Hence some x ∈ X maps to y′′. Secondly, Q → Y → E
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is exact so y′ 7→ 0 ∈ E and therefore y′′ 7→ e. By commutativity of XY ED, we have

e = (i ◦ ϕ)(x) ∈ (i ◦ ϕ)X = i(ϕX) = iD = im i, giving us the reverse inclusion.

Note that the proof of exactness at E that we just gave depends on the 0 in Q →
R→ 0. Likewise, the proof of exactness at B—which we leave to the reader—depends on

the 0 in 0→ X → Y .

To construct C → D, we use an additional lemma. Given a commutative diagram

A
f−→ B

Σ : h



y ↘j



yg

C −→
i

D

we define ker Σ = ker j/(ker f + kerh) and cokΣ = (im g ∩ im i)/ im j.

Lemma. Let

A
a−→ B

b−→ C

c



y Σ f



y T d



y

D
e−→ E

g−→ F

be a commutative diagram with exact rows. Then f induces an isomorphism

kerT
∼−→ cok Σ.

Proof. Observe that ker gf
f→ ker g is a homomorphism. By the appropriate isomorphism

theorem, we have ker gf/ ker f
∼−→ im f ∩ ker g = im f ∩ im e (this last equality is true

by exactness). From ker b = im a it follows that this mapping sends the image (ker f +

ker b)/ ker f of ker b in ker gf/ ker f onto the subgroup im fa of im f ∩ im e. Factoring out

corresponding subgroups—as we can do in abelian groups—we obtain

ker gf/(ker f + ker b)
∼−→ (im f ∩ im e)/ im fa.

In other words, we have ker T
∼−→ cok Σ. This proves the lemma.
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To conclude the proof of the Snake lemma, we enlarge the diagram a bit:

0 0 0 −→ cok g


y



y



y Σ1



y

A −→ B
g−→ C −→ cok g −→ 0



y



y Σ2



y T1



y

P −→ Q −→ R −→ 0


y Σ3



y T2



y

0 −→ X −→ Y −→ Z


y Σ4



y T3



y



y

0 −→ ker i −→ D
i−→ E −→ F



y T4



y



y



y

ker i −→ 0 0 0.

Apply the lemma to the pairs (Σ1,T1), (Σ2,T1), (Σ2,T2), . . . , (Σ4,T4), to deduce

cok g ∼= cokΣ1
∼= kerT1

∼= cokΣ2
∼= . . . ∼= cokΣ4

∼= ker T4
∼= ker i.

Hence A→ B → C → D → E → F is exact.

If 0 → P → Q is exact then m is injective, and since we obtained the map A → B

by restricting m to A (when viewed as a subgroup of P ) it is injective as well. A similar

argument shows that exactness of Y → Z → 0 implies exactness of E → F → 0. The last

assertion of the Snake lemma is now obvious. This completes the proof.

A mistaken sense of symmetry might lead one to think that B → C → 0 and 0→ D → E

are also exact, especially in the case 0 → P → Q and Y → Z → 0 are exact. This need

not be true; but the groups cok g and ker i, which measure the failure for it to be true, are

isomorphic, as we saw in the proof. Also, this ‘obstruction group’ cok g ∼= ker i can be read

from the initially given diagram, since as we saw it is the same as kerT2
∼= cokΣ3.
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4. Exercises

4.1. Can you generalize the results of this section to not necessarily abelian groups, with

supplemental conditions relating to the normality of certain subgroups?

4.2. (a) Let

0→ A1 → A2 → A3 → . . .→ An−1 → An → 0

be an exact sequence of finite abelian groups. Prove that

∏

1≤i≤n
i even

#Ai =
∏

1≤i≤n
i odd

#Ai.

(b) Formulate and prove a similar result when finite abelian groups are replaced by

finite-dimensional vector spaces over a field k, and all maps are supposed to be k-linear.

4.3. The cokernel cok f of a homomorphism f :A→ B of abelian groups is defined to be

B/fA. Let f :A→ B and g:B → C be two homomorphisms of abelian groups. Prove that

there is an exact sequence

0→ ker f → ker gf → ker g → cok f → cok gf → cok g → 0.

Can you deduce this from the snake lemma?

4.4. Let n be an integer, and let A be an additively written abelian group. Write nA for

the endomorphism of A that maps every a ∈ A to na. If kernA and coknA are finite, then

we define hn(A) = (# kernA)/# coknA, and we say that hn(A) is defined.

(a) Let 0 → A → B → C → 0 be an short exact sequence of abelian groups, and

suppose that two of hn(A), hn(B), hn(C) are defined. Prove that the third one is also

defined, and that one has hn(B) = hn(A) · hn(C).

(b) Compute hn(A) for A = Z, Q, R/Z, and when A is any finite abelian group. (Do

not use the structure theorem for finite abelian groups.)

4.5. Let the notation be as in Exercise 4.4.

(a) Let n and m be integers, and let A be an abelian group. Prove that hnm(A) is

defined if and only if hn(A) and hm(A) are both defined, and that one has hnm(A) =

hn(A) · hm(A) if all three are defined.

(b) Let n be an integer. Determine the set of all numbers that occur as hn(A) for

some abelian group A for which hn(A) is defined.

Modules. Let R be a ring. An R-module or left R-module is an abelian group M together

with a map R×M →M , (r,m) 7→ rm, satisfying the following four rules for all r, r′ ∈ R
and m, m′ ∈M :

r(m+m′) = rm+ rm′, (r + r′)m = rm+ r′m, (rr′)m = r(r′m), 1m = m,
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where 1 denotes the unit element of R. If the third rule is replaced by (rr′)m = r′(rm)

one obtains the definition of a right R-module; in this case one usually writes mr instead

of rm, so that the third rule assumes the more natural appearance m(rr′) = (mr)r′. If

M , M ′ are R-modules, then an R-homomorphism or R-linear map M → M ′ is a group

homomorphism f :M →M ′ satisfying f(rm) = r.f(m) for all r ∈ R, m ∈M .

4.6. A differential group is an abelian group A equipped with an endomorphism d = dA

satisfiying d2 = 0. If A and B are differential groups, then a morphism from A to B is a

group homomorphism f :A→ B satisfying fdA = dBf .

(a) Prove that the notion of a differential group is equivalent to the notion of a

Z[X]/(X2)-module, in such a manner that the morphisms correspond to the Z[X]/(X2)-

linear maps. (Note: a more rigorous formulation of this exercise can be given in the language

of categories, which shall be introduced later.)

(b) Construct, for every differential group A, a group H(A) that fits into an exact

sequence 0 → H(A) → cok dA → ker dA → H(A) → 0, the middle arrow being induced

by dA. The group H(A) is called the homology group of A.

4.7. Let 0 → A
f−→ B

g−→ C → 0 be an exact sequence of differential groups, the maps

being morphisms of differential groups (see Exercise 4.6). Construct an exact triangle

H(A) → H(B)
↖ ↓

H(C).

4.8. A complex is a sequence (An)n∈Z of abelian groups together with a sequence (dn)n∈Z
of homomorphisms dn:An → An+1 such that for all n ∈ Z one has dndn−1 = 0. The nth

homology group Hn(A) of such a complex A is defined by Hn(A) = (ker dn)/dn−1An−1.

Suppose A =
(
(An)n∈Z, (dn)n∈Z

)
, B =

(
(Bn)n∈Z, (dn)n∈Z

)
, C =

(
(Cn)n∈Z, (dn)n∈Z

)

are three complexes, and that for every n one has a short exact sequence 0 → An
fn−→

Bn
gn−→ Cn → 0 such that for all n one has fndn−1 = dn−1fn−1 and gndn−1 = dn−1gn−1.

Construct group homomorphisms Hn−1(C)→ Hn(A) that together with the natural maps

Hn(A)→ Hn(B) and Hn(B)→ Hn(C) induced by fn and gn yield a long exact sequence

· · · → Hn−1(C)→ Hn(A)→ Hn(B)→ Hn(C)→ Hn+1(A)→ · · · .

The homomorphisms Hn−1(C)→ Hn(A) are called the connecting homomorphisms.

4.9. Let R be a ring. Verify that the results of this section remain valid if one works with

R-modules instead of abelian groups, and with R-linear maps instead of homomorphisms.
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5. Free groups and presentations

Let S be a set. We shall construct a group F (S) containing S with the following “universal”

property: for any group G and any (set-theoretic) map f :S → G, there is a unique group

homomorphism g:F (S) → G such that g|S = f . In other words, if j:S → F (S) denotes

the inclusion map, then for any map f :S → G there is a unique group homomorphism g

making the diagram

S
j−→ F (S)

f ↘


yg

G

commutative. The universal property may be succinctly expressed by saying that for any

group G the map

j∗: Hom(F (S), G)→ GS , g 7→ f = g|S = gj

from the set Hom(F (S), G) of group homomorphisms F (S)→ G to the set GS of all maps

S → G is bijective. As we shall see, this property characterizes F (S) up to a canonical

isomorphism; it will be called the free group on S. The word “free” is intended to convey the

idea that one builds F (S) up from the elements of S without introducing any “relations”

between them; indeed, any relation that the elements of S would satisfy in F (S) they

would satisfy in any group G, by the universal property.

One readily verifies that for S = ∅ the trivial group F (S) = {1} has the universal

property, and that for S = {a} one can take F (S) = {an : n ∈ Z}, with multiplication

an · am = an+m; in the latter example, the “symbols” an are viewed as pairwise different,

so that F (S) is just an isomorphic copy of Z.

Construction of F(S). Define the alphabet to be the disjoint union S ∪ S̄, where S̄ = {s̄ :

s ∈ S} is a copy of S (formally, one may define the alphabet to be S×{1,−1}, identifying

s with (s, 1) and s̄ with (s,−1), for s ∈ S; the element s̄ is going to be the inverse of s in

the group F (S)). For s ∈ S, we shall write ¯̄s = s, so that ¯ is defined on all of S ∪ S̄. A

finite sequence s0s1 · · · st−1 of elements of the alphabet is called a word. (Formally, a word

is a pair (t, f), where t ∈ Z, t ≥ 0, and f : {0, 1, . . . , t− 1} → S ∪ S̄ is a map.) The empty

sequence, with t = 0, is also a word. A reduced word is a word for which there exists no

i with si+1 = s̄i. For example, if S = {a}, then any reduced word is of the form aa · · ·a
or āā · · · ā, or it is the empty sequence. We now define F (S) to be the set of all reduced

words, with multiplication ∗ given by:

s0s1 · · · st−1 ∗ r0r1 · · · ru−1 = s0 · · · st−j−1rj · · · ru−1
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where j is the largest number less than or equal to min{u, t} such that ri = s̄t−i−1 for

all i ∈ {0, 1, . . . , j − 1}; this guarantees that the result is again reduced. In the event that

j = u or j = t, all ri or all si disappear.

Theorem 1. For any set S, the set F (S) with the multiplication ∗ just defined is a group,

and it has the universal property formulated above.

Proof. One can directly check the group axioms, but the proof of associativity is a bit

painful. It can be avoided by the following trick, which is due to Van der Waerden. For

s ∈ S ∪ S̄ define the map σs:F (S)→ F (S) by σs(w) = s ∗w. That is, if w = r0r1 · · · ru−1,

then

σs(w) =

{
r1 · · · ru−1, if u ≥ 1 and r0 = s̄;
sr0 · · · ru−1, otherwise.

One easily checks that σs̄σs = 1F (S), and applying this result to s̄ in the role of s one finds

also σsσs̄ = 1F (S). Hence σs̄ is a two-sided inverse of σs, so one has σs ∈ SymF (S). Next,

define the map ϕ:F (S) → SymF (S) by ϕ(s0 · · · st−1) = σs0 · · ·σst−1
. From σsσs̄ = 1F (S)

and the definition of ∗ one deduces that ϕ(w1 ∗w2) = ϕ(w1)ϕ(w2). Also, one has ϕ(s)−1 =

ϕ(s̄). One deduces that ϕF (S) is a subgroup of SymF (S). The map ψ: SymF (S)→ F (S)

sending σ to σ(1), where 1 ∈ F (S) denotes the empty sequence, satisfies ψϕ = 1F (S), so ϕ is

a bijection from F (S) to ϕF (S). The latter is a group, so by “transport of structure”—i. e.,

by applying ψ—one deduces that F (S) is a group as well.

The proof of the universal property is immediate. Given f , one defines g:F (S)→ G

by g(s0 · · · st−1) = f(s0) · · ·f(st−1), where we write f(s̄) = f(s)−1 for s ∈ S. Clearly

g is a group homomorphism F (S) → G that extends f , and it is the only such group

homomorphism. This proves the theorem.

The pair consisting of the group F (S) and the inclusion map j:S → F (S) is, up to a

unique isomorphism, uniquely determined by the universal property. This is the content

of the following theorem.

Theorem 2. Let S be a set, E a group, and i:S → E a map. Suppose that E and i satisfy

the universal property; that is, for every group G the map i∗: Hom(E,G) → GS sending

g to gi is bijective. Then there is a unique group isomorphism α:F (S) → E satisfying

i = αj.

Proof. By the universal property of F (S), applied to G = E and f = i, there is a unique

group homomorphism α:F (S) → E such that i = αj. To prove the theorem, it suffices

to show that α is an isomorphism. We shall do so by exhibiting a two-sided inverse. By

the universal property of E, applied to G = F (S), there is a unique group homomorphism

β:E → F (S) such that βi = j. The maps 1E , αβ ∈ Hom(E,E) have the same image

under the map i∗: Hom(E,E)→ GS , since i∗(1E) = 1Ei = i and i∗(αβ) = αβi = αj = i;
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since i∗ is bijective it follows that 1E = αβ. The same argument, with F (S) in the role of

E, shows that 1F (S) = βα. Hence β is indeed a two-sided inverse of α, as required. This

proves Theorem 2. The proof incidentally shows that i = αj is automatically injective,

since both α and j are.

The argument just given allows an important generalization. Let two groups E and F be

fixed, and suppose that for each group G one has a bijection ηG: Hom(E,G)→ Hom(F,G);

above, this was actually the case (with F = F (S)), since ηG = j∗−1i∗ is a bijection

Hom(E,G)
∼−→ GS

∼−→ Hom(F,G). Such a system (ηG) of bijections, with G ranging over

all groups, is called functorial in G if for all groups G and H and all homomorphisms

h:G→ H the diagram

Hom(E,G)
ηG−→ Hom(F,G)

h∗



y h∗



y

Hom(E,H)
ηH−→ Hom(F,H)

is commutative; here h∗ is the map g 7→ h ◦ g. In other words, functoriality means that

for all homomorphisms h:G → H we have h∗ ◦ ηG = ηH ◦ h∗. By abuse of language, it is

often simply said that the bijection ηG is functorial in G, even though the entire system

of bijections is meant. We note that the maps ηG = j∗−1i∗ from Theorem 2 are indeed

functorial in G. To prove this, remark that from h∗(g) = h ◦ g and i∗(g) = g ◦ i it evidently

follows that h∗i∗ = i∗h∗, and in the same way one proves that h∗j∗ = j∗h∗; composing

the latter equality with j∗−1 on both sides one obtains j∗−1h∗ = h∗j∗−1, and this leads to

h∗ ◦ ηG = h∗j∗−1i∗ = j∗−1h∗i∗ = j∗−1i∗h∗ = ηH ◦ h∗, as required.

We can now generalize Theorem 2 by saying, in imprecise terms, that a group is

determined, up to isomorphism, by the families of outgoing arrows to all other groups;

the precise formulation in Theorem 3 involves the functoriality condition. Exercise 5.7(b)

shows that this condition cannot be omitted.

Theorem 3. Let E and F be groups. Suppose that for every group G one has a bijection

ηG: Hom(E,G) → Hom(F,G), and that this system of bijections is functorial in G. Then

one has E ∼= F ; more precisely, there is a unique group isomorphism ϕ:F → E such that

for all groups G and all f ∈ Hom(E,G) one has ηG(f) = fϕ.

Proof. First observe that if ϕ is any map satisfying the conclusion of the theorem, then

putting G = E and f = 1E we see that we must have ϕ = 1Eϕ = ηE(1E). Hence there can

be at most one such ϕ; to show that there is at least one it suffices to define ϕ = ηE(1E)

and to show that one has ηG(f) = fϕ for all G and f , and that ϕ is an isomorphism.
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To prove the first statement, we use that by functoriality the diagram

Hom(E,E)
ηE−→ Hom(F,E)

f∗



y f∗



y

Hom(E,G)
ηG−→ Hom(F,G)

is commutative, so that indeed we have ηG(f) = ηG
(
f∗(1E)

)
= f∗

(
ηE(1E)

)
= fϕ.

Since ηF : Hom(E,F )→ Hom(F, F ) is bijective, there is a unique ψ ∈ Hom(E,F ) with

ηF (ψ) = 1F or, equivalently, ψϕ = 1F . To prove that ϕ is an isomorphism it suffices to

check that ϕψ = 1E . We have ηE(ϕψ) = ϕψϕ = ϕ1F = ϕ = 1Eϕ = ηE(1E). Since ηE is

bijective it follows that ϕψ = 1E , as required. This concludes the proof of Theorem 3.

Let S be a set and let F (S) be the free group on S. Take r ∈ F (S). A map from S to a

group G is said to satisfy r if r is in the kernel of the corresponding group homomorphism

F (S)→ G; and it is said to satisfy a subset R ⊂ F (S) if it satisfies all elements of R.

Let S be a set and R ⊂ F (S). We define

〈S:R〉 = F (S)/NR,

where NR is the subgroup of F (S) generated by {grg−1 : r ∈ R, g ∈ F (S)}; this is clearly

a normal subgroup of F (S), and it is in fact the smallest normal subgroup of F (S) that

contains R. One calls 〈S:R〉 the group determined by the generators S and the relations

R.

Proposition 4. For any group G, we have a functorial bijection

Hom(〈S:R〉, G)
∼−→ {maps S → G satisfying R}.

Furthermore, this system of functorial bijections characterizes 〈S:R〉 up to a unique iso-

morphism.

Proof. Let c be the canonical homomorphism from F (S) to 〈S:R〉, sending x to xNR.

By the first homomorphism theorem and the definition 〈S:R〉 = F (S)/NR, the map

c∗: Hom(〈S:R〉, G) → Hom(F (S), G) sending h to hc gives, for every group G, a bijec-

tion

Hom(〈S:R〉, G)→ {f ∈ Hom(F (S), G) : NR ⊂ ker f},

and this bijection is functorial in G. Moreover, the set on the right is by definition of NR

equal to

{f ∈ Hom(F (S), G) : R ⊂ ker f}.
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By the universal property of F (S), this set in turn admits a bijection to

{maps S → G satisfying R},

and this bijection is again functorial in G. Composing these functorial bijections we obtain

the functorial bijection that the proposition asserts to exist.

Suppose E is another group for which there is a functorial bijection as in the propo-

sition. Composing this functorial bijection with the inverse of the other one we obtain a

functorial bijection from Hom(E,G) to Hom(〈S:R〉, G). By Theorem 3, it induces a unique

isomorphism E → 〈S:R〉. This proves Proposition 4.

If A is a group then a presentation of A is an isomorphism of A with a group of the form

〈S:R〉.

Proposition 5. Any group A has a presentation.

Proof. Choose a subset S ⊂ A that generates A. (This can always be done, e. g. with

S = A.) Then the inclusion map S → A induces a homomorphism g:F (S)→ A, and g is

surjective. Choose a subset R ⊂ ker g with NR = ker g. (Again we can do this, e. g. with

R = ker g.) Then we have 〈S:R〉 ∼= F (S)/ ker g ∼= im g = A. This proves Proposition 5.

Alternative proof. Let S = {xa : a ∈ A}, so that the set S is just a copy of the

underlying set of A, and put R = {xaxbx̄ab : a, b ∈ A} ⊂ F (S). Then for any group G we

have
Hom(〈S:R〉, G) ∼= {maps S → G satisfying R}

= {maps ϕ:S → G : ∀a, b ∈ A : ϕ(xa)ϕ(xb) = ϕ(xab)}
∼= {maps ψ:A→ G : ∀a, b ∈ A : ψ(a)ψ(b) = ψ(ab)}
= Hom(A,G).

Each of the bijections is functorial in G, so by Theorem 3 we have A ∼= 〈S:R〉, as required.

A presentation 〈S:R〉 of a group is called finite if both S and R are finite. If S =

{s1, . . . , sn} and R = {r1, . . . , rm}, we also write 〈S:R〉 = 〈s1, . . . , sn : r1, . . . , rm〉. Of-

ten, one writes ri = 1 instead of just ri; for example, instead of 〈x, y : x2y−2, xyxy−1〉 one

may write 〈x, y : x2y−2 = 1, xyxy−1 = 1〉, or even 〈x, y : x2 = y2, xyx = y〉. A group that

has a finite presentation is called finitely presented.

Examples of finite presentations: 〈x : x7〉 = 〈x : x7 = 1〉 is a cyclic group of order 7,

and 〈x : 〉 is an infinite cyclic group.

As the proof of Proposition 5 shows, any group has many presentations. One often

prefers one that either reflects the way in which the group is built up, or one with a

small number of generators and relations. For example, consider the group S3. It has the

presentation 〈x, y : y3 = 1, x2 = 1, xyx−1 = y−1〉, which reflects that S3
∼= C3 o C2
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(with respect to a certain action of C2 on C3). A more economical presentation is 〈x, y :

x2 = 1, xyx−1 = y2〉; note that, in the last group, one has y = x2yx−2 = x(xyx−1)x−1 =

xy2x−1 = (xyx−1)2 = y4, and therefore y3 = 1.

Sums of groups. Let A and B be groups, and choose presentations A ∼= 〈S:R〉 and B ∼=
〈T : Q〉 with S ∩T = ∅. The sum (or free product in the older literature) A ◦B of A and B

is defined by A◦B = 〈S∪T : R∪Q〉. To prove that this is independent of the presentations

chosen, we note that for any group G we have

Hom(A ◦B,G) ∼= {maps S ∪ T → G satisfying R ∪Q}
∼= {maps S → G satisfying R} × {maps T → G satisfying Q}
∼= Hom(A,G)×Hom(B,G),

and these bijections are functorial in G. Thus, if different presentations would give rise to,

say, a group A •B, then one would obtain functorial bijections

Hom(A ◦B,G) ∼= Hom(A,G)× Hom(B,G) ∼= Hom(A •B,G),

so Theorem 3 would yield an isomorphism A ◦B ∼= A •B.

Let the bijection Hom(A ◦ B,A ◦ B)
∼−→ Hom(A,A ◦ B) × Hom(B,A ◦ B), which

one obtains by putting G = A ◦ B, send the identity map 1A◦B to the pair (i, j), where

i:A → A ◦ B and j:B → A ◦ B are group homomorphisms. Then the bijection Hom(A ◦
B,G)

∼−→ Hom(A,G)×Hom(B,G) maps f to (fi, fj), for any group G. The bijectivity of

this map is equivalent to the following universal property of A ◦B: if G is any group, and

g:A → G, h:B → G are arbitrary group homomorphisms, then there is a unique group

homomorphism f :A ◦B → G for which g = fi and h = fj.

In Exercise 5.1 one finds an explicit description of the elements of A ◦ B. It shows in

particular that A ◦ B contains (isomorphic copies of) A and B as subgroups. If (Ai)i∈I is

any system of groups, with a possibly infinite index set I, one can in a similar manner

define their sum ©i∈IAi in such a way that one has bijections

Hom
(
©i∈IAi, G

) ∼=
∏

i∈I
Hom(Ai, G)

that are functorial in G. Exercise 5.1 carries over to this situation as well.

Let A and B be groups. The pair of group homomorphisms A→ A×B, B → A×B
sending a ∈ A to (a, 1) and b ∈ B to (1, b), respectively, combines into a surjective group

homomorphism A◦B → A×B. However, this group homomorphism is only rarely injective

(see Exercise 5.2), so the sum is really different from the product. In intuitive terms, this

is because in the product group A× B the elements coming from A commute with those
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coming from B, which is expressed by relations that do not occur in the definition of the

sum group.

On the other hand, it is true that the product A×B has a universal property similar

to the sum, but not with respect to outgoing arrows but with respect to incoming arrows.

That is, if π1:A×B → A and π2:A×B → B are the coordinate projections, then for any

group G one has a bijection

(π1∗, π2∗): Hom(G,A× B)→ Hom(G,A)× Hom(G,B), f 7→ (π1f, π2f);

also, this bijection is functorial in G, which now means that for any group homomorphism

h:G → H the two maps (π1∗, π2∗) ◦ h∗ and (h∗, h∗) ◦ (π1∗, π2∗) from Hom(H,A× B) to

Hom(G,A)× Hom(G,B) are the same (with h∗(f) = fh). This universal property again

characterizes A× B, by a theorem similar (but “dual”) to Theorem 3 (see Exercise 5.6).

The situation is best understood from the point of view of categories (see Section 7, and

Exercises 7.22 and 7.24).

If we restrict to abelian groups—not just for A and B, but also for the “test groups”

G—then the product A×B has both universal properties. That is, if A and B are abelian

groups, then for all abelian groups G one has functorial group isomorphisms

(π1∗, π2∗): Hom(G,A× B)→ Hom(G,A)× Hom(G,B), f 7→ (π1f, π2f),

π∗1 + π∗2 : Hom(A,G)× Hom(B,G)→ Hom(A× B,G), (f, g) 7→ fπ1 + gπ2;

remember that Hom(A,G) is a group for abelian G. When A and B are abelian, one often

writes A⊕ B instead of A× B, and refers to it as the direct sum of A and B.

5. Exercises

5.1. Let A, B be two groups.

(a) Imitating the construction of the free group, construct a group A•B that contains

isomorphic copies of A and B as subgroups intersecting only in 1, with the property that

every element of A • B has a unique representation as an alternating word x0x1 · · ·xt−1

with t ≥ 0, xi ∈ A ∪ B, xi 6= 1; alternating means that there is no i with {xi, xi+1} ⊂ A

or {xi, xi+1} ⊂ B.

(b) Exhibit for each group G a bijection Hom(A • B,G)→ Hom(A,G)× Hom(B,G)

that is functorial in G, and prove that A •B ∼= A ◦B.

5.2. Let A, B be two groups. Show that the map A ◦B → A×B defined in the text is an

isomorphism if and only if at least one of the groups A, B is trivial.

5.3. Let S be a set with #S = 2. Use the universal properties of Z ◦Z and the free group

F (S) on S to show that Z ◦ Z ∼= F (S).
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5.4. Let C2 be a group of order 2, and let G = C2 ◦ C2.

(a) Prove that H = {x ∈ G : x does not have order 2} is a subgroup of index 2 of G,

that H is infinite cyclic, and that G ∼= H o AutH.

(b) Prove that G is isomorphic to the subgroup of SymZ generated by the two per-

mutations x 7→ −x and x 7→ 1 − x of Z. To which subgroup of SymZ does the subgroup

H from (a) correspond?

5.5. Let G be as in Exercise 5.4.

(a) Determine all subgroups of G. Which of them are normal, and to which known

groups are the corresponding factor groups isomorphic?

(b) Classify all groups that can be generated by two distinct elements of order 2. How

many such groups are there (up to isomorphism) that are infinite?

5.6. Let E, F be groups with the property that for all groups G one has a functorial

bijection ηG: Hom(G,E) → Hom(G,F ). Prove that there is an isomorphism ϕ:E → F

such that for all groups G and all f ∈ Hom(G,E) one has ηG(f) = ϕ ◦ f .

5.7. For this exercise you need some knowledge of set theory.

(a) Prove that for every group G there is a bijection Hom(G,Z) → Hom(G,Z × Z),

but that there does not exist a functorial system of such bijections.

(b) Prove that for every group G there is a bijection Hom(Q, G) → Hom(Q ◦Q, G),

but that there does not exist a functorial system of such bijections.

5.8. Let G be a group and N a normal subgroup of G such that G/N ∼= F (S) for some

set S. Prove: G ∼= N o F (S) with respect to some group homomorphism F (S)→ AutN .

5.9. (a) Prove that any group of the form 〈x1, x2, . . . , xn : r1, . . . , rm〉 with m < n is

infinite.

(b) Prove that the group 〈x, y : xx = yy, xyx = y〉 is finite. To which group that you

know is it isomorphic?

5.10. Let the group G be defined with generators xn (for n ∈ Z, n ≥ 1) and relations

xnn = xn−1 (for n ∈ Z, n > 1). To which group that you know is G isomorphic?

5.11. Find a presentation for the Klein four group V4, for the quaternion group Q of order

8, for the groups Z×Z and Q/Z, and for the additive group R of real numbers. Which of

these groups have finite presentations?

5.12. Show that each finite group is finitely presented.

5.13. Let A be a finite abelian group, and let a1, a2, . . . , at ∈ A be a finite system of

generators for A. Prove that A has a presentation A = 〈x1, x2, . . . , xt : r1, . . . , rm〉 where

the xi correspond to the ai and the number m of relations equals t(t+ 1)/2.
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5.14. Does the Klein four group V4 have a presentation with two relations? Exhibit one,

or show that it does not exist. (This is not so easy. It helps to construct a group G of

order 32 that can be generated by two elements, with the properties that G/Z(G) ∼= V4

and z2 = 1 for each z ∈ Z(G).)

5.15. For a positive integer n, let Gn be the group with generators s0, . . . , sn−1 and

relations si+1sis
−1
i+1 = s2i (for 0 ≤ i < n), with sn = s0.

(a) Prove that the groups G1, G2, G3 are trivial. Note: one can show that G4 is

non-trivial.

(b) Let n be a positive integer and let H be a finite group. Prove that every group

homomorphism Gn → H is trivial. (Hint : first prove that n = 1 is the only positive integer

n for which n divides 2n − 1.)

5.16. Let S be a set, and let F (S) be the free group on S. Call a reduced word s0s1 . . . st−1 ∈
F (S) (with si ∈ S ∪ S̄) cyclically reduced if s0 6= s̄t−1 or t = 0. Prove that every conjugacy

class in F (S) contains a cyclically reduced word. Which conjugacy classes contain a unique

cyclically reduced word? And which contain infinitely many?

5.17. Let A and B be groups, and let w ∈ A ◦ B. Prove: w has finite order if and only if

w is conjugate to an element of finite order of A or B (viewed as subgroups of A ◦B).

5.18. For a group H, write Hab = H/[H,H].

(a) Let H and G be groups. Exhibit a bijection between Hom(Hab, G) and {f ∈
Hom(H,G) : fH is an abelian subgroup of G}. Formulate what it means for your isomor-

phism to be functorial in G, and prove that it is. Is it also functorial in H?

(b) Prove that for any two groups A and B one has (A ◦ B)ab ∼= Aab × Bab. Do this

by describing the homomorphisms from these two groups to a test group G.

5.19. Let S be a set, and write Z(S) for the group of all functions f :S → Z with the

property that the support {s ∈ S : f(s) 6= 0} of f is a finite subset of S; the additively

written group operation on Z(S) is defined by (f1+f2)(s) = f1(s)+f2(s), for f1, f2 ∈ Z(S),

s ∈ S. We call Z(S) the free abelian group on S.

(a) Prove: Z(S) ∼= F (S)ab, the notation being as in Exercise 5.18. Do this by describing

the homomorphisms from these two groups to a test group G.

(b) Suppose T is another set. Prove that the following three properties are equivalent:

(i) F (S) and F (T ) are isomorphic as groups; (ii) Z(S) and Z(T ) are isomorphic as groups;

(iii) #S = #T . If you cannot do this, restrict to the case S is finite.

5.20. Let S be a well-ordered set, i. e. a totally ordered set such that every non-empty

subset of S contains a smallest element. Let Z(S) be as in Exercise 5.19. For f ∈ Z(S), f 6= 0,

we write deg f = max{s ∈ S : f(s) 6= 0} (this is well-defined, since {s ∈ S : f(s) 6= 0} is

finite).
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Prove: if H ⊂ Z(S) is a subgroup, and T = {deg f : f ∈ H, f 6= 0}, then one has

H ∼= Z(T ).

5.21. An abelian group is called free if it is isomorphic to Z(S) for some set S. Prove: any

subgroup of a free abelian group is a free abelian group.

Note. Likewise, a (not necessarily abelian) group is called free if it is isomorphic to

F (S) for some set S. (One should be careful with this terminology: Z × Z is free when

considered as an abelian group, but it is not free when considered as a group.) It is again

true that subgroups of free groups are free groups, but the proof is much more involved.

5.22. Let H be a subgroup of finite index of a finitely generated group. Prove that H is

finitely generated.

5.23. (a) Let G be the set of those pairs
(
(ni)i∈Z, (kj)j∈Z,j>0

)
of infinite vectors of integers

ni and kj for which the sets {i : ni 6= 0} and {j : kj 6= 0} are finite. Prove that the operation

∗ on G defined by

(
(ni)i, (kj)j

)
∗

(
(mi)i, (lj)j

)
=

(
(ni +mi)i, (kj + lj +

∑

i∈Z nimi+j)j
)

makes G into a group. Prove also that the map τ :G → G sending
(
(ni)i∈Z, (kj)j∈Z,j>0

)

to
(
(ni−1)i∈Z, (kj)j∈Z,j>0

)
is an automorphism of G.

(b) Let 〈τ〉 be the subgroup of AutG generated by τ . Prove that the semidirect product

F = Go 〈τ〉 can be generated, as a group, by two elements, and that the center Z(F ) of

F is not a finitely generated group.

5.24. (a) Prove: if a group F is finitely generated, and its center Z(F ) is not finitely

generated, then F/Z(F ) is finitely generated but not finitely presented.

(b) Prove that the group 〈x, y : xyjxy−j = yjxy−jx (j = 1, 2, 3, . . .)〉 is finitely

generated but not finitely presented.
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6. Tensor products

In this section, we write all groups additively, although we do not assume that the groups

are abelian. We do this because we shall discover that, for the purposes of forming tensor

products, abelian groups are in a sense the only interesting ones.

Suppose A, B, and G are groups. A map f :A× B → G is called bilinear if for all a,

a′ ∈ A and b, b′ ∈ B one has

f(a, b+ b′) = f(a, b) + f(a, b′) and f(a+ a′, b) = f(a, b) + f(a′, b).

In other words, f is bilinear if and only if for each a ∈ A the map b 7→ f(a, b) is a

homomorphism B → G and for each b ∈ B the map a 7→ f(a, b) is a homomorphismA→ G.

In particular, for every a ∈ A and b ∈ B one has f(a, 0) = 0 and f(0, b) = 0. (Do not

confuse bilinear maps with group homomorphisms A×B → G. If a bilinear map is a group

homomorphism, then for all a ∈ A and b ∈ B one has f(a, b) = f(a, 0)+f(0, b) = 0+0 = 0,

so f is the zero map.) We shall write Bil(A×B,G) for the set of all bilinear maps A×B → G.

Examples. (i) Let R be a ring, and R+ its additive group. Then the multiplication map

R+ ×R+ → R+, (r, s) 7→ rs, is bilinear, by the two distributive laws.

(ii) Let R be a ring, and M an R-module. Then the scalar multiplication map R+ ×
M →M , (r,m) 7→ rm, is bilinear, by two of the module axioms.

(iii) Let us describe the bilinear maps f :Z× B → G. To know f , it suffices to know

the function g:B → G defined by g(b) = f(1, b). Namely, if b is fixed then the map

n → f(n, b) is a group homomorphism Z → G, so one has f(n, b) = n · f(1, b) = n · g(b).
Thus, the question is for which functions g:B → G the expression n · g(b) is bilinear

in n and b. We know already that g must be a group homomorphism. Also, 2 · g is a

group homomorphism, so for all b, b′ ∈ B one has 2 · g(b+ b′) = 2 · g(b) + 2 · g(b′); that is,

g(b)+g(b′)+g(b)+g(b′) = g(b)+g(b)+g(b′)+g(b′), so g(b′)+g(b) = g(b)+g(b′). Hence the

image of g is an abelian subgroup of G, or, equivalently, one has [B,B] ⊂ ker g. Conversely,

if g:B → G is a group homomorphism with an abelian image, then one readily checks that

the expression n · g(b) is bilinear in n and b. We conclude that there are bijections

Bil(Z×B,G) ∼= {g ∈ Hom(B,G) : gB is abelian} ∼= Hom(B/[B,B], G).

One readily checks that these bijections are functorial in G.

(iv) Clearly, one has Bil(0×B,G) ∼= Hom(0, G) for every group G.

(v) For any bilinear map f : (Z/2Z)×B → G we have f(0, b) = 0 and f(1, b) = g(b) for

some group homomorphism g:B → G. One must have g(b)+g(b) = f(1+1, b) = f(0, b) = 0,

so each element of g(B) is its own negative; equivalently, ker g contains the subgroup

2B = 〈2b : b ∈ B〉 of B. The subgroup 2B is normal in B, because it is characteristic.
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Also, it contains [B,B] because b + b′ − b − b′ = 2b + 2(−b + b′) + 2(−b′). Conversely,

if g:B → G is a group homomorphism with 2B ⊂ ker g, then the image of g is abelian

because [B,B] ⊂ ker g, and one deduces that the map (Z/2Z)× B → G sending (0, b) to

0 and (1, b) to g(b) is bilinear. Altogether one has a bijection

Bil((Z/2Z)×B,G) ∼= Hom(B/2B,G)

that is functorial in G.

For general groups A and B, the tensor product A⊗ B that we shall define and study in

this section is characterized by the existence of bijections

Bil(A× B,G) ∼= Hom(A⊗B,G)

that are functorial in G. Thus, we can express the results of the last three examples by

saying that

Z⊗ B ∼= B/[B,B], 0⊗ B = 0, (Z/2Z)⊗ B ∼= B/2B.

Lemma 1. Let A and B be groups, put Aab = A/[A,A] and Bab = B/[B,B], and let

c:A× B → Aab × Bab be the canonical map. Then for each group G there is a bijection

Bil(Aab ×Bab, G)
∼−→ Bil(A× B,G)

that sends g to g · c, and that is functorial in G. Also, for each group G and each bilinear

map f :A× B → G the subgroup of G generated by the image of f is abelian.

Proof. One readily verifies that g · c:A×B → G is bilinear for each g ∈ Bil(Aab×Bab, G),

so the map Bil(Aab ×Bab, G)→ Bil(A×B,G) is well-defined. It is also injective, because

c is surjective. Functoriality is easy to verify. To prove that it is surjective, we first prove

the last statement of the lemma. Let f ∈ Bil(A×B,G), and a, a′ ∈ A, b, b′ ∈ B. One has

f(a, b) + f(a, b′) + f(a′, b) + f(a′, b′) = f(a, b+ b′) + f(a′, b+ b′) = f(a+ a′, b+ b′)

= f(a+ a′, b) + f(a+ a′, b′) = f(a, b) + f(a′, b) + f(a, b′) + f(a′, b′)

so f(a, b′)+f(a′, b) = f(a′, b)+f(a, b′). Hence any two elements of the image of f commute,

so im f generates an abelian subgroup of G. It follows that for fixed b ∈ B the kernel of

the group homomorphism A→ G, a 7→ f(a, b), contains [A,A], so f(a, b) depends only on

the coset a+ [A,A] of a. Likewise, for fixed a ∈ A, the element f(a, b) of G depends only

on the coset b+ [B,B]. This implies that f = g · c for some map g:Aab×Bab → G. Using

that c is surjective one verifies that g is bilinear. This proves Lemma 1.
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Theorem 2. Let A and B be groups. Then there exists a group A⊗B and a bilinear map

⊗:A×B → A⊗B such that for any group G the map ⊗∗: Hom(A⊗B,G)→ Bil(A×B,G)

defined by h 7→ h ◦⊗ is bijective. Also, this property determines the pair (A⊗B,⊗) up to

a unique isomorphism.

The last statement in Theorem 2 means the following: if C is any group with a bilinear

map c:A×B → C such that for every group G the similarly defined map c∗: Hom(C,G)→
Bil(A× B,G) is bijective, then there is a unique group isomorphism h:A⊗ B → C such

that c = h ◦ ⊗.

The group A⊗ B is called the tensor product of A and B, and for a ∈ A and b ∈ B
the image of (a, b) under ⊗ in A⊗B is written a⊗ b.

Proof of Theorem 2. Define A⊗ B = 〈S:R〉 where S is the set A × B and R is given by

R = {(a, b + b′) − (a, b) − (a, b′) : a ∈ A, b, b′ ∈ B} ∪ {(a + a′, b) − (a, b) − (a′, b) : a,

a′ ∈ A, b ∈ B}. Also, define a⊗ b to be the image of (a, b) ∈ S in 〈S:R〉. From Proposition

4 of Section 5 we know that ⊗∗ is a functorial bijection from the set Hom(A ⊗ B,G) =

Hom(〈S:R〉, G) to the set of maps S = A × B → G satisfying R; the latter set is just

the set Bil(A × B,G) of bilinear maps A × B → G. Applying this to G = A ⊗ B, we

see that the identity homomorphism 1A⊗B ∈ Hom(A ⊗ B,A ⊗ B) gives rise to the map

⊗ ∈ Bil(A×B,A⊗B); that is, the latter map is bilinear. The uniqueness statement follows

from Theorem 3 of Section 5. This proves Theorem 2.

Theorem 3. Let A and B be groups. Then the image of ⊗:A × B → A ⊗ B generates

A⊗B, the group A⊗ B is abelian, and there is an isomorphism Aab ⊗ Bab ∼−→ A⊗ B.

Proof. Since the set S = A× B considered in the previous proof generates F (S), and the

map F (S) → A ⊗ B is surjective, the group A ⊗ B is generated by the image of A × B.

This proves the first assertion of Theorem 3, and the second follows from Lemma 1. The

last assertion of Theorem 3 follows from Lemma 1 combined with Theorem 3 of Section 5.

This proves Theorem 3.

Theorem 3 and the rule −(a ⊗ b) = (−a) ⊗ b imply that every element of A ⊗ B can be

written as a finite sum a1⊗b1+. . .+at⊗bt with ai ∈ A, bi ∈ B; however, this representation

is not unique. Also, it is not generally true that every element of A ⊗ B is of the form

a⊗ b, with a ∈ A, b ∈ B (cf. Exercise 6.8(b)).

The theorem shows that without true loss of generality one may restrict the formation

of tensor product to the case of abelian groups. Our earlier example Z⊗ B ∼= Bab simply

reads Z⊗ B ∼= B when B is abelian.

Example. As an example of an explicit computation of a tensor product, we next show that

there is an isomorphism Q⊗Q
∼−→ Q that maps a⊗ b to ab, for a, b ∈ Q.
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The map Q ×Q → Q sending (a, b) to ab is bilinear, so by the defining property of

tensor products there is a unique group homomorphism ϕ:Q⊗Q→ Q with ϕ(a⊗ b) = ab.

Also, since ⊗ is bilinear, the map ψ:Q → Q ⊗ Q defined by ψ(b) = 1 ⊗ b is a group

homomorphism. We claim that ϕ and ψ are a pair of inverse mappings.

It is clear that ϕψ = 1Q. In the proof of ψϕ = 1Q⊗Q, we shall use the general rule

(na)⊗ b = n(a⊗ b) = a⊗ (nb) in A⊗B,

which is valid for any two abelian groups A, B, any n ∈ Z, and any a ∈ A, b ∈ B. To

prove this rule, one observes that both sums are equal to a⊗ b+ a⊗ b+ · · ·+ a⊗ b (with n

terms). A formal proof would use induction on n when n is non-negative, and deduce the

case of negative n from the case of positive n.

Now consider an arbitrary element a1 ⊗ b1 + · · ·+ at ⊗ bt of Q⊗Q, with ai, bi ∈ Q.

Let n ∈ Z, n > 0, be such that ai ∈ 1
n
Z for each i. With nai = ci ∈ Z, one has

ai ⊗ bi = ai ⊗ (n bi

n ) = (nai)⊗ bi

n = ci ⊗ bi

n = (ci1)⊗ bi

n = 1⊗ cibi

n for each i, and therefore

a1 ⊗ b1 + · · · + at ⊗ bt = 1 ⊗ (
∑

i
cibi

n
). So every element of Q ⊗ Q is of the form 1 ⊗ r

with r ∈ Q. This clearly implies that ψϕ = 1Q⊗Q. This proves the claim and completes

the proof that Q⊗Q ∼= Q.

The computation that we just gave is not typical for the computation of tensor prod-

ucts. Usually it is more efficient to use general properties of tensor products, as listed in

Theorems 4 and 6 below, in order to reduce the computation of a tensor product A ⊗ B
to a case that one knows already, for example the case in which A = Z.

The direct sum
⊕

i∈I Bi of a family (Bi)i∈I of abelian groups is defined to be the subgroup

{(bi)i∈I : bi ∈ Bi, #{i ∈ I: bi 6= 0} <∞} of the product group
∏

i∈I Bi = {(bi)i∈I : bi ∈ Bi
for all i ∈ I}; note that the sum is different from the product if I is infinite and infinitely

many Bi’s are non-zero.

Theorem 4. One has

A⊗B ∼= B ⊗ A,
(A⊗B)⊗ C ∼= A⊗ (B ⊗ C),

A⊗
(⊕

i∈I Bi
) ∼=

⊕

i∈I(A⊗Bi)

for any three abelian groups A, B, C and any family (Bi)i∈I of abelian groups.

Proof. We deduce all three properties from Theorem 3 of Section 5. For the first property,

it suffices to observe that there is an obvious bijection Bil(A × B,G) → Bil(B × A,G),

functorial in G, that maps f to g if g(b, a) = f(a, b). It leads to an isomorphism A⊗B ∼−→
B ⊗ A that maps a ⊗ b to b ⊗ a. For the second property, it is convenient to define
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Tril(A×B×C,G) as the set of trilinear maps f :A×B×C → G, that is, maps satisfying

f(a+ a′, b, c) = f(a, b, c) + f(a′, b, c)

f(a, b+ b′, c) = f(a, b, c) + f(a, b′, c)

f(a, b, c+ c′) = f(a, b, c) + f(a, b, c′)

for all a, a′ ∈ A, b, b′ ∈ B, and c, c′ ∈ C. One now readily verifies that there are

bijections Hom
(
(A⊗ B)⊗ C,G

) ∼= Bil
(
(A⊗ B)× C,G

) ∼= Tril(A× B × C,G) ∼= Bil
(
A×

(B ⊗ C), G
) ∼= Hom

(
A ⊗ (B ⊗ C), G

)
that are functorial in G, and that the resulting

isomorphism (A⊗B)⊗C ∼−→ A⊗ (B⊗C) maps (a⊗b)⊗c to a⊗ (b⊗c). The last property

follows from the functorial bijections

Hom
(
A⊗

(⊕

i∈I Bi
)
, G

) ∼= Bil
(
A×

(⊕

i∈I Bi
)
, G

) ∼=
∏

i∈I
Bil(A×Bi, G) ∼=

∏

i∈I
Hom(A⊗ Bi, G) ∼= Hom

(⊕

i∈I(A⊗Bi), G
)
.

It induces an isomorphism A ⊗
(⊕

i∈I Bi
) ∼−→ ⊕

i∈I(A ⊗ Bi) that sends a ⊗ (bi)i∈I to

(a⊗ bi)i∈I . This proves Theorem 4.

Next we consider tensor products of group homomorphisms.

Theorem 5. Let f :A→ C and g:B → D be group homomorphisms. Then there exists a

unique group homomorphism f⊗g:A⊗B → C⊗D that maps a⊗b to f(a)⊗g(b) ∈ C⊗D
for all a ∈ A and b ∈ B.

Proof. From the fact that f and g are group homomorphisms and ⊗:C × D → C ⊗ D is

bilinear one deduces that that map A×B → C⊗D sending (a, b) to f(a)⊗g(b) is bilinear.

Hence, by the characterizing property of A ⊗ B, there is a unique homomorphism from

A ⊗ B to C ⊗ D that maps a ⊗ b to f(a) ⊗ g(b) ∈ C ⊗ D for all a ∈ A and b ∈ B. This

proves Theorem 5.

One checks in a straightforward way the following properties of tensor products of maps:

1A ⊗ (g ◦ h) = (1A ⊗ g) ◦ (1A ⊗ h),
(e ◦ f)⊗ 1B = (e⊗ 1B) ◦ (f ⊗ 1B),

1A ⊗ 1B = 1A⊗B,

f ⊗ (g + g′) = (f ⊗ g) + (f ⊗ g′),
(f + f ′)⊗ g = (f ⊗ g) + (f ′ ⊗ g),

which are valid whenever they are meaningful; for example, for the third property it is

supposed that f :A → A′, g, g′:B → C are homomorphisms between abelian groups,
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and the maps asserted to be equal go from A ⊗ B to A′ ⊗ C. The third property may

be phrased by saying that tensoring with f is a group homomorphism Hom(B,C) →
Hom(A⊗ B,A′ ⊗ C); in particular, it implies that f ⊗ 0 = 0.

As an application, we give a different proof of the isomorphism A⊗ (B ⊕ C) ∼= (A⊗
B)⊕ (A⊗ C) from Theorem 4. The proof is ‘categorical’ in the sense of Section 7, which

means that it just manipulates with ‘arrows’. It uses only of the properties of the tensor

products of maps listed above, and consequently it applies to any construction that shares

these properties with the tensor product. The basis of the proof is formed by an ‘arrow-

theoretic’ characterization of the direct sum.

Let B, C be abelian groups. Define the functions

i1:B → B ⊕ C, π1:B ⊕ C → B, i2:C → B ⊕ C, π2:B ⊕ C → C

by i1(b) = (b, 0), π1(b, c) = b, i2(c) = (0, c), and π2(b, c) = c for b ∈ B, c ∈ C. These are

group homomorphisms, and they satisfy

π1i1 = 1B , π2i2 = 1C , π1i2 = 0, π2i1 = 0, i1π1 + i2π2 = 1B⊕C ,

where the addition in the last formula takes place in the additive group Hom(B⊕C,B⊕C).

These properties characterize B ⊕ C. That is, if D is an abelian group, and there are

group homomorphisms i′1:B → D, π′1:D → B, i′2:C → D, π′2:D → C that have the

corresponding properties, then there is a isomorphism D ∼= B ⊕ C; more precisely, the

maps i1π
′
1 + i2π

′
2:D → B⊕C and i′1π1 + i′2π2:B⊕C → D are inverse group isomorphisms.

The verification is left to the reader.

Now let A be an abelian group. To deduce that A⊗ (B ⊕ C) ∼= (A⊗ B)⊕ (A ⊗ C),

we define the maps

i′1:A⊗ B → A⊗ (B ⊕ C), π′1:A⊗ (B ⊕ C)→ A⊗ B,
i′2:A⊗ C → A⊗ (B ⊕ C), π′2:A⊗ (B ⊕ C)→ A⊗ C

by i′1 = 1A ⊗ i1, π′1 = 1A ⊗ π1, i
′
2 = 1A ⊗ i2, and π′2 = 1A ⊗ π2. Next we apply the above

characterization of the direct sum, with A⊗(B⊕C), A⊗B, and A⊗C in the roles of D, B,

and C, respectively. Then we find that in order to prove that A⊗(B⊕C) ∼= (A⊗B)⊕(A⊗C)

it suffices to verify that

(1A ⊗ π1)(1A ⊗ i1) = 1A⊗B , (1A ⊗ π2)(1A ⊗ i2) = 1A⊗C ,

(1A ⊗ π1)(1A ⊗ i2) = 0, (1A ⊗ π2)(1A ⊗ i1) = 0,

(1A ⊗ i1)(1A ⊗ π1) + (1A ⊗ i2)(1A ⊗ π2) = 1A⊗(B⊕C).

The first follows from (1A⊗π1)(1A⊗ i1) = 1A⊗ (π1i1) = 1A⊗ 1B = 1A⊗B, and the others

are proved similarly.
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Other important properties of the tensor product of maps are

(e⊗ f) ◦ (g ⊗ h) = (e ◦ g)⊗ (f ◦ h) (f ⊗ g)⊗ h = f ⊗ (g ⊗ h),

which are again valid when they are meaningful; for the last property, it is assumed that

(A⊗B)⊗ C is identified with A⊗ (B ⊗ C), as in Theorem 4.

We now come to one of the most important tools used in computing tensor products.

Theorem 6. Let A be a group, and let B
f→ C

g→ D → 0 be an exact sequence of abelian

groups. Then the sequence A⊗ B 1⊗f−→A⊗ C 1⊗g−→A⊗D → 0 (with 1 = 1A) is exact.

The property formulated in Theorem 6 is expressed by saying that tensoring is right exact.

Proof of Theorem 6. Exactness of the first sequence is equivalent to g inducing an iso-

morphism D ∼= cok f = C/fB. Hence it suffices to show that tensoring with A preserves

cokernels, i. e. A ⊗ cok f ∼= cok(1A ⊗ f). Let G be any group. Then there are functorial

bijections

Hom(A⊗ cok f,G) ∼= Bil(A× (C/fB), G) ∼= {h ∈ Bil(A× C,G) : h ◦ (1A × f) = 0}
∼= Hom((A⊗ C)/ im(1A ⊗ f), G) = Hom(cok(1A ⊗ f), G).

It follows that A⊗ cok f ∼= cok(1A ⊗ f). This proves Theorem 6.

Tensoring is not left exact, i. e., if 0→ B → C → D is exact then in general 0→ A⊗B →
A ⊗ C → A ⊗ D need not be exact. To give an example, consider the exact sequence

0 → Z
2−→Z → Z/2Z → 0, the map Z → Z being multiplication by 2, and let A be any

abelian group. The map 1A⊗2:A ∼= A⊗Z→ A⊗Z ∼= A equals 1A⊗ (1Z +1Z) = 1A+1A,

so it is multiplication by 2. Thus, tensoring with A we obtain the sequence 0→ A
2−→A→

A⊗ (Z/2Z)→ 0, which is not exact if A has an element of order 2. The sequence is exact

on the right, which confirms the earlier result that A⊗ (Z/2Z) ∼= A/2A.

Thus, in general tensoring does not preserve injectivity of maps. Since an injective

group homomorphism B → C may be viewed as an identificaton of B with a subgroup of

C, we also see that if B is a subgroup of C, then A⊗B need not be a subgroup of A⊗C.

Example. Let n and m be positive integers. Then one has

(Z/nZ)⊗ (Z/mZ) ∼= Z/ gcd(n,m)Z.

To prove this, tensor the exact sequence Z
m−→Z→ Z/mZ→ 0 with Z/nZ. By Theorem 6

and the isomorphism (Z/nZ)⊗ Z ∼= Z/nZ one obtains an exact sequence

Z/nZ
m−→Z/nZ→ (Z/nZ)⊗ (Z/mZ)→ 0,

and the result now follows from m(Z/nZ) = (mZ + nZ)/nZ = gcd(n,m)Z/nZ.
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6. Exercises

6.1. Let n be an integer, A an abelian group, and nA:A → A the map a 7→ na from

Exercise 4.4. Prove: (Z/nZ)⊗A ∼= coknA. Formulate what it means for your isomorphism

to be functorial in A, and prove that it is.

6.2. Describe the group A ⊗ B when each of A and B is one of the following: (a) finite

cyclic; (b) infinite cyclic; (c) the Klein four group; (d) the additive group of a vector space

over Q; and (e) Q/Z. (Be sure to cover all combinations.)

6.3. Is the tensor product of two finitely generated abelian groups finitely generated? Is

the tensor product of two finite abelian groups finite? Give in each case a proof or a

counterexample.

6.4. Suppose that A and B are non-zero finitely generated abelian groups. Prove: A⊗B = 0

if and only if A and B are finite with gcd(#A,#B) = 1.

6.5. (a) An abelian group A is called divisible if for each positive integer n the map

nA:A→ A from Exercise 4.4 is surjective. Prove: if A is divisible, then A⊗ B is divisible

for each abelian group B.

(b) An abelian group A is called torsion if each a ∈ A is of finite order. Prove: if A is

torsion, then A⊗ B is torsion for each abelian group B.

(c) Give an example of a non-zero divisible torsion abelian group. Is there a finite one?

6.6. Let A and B be abelian groups, with A divisible and B torsion. Prove: A⊗B = 0.

6.7. The rank of a free abelian group A is defined to be #S when A ∼= Z(S) (see Exercise

5.19); by Exercise 5.19(b), this is well-defined.

Suppose that A and B are free abelian groups. Prove that A ⊗ B is free as well,

and express the rank of A ⊗ B in terms of the rank of A and the rank of B. (If you are

uncomfortable with cardinal numbers, restrict to the case of finite rank.)

6.8. (a) Give an example of groups A, B, C and a bilinear map f :A× B → C such that

the image of f is not a subgroup of C.

(b) Give an example of groups A, B such that not every element of A ⊗ B is of the

form a⊗ b, with a ∈ A, b ∈ B.

6.9. Let G be a group. The second exterior power G ∧ G of G is defined to be the group

(G⊗G)/N , where N is the subgroup of G⊗G generated by {x⊗ x : x ∈ G} (it is normal

since G ⊗G is abelian). For x, y ∈ G one defines x ∧ y ∈ G ∧G to be the image of x⊗ y
in G ∧G.

(a) Prove that x ∧ y = −(y ∧ x), for all x, y ∈ G.

(b) Suppose that Gab = G/[G,G] is cyclic. Prove that G ∧G is trivial.

(c) What is the order of V4 ∧ V4?

49



6.10. Let G be a group, and for g, h ∈ G write [g, h] = ghg−1h−1 (in multiplicative

notation; in additive notation it would be g + h− g − h).
(a) Prove: the map G × G → [G,G] sending (g, h) to [g, h] is bilinear if and only if

[G,G] is contained in the center Z(G) of G.

(b) Let G be a group with [G,G] ⊂ Z(G). Show that there is a surjective group

homomorphism G ∧G→ [G,G] (see Exercise 6.9 for the definition of G ∧G).

(c) Exhibit a finite non-abelian group G satisfying [G,G] ⊂ Z(G) and G∧G ∼= [G,G].

6.11. Let G be a multiplicatively written group with [G,G] ⊂ Z(G).

(a) Suppose that
√

: [G,G] → Z(G) is a group homomorphism with the property
(√
c
)2

= c for every c ∈ [G,G]. Define an operation ∗ on G by a ∗ b = ab
√

[b, a], for a,

b ∈ G. Prove that ∗ makes G into an abelian group, and that for a, b ∈ G one has a∗b = ab

if and only if ab = ba.

(b) Suppose that [G,G] is finite. Prove that a map
√

as in (a) exists if and only if

[G,G] has odd order, that in this case the map
√

is unique, and that every subgroup of

G remains a subgroup under ∗.
(c) Exhibit a finite non-abelian group to which the construction above applies.

6.12. (a) Let A be a finite abelian group, and let f :A ∧ A → Q/Z be a group ho-

momorphism with the property that for every non-zero a ∈ A there exists b ∈ A with

f(a∧b) 6= 0. Prove that there is a finite abelian group B and an isomorphism ψ:B⊕B̂ → A

(where B̂ = Hom(B,Q/Z)) such that for any b1, b2 ∈ B and g1, g2 ∈ B̂ one has

f
(
ψ(b1, g1) ∧ ψ(b2, g2)

)
= g1(b2)− g2(b1). (This takes some work.)

(b) Let G be a finite group for which [G,G] is cyclic and contained in Z(G). Prove

that G/Z(G) has square order m2, and that m = min{(G : H) : H is an abelian subgroup

of G}.

6.13. Let I be a set, let Bi an abelian group for each i ∈ I, and let Fij be a set of group

homomorphisms Bi → Bj , for every (i, j) ∈ I × I. A right limit (or colimit, or direct

limit) of the system
(
(Bi)i∈I , (Fij)(i,j)∈I×I

)
is an abelian group B with the property that

there is, for each abelian group C, a bijection (functorial in C) between the set Hom(B,C)

and the set of those systems (gi)i∈I of group homomorphisms gi:Bi → C that have the

property gjf = gi for any i, j ∈ I and any f ∈ Fij .
(a) Prove that any system

(
(Bi)i∈I , (Fij)(i,j)∈I×I

)
possesses a right limit, and that it

is uniquely determined up to a canonical isomorphism. The right limit is denoted by

lim
→

(
(Bi)i∈I , (Fij)(i,j)∈I×I

)
,

or simply by

lim→
i∈I

Bi
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if the sets Fij are clear from the context.

(b) Prove that the notion of right limits generalizes the notion of (possibly infinite)

direct sums, and that it also generalizes the notion of cokernels.

6.14. Prove that “tensoring commutes with right limits” in the following sense. Let A be

an abelian group, and let
(
(Bi)i∈I , (Fij)(i,j)∈I×I

)
be a system as in Exercise 6.13. Then

there is an isomorphism

A⊗
(
lim→
i∈I

Bi
) ∼= lim→

i∈I
(A⊗ Bi),

the limit on the right being taken with respect to the collections 1A ⊗Fij = {1A⊗ f : f ∈
Fij}.

6.15. Let A, B be rings, and let A⊗B be the tensor product of their additive groups.

(a) Show that A ⊗ B has a unique multiplication operation that turns it into a ring

and has the property that (a⊗ b)(a′ ⊗ b′) = (aa′)⊗ (bb′) for all a, a′ ∈ A, b, b′ ∈ B.

(b) Suppose that A and B are commutative. Prove that for every commutative ring

C there is a bijection Rhom(A ⊗ B,C) → Rhom(A,C) × Rhom(B,C) that is functorial

in C; here Rhom indicates sets of ring homomorphisms.

6.16. Let A, B be abelian groups, and let A ◦B be their sum, as in Section 5.

(a) Prove that there is a natural group homomorphism A ◦ B → A × B with kernel

[A ◦B,A ◦B].

(b) Let K = [A ◦B,A ◦B], and let [K,A ◦B] be the subgroup of K generated by all

commutators [x, y] with x ∈ K and y ∈ A ◦B. Prove that the map A×B → K/[K,A ◦B]

that sends (a, b) to the coset of the commutator [a, b] is bilinear, and that it induces a

group isomorphism A⊗ B → K/[K,A ◦B].

7. Categories

A category C consists of

(i) a class Ob C (whose elements are commonly called the objects of C);
(ii) for any two objects A, B of C a set Mor(A,B) (whose elements are called the

morphisms from A to B in C);
(iii) for any three objects A, B, and C of C a map

Mor(B,C)×Mor(A,B)→Mor(A,C), (f, g) 7→ f ◦ g

(called composition);

(iv) for each object A of C an element 1A ∈ Mor(A,A) (the identity morphism of A),

such that the following two conditions are satisfied: first, one has

(f ◦ g) ◦ h = f ◦ (g ◦ h)

51



whenever f ∈ Mor(C,D), g ∈ Mor(B,C), and h ∈ Mor(A,B) for objects A, B, C, D of C;
and secondly,

f ◦ 1A = f, 1B ◦ f = f

for each morphism f ∈ Mor(A,B) in C.

One thinks of a morphism f ∈ Mor(A,B) as an ‘arrow’ from A to B, notation A
f−→B. In

many, but not all, important examples of categories, the objects are sets with some sort

of extra structure, and the arrows are maps between those sets that ‘respect’ that extra

structure in a suitable sense. Category theory is sometimes condescendingly referred to as

‘arrow science’, and it is indeed worth remarking that the morphisms are more important

than the objects. In fact, it is not difficult to give an equivalent set of axioms for categories

in which only the morphisms occur, the objects then being encoded in the corresponding

identity morphisms.

Studying category theory for its own sake is not considered fashionable. Nevertheless,

‘categorical thinking’—in which the objects of study play a less prominent role than the

‘maps’ connecting them—turns out to be extremely profitable in many areas of mathe-

matics, a notable example being algebraic geometry. It is surprising how much one can

do purely by arguing about formal properties of arrows, and how one can simplify com-

plicated arguments by phrasing them in this way. In addition, the fundamental notions

from category theory form often a guide towards the formulation of the ‘right’ questions

to ask in some mathematical theory. As an example, the reader may look at Section 5,

where several important group-theoretical constructions were characterized by means of

‘universal properties’ that were formulated strictly in terms of arrows. In many mathemat-

ical theories the construction of objects with similar universal properties is a problem of

central importance.

We shall usually write fg instead of f ◦g, and other notation is also found. Notational

variants for Mor(A,B) include Hom(A,B), (A,B), MorC(A,B), CHom(A,B), and C(A,B).

Examples. (i) The category Sets of sets. The class of objects of Sets is the class of all sets,

and Mor(A,B) consists of all maps A→ B. Composition is composition of maps, and 1A
is the identity map A→ A.

(ii) The category Gr of groups. Here Ob Gr is the class of groups, Mor(A,B) is the

set of group homomorphisms A → B, and 1A and ◦ are as in the previous example.

The category Ab of abelian groups is a subcategory of Gr. Here we call a category D a

subcategory of a category C if one has ObD ⊂ Ob C and MorD(A,B) ⊂ MorC(A,B) for

all A, B ∈ ObD, composition in D is the same as in C, and for all A ∈ ObD the identity

morphism 1A from C belongs to MorD(A,A). If one has MorD(A,B) = MorC(A,B) for all

A, B ∈ ObD, then one speaks of a full subcategory. Again, Ab ⊂ Gr is an example.

52



(iii) The categories Crg and Rg of commutative rings and rings, respectively. Often,

when one defines a category, one just specifies what the objects are, the definition of the

morphisms then being more or less obvious. Thus, in the present case the morphisms are

the ring homomorphisms. Likewise, 1A and ◦ are usually as in the previous examples.

(iv) The category Top of topological spaces. Here the morphisms are the continuous

maps. Since the composition of continuous maps is continuous, this is indeed a category.

(v) Let G be a group. An object of the category GSets of G-sets is a G-set, i. e., a

set X equipped with an action of G on X. The morphisms are the maps respecting the

G-action. Likewise, we have the category Gsets of finite G-sets, which is a full subcategory

of GSets.

(vi) For each field k, one has the category kVs of vector spaces over k, with the k-

linear maps as morphisms. This notation, and the corresponding notation kvs for the full

subcategory of finite dimensional k-vector spaces, is not standard. There is in fact, in the

literature, only little uniformity in the notation chosen for categories, and much creativity

is often spent on inventing suggestive abbreviations.

(vii) For a ring R, one has the categories RAb and AbR of left and right R-modules,

respectively, with the R-linear maps as morphisms (see Section 4, Exercises). If R is a field,

one has RAb = RVs.

(viii) To give an example of a different nature, let X be a set with a partial ordering ≤.

Then we get a category C by defining X = Ob C, letting Mor(x, y) be a set consisting of one

element if x ≤ y, and putting Mor(x, y) = ∅ if x 6≤ y. Since ≤ is reflexive and transitive, this

does give rise to a category, with uniquely defined compositions and identity morphisms.

(ix) Let k be a field. Define a category C by putting Ob C = {0, 1, 2, . . .} = Z≥0 and

taking Mor(m,n), for m, n ∈ Z≥0, equal to the set M(n×m, k) of n ×m matrices with

entries from k. Composition is matrix multiplication, and 1n is the n× n identity matrix.

This category is resembles the category kvs from Example (vi). Namely, we can de-

fine a map F : Ob C → Ob kvs by putting F (n) = kn, and, for m, n ∈ Ob C, a map

Fmn: MorC(m,n) → kHom(km, kn) by letting Fmn(A) be the map x 7→ Ax. This is an

example of a ‘functor’, which will be defined to mean that identity morphisms and compo-

sition are respected. It provides an ‘equivalence’ between C and kvs; the precise definition

will be given later in this section, but in the present case it means that each finite di-

mensional k-vector space is isomorphic to one of the form kn, and that each k-linear map

km → kn comes from a unique n × m-matrix over k. In general, two categories will for

practical purposes be considered ‘the same’ if there is an equivalence between them.

(x) The category Grhom of group homomorphisms is an example of a category in

which the objects are themselves maps. An object of Grhom is a group homomorphism

f :G1 → G2 (or, if one wishes to be more formal, a triple (G1, G2, f) consisting of two

groups G1 and G2 and a group homomorphism f between them). A morphism from an
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object f :G1 → G2 to an object g:H1 → H2 is a pair of group homomorphisms (h1:G1 →
H1, h2:G2 → H2) for which the diagram

G1
f−→ G2

h1



y



yh2

H1
g−→ H2

commutes. Composition is defined by (h1, h2)◦(i1, i2) = (h1i1, h2i2). The reader may verify

that in this way one does obtain a category. Groups play no special role in this example:

for any category C, one can similarly define the category of morphisms in C.

The opposite category. If C is a category, then one defines the opposite category Copp by

taking

Ob Copp = Ob C, MorCopp(A,B) = MorC(B,A), f ◦opp g = g ◦ f

for all A, B ∈ Ob C and all pairs f , g that need to be composed. Thus, one simply reverses

the direction of all arrows. It is easily checked that Copp is indeed a category, with the

same identity morphisms as C, and that (Copp)opp = C.

Isomorphisms. Let C be a category. A morphism f :A→ B in C is called an isomorphism

if there exists a morphism g:B → A such that f ◦ g = 1B and g ◦ f = 1A. If g exists, it

is called the inverse of f ; note that it is unique, since if h is also an inverse of f then one

has h = h1B = h(fg) = (hf)g = 1Ag = g. Two objects A and B are called isomorphic

(in C) if there exists an isomorphism A → B. An isomorphism from an object A to itself

is called an automorphism of A; the set AutA or AutC A of automorphisms of A forms a

group under composition.

The notions just defined are equivalent to the familiar ones for the category Gr. In

Sets, the isomorphisms are the bijections, and the automorphisms are the permutations.

We refer to Exercises 7.4 and 7.5 for the categorical analogues of injections and surjections,

which are called monomorphisms and epimorphisms, respectively.

Point objects and copoint objects. Let C be a category. An object P of C is called a point

object (or terminal object, or universally attracting object) of C if for all for all A ∈ Ob C
one has # Mor(A,P ) = 1. An object Q is a copoint object (or initial object, or universally

repelling object) of C if it is a point object in the opposite category; or, equivalently, if for

all A ∈ Ob C one has # Mor(Q,A) = 1.

For example, a group of order 1 is both a point object and a copoint object in Gr.

In Sets, the point objects are the sets of cardinality 1, and the only copoint object is the

empty set. In Rg, the zero ring is a point object and Z is a copoint object.

If P and P ′ are two point objects in a category, then there are unique arrows f :P → P ′

and g:P ′ → P in C; and since there are also unique arrows P ′ → P ′ and P → P , the
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composed arrows fg and gf are necessarily equal to 1P ′ and 1P , respectively, so that f and

g are isomorphisms. This shows that a point object in a category, if one exists, is uniquely

determined up to a unique isomorphism. The same applies to copoint objects.

Products. Let C be a category, and let A, B ∈ Ob C. An object C of C is called a product

of A and B (in C) if one is given a functorial system of bijections ϑX : Mor(X,C) →
Mor(X,A)×Mor(X,B), with X ranging over Ob C; the functoriality of this system means

that for all X, Y ∈ Ob C and all f ∈ Mor(X,Y ) the diagram

Mor(Y,C)
ϑY−→ Mor(Y,A)×Mor(Y,B)

f∗


y



y(f∗,f∗)

Mor(X,C)
ϑX−→ Mor(X,A)×Mor(X,B)

commutes; here the vertical arrow f ∗ on the left maps g to gf , and the vertical arrow

(f∗, f∗) on the right maps a pair (g1, g2) to (g1f, g2f).

This definition may at first sight look a bit forbidding, but there is fortunately a more

intelligible way of phrasing it. In order to do this, let A, B, C, and (ϑX)X∈Ob C have the

properties just stated, and let ϑC(1C) = (π1, π2), where π1:C → A and π2:C → B are

morphisms (the so-called projection morphisms or projections). Taking Y = C one sees

from the functoriality diagram that for all X the map ϑX : Mor(X,C) → Mor(X,A) ×
Mor(X,B) sends f to (π1f, π2f). Conversely, if one fixes any two morphisms π1:C → A

and π2:C → B, then the system of maps Mor(X,C)→Mor(X,A)×Mor(X,B) sending f

to (π1f, π2f) is indeed functorial. In this way one deduces that one may equivalently define

a product of A and B as an object C of C that is equipped with morphisms π1:C → A

and π2:C → B, such that C, π1, and π2 have the following universal property : if X is any

object of C, and (h1:X → A, h2:X → B) is an arbitrary pair of morphisms, then there

exists a unique morphism h:X → C such that h1 = π1h and h2 = π2h:

X

h1↙ h



y

h2

↘

A ←−
π1

C −→
π2

B.

Proposition 1. The product is uniquely determined by the universal property up to a

canonical isomorphism; that is, if C and C ′ are both products of A and B, with correspond-

ing projection morphisms πi and π′i, for i = 1, 2, then there exists a unique isomorphism

ϕ:C ′ → C such that π′1 = π1 ◦ ϕ and π′2 = π2 ◦ ϕ.

Proof. Fixing C, A, and B, we define the category D as follows. Objects of D are triples

(X, h1, h2), where X is in Ob C and h1:X → A and h2:X → B are morphisms in C. A
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morphism from (X, h1, h2) to another such triple (Y, j1, j2) is by definition a morphism

g:X → Y in C such that h1 = j1g and h2 = j2g. One readily verifies that in this manner D
becomes a category. One also readily verifies that a triple (C, π1, π2) gives rise to a product

of A and B in C if and only if that triple is a point object in D. Above we proved the

uniqueness of point objects, up to a unique isomorphism, and this implies the proposition.

The reader is encouraged to see what the proof just given looks like if it is phrased

entirely in terms of the category C, without invoking D.

A different proof of Proposition 1, along the lines of the arguments given in Section

5, depends on Yoneda’s lemma (see Exercise 7.33(b)), which is the analogue, for general

categories, of the group-theoretical Theorem 3 of Section 5 (see also Exercise 5.6). Yoneda’s

lemma implies, roughly speaking, that an object C of a category is uniquely determined,

up to isomorphism, by the ‘family of sets of incoming arrows’ Mor(X,C), with X ranging

over Ob C; the precise statement again involves a functoriality condition. If C and C ′ are

both products of A and B, then Mor(X,C) and Mor(X,C ′) can both be identified with

Mor(X,A) × Mor(X,B), and hence with each other, so that by Yoneda’s lemma C is

isomorphic to C ′. The details of this argument are left to the reader.

Since a product of A and B, if it exists, is uniquely determined up to isomorphism, one

calls it the product of A and B. It is denoted by A×B; one also finds the notation AΠB.

In many categories, such as Sets, Gr, Rg, and Top, one can indeed take A×B to be the

ordinary cartesian product of A and B (with componentwise operations, and in the case

of Top with the product topology), and the πi the usual projection maps.

One can also define products of arbitrary collections of objects. If (Ai)i∈I is a collection

of objects in a category C, then a product of the Ai is an object C of C together with a

collection of morphisms πi:C → Ai, for i ∈ I, such that for any object X of C and any

family (hi:X → Ai)i∈I of morphisms in C there exists a unique morphism h:X → C such

that for all i ∈ I one has hi = πih. By the same argument as for products of two objects,

one proves that a product is unique up to a unique isomorphism, if it exists. In Sets,

Gr, Rg, and Top the products are again the usual ones. An ‘empty’ product—that is, a

product with I = ∅—is the same as a point object.

Sums. The notion dual to ‘product’ is called sum; that is, something is a sum in C if it is a

product in the opposite category Copp. Thus, if A and B are objects in a category C, then

a sum of A and B in C is an object C of C equipped with two morphisms i1:A→ C and

i2:B → C, such that for any object X and any pair of morphisms h1:A→ X, h2:B → X,

there is a unique morphism h:C → X such that h1 = hi1 and h2 = hi2:

X

h1↗ h

x

 ↖ h2

A −→
i1

C ←−
i2

B.
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Similarly, one can define sums of arbitrary collections of objects. Sums are unique in the

same sense as products are.

For the sum of A and B one finds the notation AΣB; instead of ‘sum’ one also uses

the term coproduct, with corresponding notation AqB.

In Sets, sums are disjoint unions. In Gr, the sum of A and B is the group A ◦ B
constructed in Section 5. In the category Crg of commutative rings, the sum is the tensor

product (see Exercise 6.15). In Ab, the sum of A and B is the same as the product A×B,

the maps i1:A→ A×B and i2:B → A×B being defined by i1(a) = (a, 0) and i2(b) = (0, b);

one also calls A×B the direct sum of A and B, notation A⊕B. The sum of an arbitrary

collection (Ai)i∈I of objects in Ab is given by

⊕

i∈I
Ai =

{
(ai)i∈I ∈

∏

i∈I
Ai : #{i ∈ I : ai 6= 0} <∞

}
.

Note that this is different from the full product
∏

i∈I Ai if there are infinitely many i ∈ I
for which Ai has order greater than 1.

In the exercises one finds variants of the notion of a products: fibred products in Exercise

7.11 and left limits in Exercise 7.14. The dual notions are fibred sums and right limits.

Functors. We next extend our ‘categorical thinking’ to categories themselves, and define

the ‘morphisms’ between categories. They are called functors.

Let C and D be categories. A functor or covariant functor F : C → D consists of a map

F : Ob C → ObD as well as, for any two objects A and B of C, a map FAB: MorC(A,B)→
MorD(F (A), F (B)), with the property that composition and identities are preserved:

FAC(f ◦ g) = FBC(f) ◦ FAB(g), FAA(1A) = 1F (A)

(whenever meaningful). A contravariant functor F : C → D is a covariant functor C → Dopp

(or, equivalently, a functor Copp → D).

Just as with morphisms, one can compose functors to get other functors, functor com-

position is associative, and there are obvious identity functors. Note that the composition

of two contravariant functors is covariant.

It is tempting to conclude that one can now talk about the category Cat of all cate-

gories, the objects being categories and the morphisms being covariant functors; however,

in this manner one gets dangerously close to the paradoxes of set theory, which involve

objects (such as the collection of all sets x with x /∈ x) that are too ‘large’ to be called

‘sets’. If one does want to talk about a category of categories one needs to take special

precautions. One possible precaution would be to include in Cat only categories that are

small in the sense that their classes of objects are sets. If one finds this too restrictive—

since it excludes many interesting categories such as Sets and Gr—then another option
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is to find a way of adapting the axiomatic set theory one is working in to the needs of

category theory. In the practice of working with categories it is hardly ever necessary to

bother about these issues, but it is good to be aware of their existence.

Examples. (xi) The functor Gr → Sets sending a group G to its underlying set and each

homomorphism to itself (viewed as a map) is an example of a functor. Such a functor, in

which part of the structure is ‘forgotten’, is called a forgetful functor.

(xii) The map Rg → Gr that sends each ring R to its unit group R∗ extends naturally

to a functor, since each ring homomorphism R→ R′ maps R∗ to R′∗ and therefore induces

a group homomorphism R∗ → R′∗. In many cases, one indicates a functor just by saying

what it does on objects, its effect on morphisms then being more or less obvious.

(xiii) The map F :Gr → Rg sending G to the group ring Z[G] and a group ho-

momorphism f :G → H to the ring homomorphism FGH(f):Z[G] → Z[H] defined by
∑

g ngg =
∑

g ngf(g) is a functor.

(xiv) The inclusion Ab ⊂ Gr may be viewed as a functor, the inclusion functor.

In the opposite direction, one has the abelianization functor Gr → Ab sending G to

Gab = G/[G,G].

(xv) A functor C → D is called constant if it maps all objects of C to the same object

D of D, and all morphisms to 1D. A constant functor is both covariant and contravariant.

(xvi) Let k be a field. Then the map D: kVs → kVs sending V to V ∗ = Homk(V, k)

is an example of a contravariant functor; it sends f :V → W to the map f ∗:W ∗ → V ∗

sending λ to λ ◦ f .

(xvii) As an example of a construction that is not a functor we mention the algebraic

closure of fields. One can show that there does not exist a functor from the category of fields

to itself that sends each field k to an algebraic closure k̄ of k and each field homomorphism

f : k → l to a field homomorphism k̄ → l̄ that extends f (see Exercise 7.23). Each f does

have such an extension, but these extensions cannot be simultaneously constructed in such

a way that the rule F (f1f2) = F (f1)F (f2) is satisfied.

(xviii) In algebraic topology, one constructs for each pathwise connected topological

space X a group π(X) that is called the fundamental group of X. Its definition involves

a choice that makes it impossible to extend it to a functor from the category Ptop of

such topological spaces to Gr. To remedy this, one defines instead the category Top∗ of

topological spaces with ‘base point’; an object of Top∗ is a pair (X, x) consisting of a

topological space X and a point x ∈ X, and a morphism (X, x) → (Y, y) is a continuous

map f :X → Y satisfying f(x) = y. Now there is a functor π:Top∗ → Gr sending (X, x)

to the group π(X, x) of homotopy classes of paths in X from x to x. Another way to

remedy the problem is to pass from Gr to Ab; one can show that there is indeed a functor

Ptop→ Ab sending each X to π(X)ab.

(xix) The map F :Crg → Sets sending R to {(x, y) ∈ R × R : x2 + y2 = 1} is a
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functor. If we provide F (R) with an abelian group structure by putting (x, y) + (x′, y′) =

(xx′−yy′, xy′+x′y) then we obtain a functor Crg → Ab that composed with the forgetful

functor Ab→ Sets yields F .

(xx) Let C be a category, and fix an object X of C. Then there is a covariant func-

tor hX : C → Sets sending Y to Mor(X,Y ) and sending f ∈ Mor(Y, Z) to the map

f∗: Mor(X,Y )→ Mor(X,Z) that maps g to fg. Likewise, there is a contravariant functor

hX : C → Sets sending Y to Mor(Y,X) and f to f ∗, where f∗ is ‘composition with f on

the right’. One calls the functors hX and hX the functors represented by X.

(xxi) Consider the functor hZ:Gr → Sets from the previous example. It sends a

group G to Hom(Z, G). The latter set can for all practical purposes be identified with the

underlying set of G itself, via the bijection Hom(Z, G)→ G sending f to f(1). Thus, hZ is

in a sense ‘the same’ as the forgetful functor Gr → Sets. To formulate this precisely, we

shall turn the collection of all functors Gr → Sets into a category; in that category, hZ

and the forgetful functor are isomorphic.

Functoriality and functor categories. Let C and D be categories, and let E, F : C → D be

covariant functors. Suppose that for each object A of C one is given a morphism ϑA:E(A)→
F (A) in D. The system (ϑA)A∈Ob C is said to be functorial in A if for every morphism

f :A→ B in C the diagram

E(A)
ϑA−→ F (A)

E(f)



y



yF (f)

E(B)
ϑB−→ F (B)

commutes in D. In special cases, we saw this notion already in Section 5, and in the

definition of products given above. By a morphism ϑ:E → F of functors, also called a

natural transformation from E to F , we mean a system ϑ = (ϑA)A∈Ob C of morphisms

ϑA:E(A) → F (A) in D that is functorial in A. For example, if E = F then ϑA = 1E(A)

yields the identity morphism of E. Morphisms D → E and E → F can be composed in

an obvious way to yield a morphism D → F , and composition is associative. One might

conclude that the collection of all covariant functors C → D is itself the collection of objects

of a category, the category of functors from C to D, the morphisms being as just defined;

but here again one runs into set-theoretical difficulties, since the collection of morphisms

between two given functors may be too large to be called a ‘set’. We shall be a little cavalier

about this, and pretend that this problem does not exist, or that it has been successfully

addressed by people working in the foundations of mathematics.

Examples. (xxii) Let F :Crg→ Sets be the functor from Example (xix), defined by F (R) =

{(x, y) ∈ R×R : x2 +y2 = 1}. The map ϑR:F (R)→ R defined by ϑ(x, y) = x is functorial

in R, so it gives rise to a morphism from F to the forgetful functor Crg → Sets. If, as in
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Example (xix), we turn F into a functor Crg → Ab, then there is a morphism η:F → F

defined by ηR(x, y) = (x,−y). Since η2 = 1F (R), this is an example of an automorphism

of F .

(xxiii) The functorial bijection Hom(Z, G)→ G, f 7→ f(1), from Example (xxi) above

defines a morphism from hZ to the forgetful functor. It is actually an isomorphism of

functors, that is, it is an isomorphism in the category of functors Gr→ Sets. (In general,

a morphism ϑ = (ϑA)A∈Ob C of functors C → D is an isomorphism if and only if each

ϑA is an isomorphism in D.) Thus, the forgetful functor Gr → Sets is isomorphic to hZ.

In general, one calls a covariant (or contravariant) functor F : C → Sets representable if

there is an object X of C such that F is isomorphic to hX (or hX). So the forgetful

functor Gr→ Sets is representable. Also the functor Crg → Sets from Example (xix) is

representable, a representing object being Z[X,Y ]/(X2 + Y 2 − 1).

(xxiv) Let k be a field and let D: kVs → kVs be the contravariant functor from

Example (xvi); it sends V to V ∗ = Homk(V, k). Then D2 = D ◦D is a covariant functor

kVs → kVs. Denote by id: kVs → kVs the identity functor. A morphism ϑ: id → D2 is

given by ϑV (v)(λ) = λ(v), for v ∈ V and λ ∈ V ∗. If both functors are restricted to the full

subcategory kvs of kVs, then ϑ becomes an isomorphism of functors.

(xxv) Let X and Y be objects of a category C, and let f ∈ Mor(X,Y ). Then there

is a morphism f∗:hY → hX that sends any g ∈ hY (A) = Mor(Y,A) to f∗(g) = g ◦ f ∈
hX(A) = MorC(X,A), for any A ∈ Ob C. Yoneda’s lemma (see Exercise 7.33(b)) asserts

that the map MorC(X,Y )→Mor(hY , hX) sending f to f∗ is a bijection.

Equivalences of categories. Let C and D be categories. A covariant functor F : C → D
is called an equivalence, or an equivalence of categories, if there is a covariant functor

G:D → C such that FG is isomorphic to the identity functor of D and GF is isomorphic

to the identity functor of C. A contravariant functor F : C → D is called an anti-equivalence

if it is an equivalence C → Dopp. The categories C and D are called equivalent (or anti-

equivalent) if there is an equivalence (or anti-equivalence) C → D.

Note that we are not requiring that FG and GF are equal to the identity functors

of D and C; that requirement would define the notion of an isomorphism of categories.

For most applications of categories, the latter notion is not nearly as important as the

notion of equivalence of categories. This is because in most categories one really cares

about objects only ‘up to isomorphism’; accordingly, one does not require that FG and

GF send each object to itself, but one is, roughly speaking, satisfied if they send each

object to an isomorphic object.

An important sufficient condition for a functor to be an equivalence is found in Exercise

7.28.

Examples. (xxvi) The contravariant functor D: kvs→ kvs from Example (xxiv) is an anti-

equivalence of kvs with itself, since D2 is isomorphic to the identity functor kvs→ kvs.
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(xxvii) Let k be a field, and let the category C and the functor F : C → kvs be as

defined in Example (ix). The criterion from Exercise 7.28 shows that F is an equivalence.

(xxviii) Let C be a category, and let SetsC be the category of covariant functors

C → Sets. From Yoneda’s lemma (see Example (xxv)) one deduces that the contravariant

functor C → SetsC sending an object X to hX and a morphism f to f∗ yields an anti-

equivalence between C and the full subcategory of SetsC consisting of the representable

functors. Likewise, the functor sending X to hX is an equivalence of C with the category

of contravariant representable functors C → Sets, the morphisms in the latter category

being morphisms of functors.

7. Exercises

7.1. Let C be a category, and let A ∈ Ob C. The category of objects over A, or of morphisms

to A, has as its objects pairs (X, f) consisting of an objectX of C and a morphism f :X → A

in C, a morphism (X, f) → (Y, g) being a morphism h:X → Y in C with f = gh. Prove

that this is indeed a category, and that it has a point object.

7.2. (a) A rng is defined by omitting, in the definition of ‘ring’, the requirement that

there be a unit element, and a rng homomorphism is a map preserving addition and

multiplication. Prove that the category Rg of rings is a subcategory of the category Rng

of rngs, but not a full one.

(b) Let C be a full subcategory of a category D, and let A, B ∈ Ob C. Prove: A and

B are isomorphic in C if and only if they are isomorphic in D.

7.3. Suppose that
• → •
↓ ↙ ↓
• → •

is a commutative diagram in a category, with the property that both vertical arrows are

isomorphisms. Prove that the other three arrows are isomorphisms as well.

7.4. A morphism f in a category is called a monomorphism if it has the property that fg =

fh⇒ g = h for all morphisms g, h for which fg and fh are defined. Prove that in Sets, Gr,

Rg, Top, and in the category of fields each injective morphism is a monomorphism, and

decide for each of these categories whether conversely every monomorphism is injective.

7.5. A morphism f in a category is called an epimorphism if it is a monomorphism in the

opposite category. Prove that in Sets, Gr, Rg, Top, and in the category of fields each

surjective morphism is an epimorphism, and decide for each of these categories whether

conversely every epimorphism is surjective. (Hint in the case of groups: prove that if H 6= G

is a subgroup of a group G, then the disjoint union of two copies of G/H, viewed as a

G-set, has an automorphism as an H-set that is not an automorphism as a G-set.)
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7.6. Let f :A→ B be a morphism in a category C.
(a) Prove: f is a monomorphism if and only if for each object X in C the map

f∗: Mor(X,A)→Mor(X,B) sending g to fg is injective.

(b) Prove: f is an epimorphism if for each object X in C the map f∗: Mor(X,A) →
Mor(X,B) sending g to fg is surjective; prove also that the converse (“only if”) is correct

in the category of sets, but not in the category of groups.

7.7. Decide for each of the following categories whether it has a point object, and prove

the correctness of your assertions: Sets, Gr, Rg, Top, and the category of fields.

7.8. Decide for each of the following categories whether it has a copoint object, and prove

the correctness of your assertions: Sets, Gr, Rg, Top, the category of finite rings, the

category of fields, and the category of fields of characteristic 7.

7.9. Prove that in Crg any collection of objects has a product and a sum.

7.10. Let C be the field of complex numbers, viewed as an object of the category C of

fields. Prove that in C there is neither a product nor a sum of C with itself.

7.11. Let C be a category, A, B, and C objects of C, and let f :B → A and g:C → A be

morphisms. By a fibred product (or a pull-back) of B and C over A one means a pair (X, h)

consisting of an object X of C and a morphism h:X → A such that (X, h) is a product of

(B, f) and (C, g) in the category of objects over A (see Exercise 7.1). If a fibred product

(X, h) exists, one often writes X = B×A C, the morphisms f , g, and h being understood.

(a) Formulate the definition just given directly in terms of C.
(b) Prove that fibred products exist in Sets, Gr, and Rg.

7.12. Dually to fibred products, one has fibred sums (or push-outs). Give the definition of

fibred sums yourself, and prove that they exist in Sets, Gr, and Crg. ∗Do they exist in

Rg?

7.13. By a graph we mean a quadruple Γ = (V,E, s, t) where V and E are sets and s and t

are maps; one should think of the elements of V as vertices, and of each element e of E as

a directed edge going from its source s(e) to its target t(e). Let Γ = (V,E, s, t) be a graph,

and let C be a category. A diagram of shape Γ in C is a collection (Av)v∈V of objects in

C (one object Av for each v ∈ V ), together with a collection (fe)e∈E of morphisms in C,
with fe ∈ Mor(As(e), At(e)) for each e ∈ E.

(a) Think, for fixed Γ and C, of a natural notion of morphisms between diagrams of

shape Γ in C in such a manner that one obtains a category. Your definition should be

such that in the case #V = 1, E = ∅ one recovers the category C, and that in the case

C = Gr, #V = 2, #E = 1, V = (sE) ∪ (tE) one recovers the category Grhom defined in

Example (x).
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(b) Define what it would mean for a diagram to be commutative. Which graph Γ

should be chosen so that one recovers the notion of a commutative square?

7.14. Let Γ = (V,E, s, t) and C be as in Exercise 7.13, and let (Av)v∈V and (fe)e∈E
constitute a diagram of shape Γ in C, as in Exercise 7.13. A morphism g from an object

B of C to this diagram is a collection of morphisms gv ∈ Mor(B,Av), one for each v ∈ V ,

such that for all e ∈ E one has gt(e) = fegs(e). A left limit (or limit, or inverse limit) of

the diagram
(
(Av)v∈V , (fe)e∈E

)
is an object L of C, together with a morphism l = (lv)v∈V

from L to the diagram, such that for every object B of C and every morphism g = (gv)v∈V
from B to the diagram there exists a unique h ∈ Mor(B,L) with g = lh (that is: gv = lvh

for all v ∈ V ).

Construct a category whose objects are all pairs (B, g), where B is an object of C and

g is a morphism from B to the given diagram. Do this in such a way that a point object

in that category is the same as a left limit of the given diagram.

7.15. (a) Show that a left limit, if it exists, is unique up to a unique isomorphism.

(b) Show that the notions of product (of any number of objects), fibred product (see

Exercise 7.11), and point object are special cases of left limits.

7.16. (a) Show that left limits exist in Sets, in Gr, in Ab, and in Rg. Do they exist in

the category of finite sets? and in the category of fields?

(b) Show that kernels are special cases of left limits, both in Gr and in Ab.

7.17. Let Γ = (V,E, s, t) be a graph (see Exercise 7.13). Interchanging s and t (i. e.,

reversing the direction of all edges), we obtain the graph Γopp = (V,E, t, s) opposite to Γ.

Every diagram of shape Γ in C is a diagram of shape Γopp in Copp. A left limit of that

diagram in Copp is called a right limit (or colimit, or direct limit) of the original diagram

in C.
Do the analogues of Exercises 7.15 and 7.16 for right limits. Pay special attention to

the existence of cokernels (the dual of kernels) in Gr.

7.18. Let f :A→ B be a morphism in a category, and consider the diagram A
f−→ B

f←− A.

Prove: f is a monomorphism if and only if the object A, together with the morphisms

A
1→ A, A

f→ B, A
1→ A (where 1 = 1A), is a left limit of this diagram. What is the

corresponding characterization of epimorphisms?

7.19. In Section 6, we defined for every set S a group F (S). Extend F to a functor

Sets→ Gr.

7.20. Let S be a set.

(a) Construct a commutative ring A(S) together with a (set-theoretic) map i:S →
A(S) such that for every pair consisting of a commutative ring R and a map f :S → R
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there exists a unique ring homomorphism g:A(S)→ R with f = g ◦ i. Show also that the

assignment S 7→ A(S) can be extended to a functor Sets→ Crg.

(b) As (a), but with the word “commutative” (twice) left out, and Crg replaced

by Rg.

7.21. Show that in Rg any collection of objects has a sum. Hint : use Exercise 7.20(b).

7.22. Let S be a set.

(a) Construct a topological space X(S) together with a map i:S → X(S) such that

for every pair consisting of a topological space Z and a map f :S → Z there exists a unique

continuous map g:X(S)→ Z with f = g ◦ i.
(b) Construct a topological space Y (S) together with a map i:Y (S) → S such that

for every pair consisting of a topological space Z and a map f :Z → S there exists a unique

continuous map g:Z → Y (S) with f = i ◦ g.
(c) As in Exercises 7.19 and 7.20, extend X and Y to functors Sets→ Top.

7.23. (a) Let K ⊂ L ⊂M be fields with [L : K] = 2 and [M : L] = 2, and suppose that M

is a Galois extension of K with a cyclic Galois group. Let L̄ be an algebraic closure of L.

Prove that there is no field automorphism σ of L̄ of order 2 such that the restriction of σ

to L generates the Galois group of L over K.

(b) Prove that there does not exist a functor from the category of fields to itself that

sends each field k to an algebraic closure k̄ of k and each field homomorphism f : k→ l to

a field homomorphism k̄ → l̄ that extends f .

7.24. Show that for any three abelian groups A, B, C there is a group isomorphism

fABC : Hom(A⊗B,C)→ Hom
(
A,Hom(B,C)

)
. Formulate what it would mean to say that

the system of maps fABC is “functorial” in all three “variables” A, B, C simultaneously.

Prove that the maps fABC that you constructed do have that property.

7.25. Define the functor U :Rg→ Sets by letting U(R) be the set of units of R. Let A be

the ring Z[X,Y ]/(XY − 1), and hA:Rg→ Sets the functor represented by A. Exhibit an

isomorphism of functors U ∼= hA.

7.26. Let F :Crg→ Sets be the functor defined in Example (xix). Verify that F is indeed

a functor, and prove the correctness of all assertions made about this functor in Examples

(xix), (xxii), and (xxiii).

7.27. Let F : C → D be an equivalence of categories C and D. Prove: if A, B are objects of

C, then one has A ∼=C B if and only if F (A) ∼=D F (B).

7.28. Let C and D be categories, and let F : C → D be a covariant functor. Prove: F

is an equivalence if and only if (i) for every object X of D there is an object A of C
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with X ∼=D F (A), and (ii) for every two objects A, B of C, the map F : MorC(A,B) →
MorD(F (A), F (B)) is bijective.

7.29. Prove that every category C has a full subcategory D such that (i) the inclusion

D ⊂ C is an equivalence of categories; (ii) for any two objects A, B of D with A ∼=D B one

has A = B.

7.30. Prove the assertion made in Example (xxvii).

7.31. Let k be a field, let D: kVs → kVs be the functor defined in Example (xvi), and

let ϑ = (ϑV )V : id → D2 be the morphism of functors from Example (xxiv). Define the

morphisms ζ:D → D3 and η:D3 → D of functors by ζV = ϑD(V ) and ηV = D(ϑV ). Prove

that the morphism η ◦ ζ:D → D is the identity morphism of D.

7.32. Let Fab be the category of finite abelian groups.

(a) Show that for each finite abelian group A the group D(A) = Hom(A,Q/Z) is finite

and abelian, and thatD extends in a natural way to a contravariant functorD:Fab→ Fab.

(b) Prove that the covariant functors 1Fab, D2:Fab→ Fab are isomorphic, and that

D is an anti-equivalence of categories.

(c) Prove that for every finite abelian group A one has A ∼= D(A). Does it make sense

to ask whether this isomorphism is functorial in A?

7.33. Let C be a category.

(a) Verify the statement, implicitly made in Example (xxviii), that there is a con-

travariant functor h: C → SetsC sending an object X to hX and a morphism f to f∗.

(b) (Yoneda’s lemma.) Let X, Y ∈ Ob C, and write Mor(hY , hX) for the set of

morphisms hY → hX of functors. Yoneda’s lemma asserts that the map MorC(X,Y ) →
Mor(hY , hX) induced by h is bijective. Prove Yoneda’s lemma by showing that one obtains

a two-sided inverse to that map by sending (ϑA)A∈Ob C to ϑY (1Y ).

(c) Show that h is an anti-equivalence of C with the full subcategory of SetsC consisting

of all representable functors C → Sets.

7.34. Formulate the analogue of the previous exercise for the contravariant functors hX =

MorC(−, X): C → Sets.

7.35. In Section 6 we proved the following: if E and F are two groups such that for all

groups G there is a functorial bijection Hom(E,G) → Hom(F,G), then E and F are

isomorphic. Deduce this statement from Yoneda’s lemma (Exercise 7.33(b)) and Exercises

7.27 and 7.2(b).

7.36. Construct a category C that has one object and one morphism, and a category D
that has five objects and fifteen morphisms, such that C and D are equivalent without

being isomorphic.
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8. Rings and Modules

We assume that the reader is already familiar with the basic definitions of a ring. We

summarize them below.

Definition. A ring R is a triple (R, m, 1) where

(i) R is an additively written group;

(ii) m : R × R → R, denoted m(r, s) = rs, is a bilinear map such that (rs)t = r(st) and

1r = r = r1 for all r, s, t ∈ R.

Remark. We did not explicitly require R to be an abelian group, although the first

condition from the above definition appears at first sight to assume this fact. From previous

results about tensor products, we know that the subgroup in R generated by the image

of the bilinear map, m(R × R) ⊂ R, is abelian. However, the map m is surjective by the

second axiom, i.e. 1r = r, and hence m(R× R) = R and R is abelian.

Definition. Let A, B be rings. A ring homomorphism is a map φ:A→ B, such that

(i) φ induces a group homomorphism on A and B, viewed as additive groups;

(ii) φ(1A) = φ(1B);

(iii) φ(rs) = φ(r)φ(s) for all r, s ∈ A.

Definition. A subring M of a ring R is an additive subgroup of R such that

(i) M is closed under the operation of m, i.e. m(rs) ∈M for all r, s ∈M ;

(ii) 1 ∈M .

Here are some examples of rings:

(i) Z, R, Q, C all form rings under the usual multiplication law.

(ii) We also have the polynomial ring

R[x] = {
n∑

i=0

aix
i : ai ∈ R, n ≥ 0}.

(iii) The ring M(n×n,K) of n×n matrices with entries in a field K is a non-commutative

ring if n > 1.

(iv) The zero ring, where 0 = 1. This is a terminal object in the category of rings.

(v) Given a group G and ring R, we can form the group ring R[G] of formal finite sums
∑

x∈G rxx, where only finitely many rx are non-zero. We define the product

(
∑

x∈G
axx)(

∑

y∈G
byy) =

∑

x∈G

∑

y∈G
axbyxy =

∑

z∈G
(
∑

xy=z

axby)z.

Note that G is not required to be commutative. The group ring is commutative if and

only if the group G is commutative or R is the zero ring.
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We now turn our attention to an important class of rings which leads directly into our

discussion of modules. Let M be an abelian group. We define the endomorphisms of M as

the homomorphisms of M into itself, and

End(M) = Hom(M,M).

Since M is an abelian group, End(M) can be given an abelian group structure by defining

addition pointwise, i.e.

(f + g)(m) = f(m) + g(m), ∀f, g ∈ End(M),m ∈M.

This sum f + g is still a homomorphism, as is easily checked, and the additive identity is

the “zero” homomorphism δ,

δ(m) = 0, ∀m ∈M.

Moreover, End(M) forms a ring by defining multiplication as the composition of functions:

m(f, g) = f ◦ g. The multiplicative identity is the identity homomorphism,

1M (m) = m, ∀m ∈M.

All axioms are easily verified. As an example, consider End(Cn) ∼= Z/nZ, where Cn is a

cyclic group of order n and we identify for each k ∈ Z/nZ the mapping fk:x→ xk, where

x ∈ Cn.
Definition. A unit in a ring R is an element a ∈ R such that there exists b, c ∈ R

satisfying ca = 1, ab = 1. Note that this immediately implies c = c(ab) = (ca)b = b.

The set of units in a ring is a multiplicative group, as is easily checked, which is often

denoted R∗ or U(R). Note that an element may or may not be a unit depending on the

ring within which one views the element. For example, the element 2 is not a unit in Z,

but 2 ∈ Z ⊂ Q, and 2 is a unit in Q. In general, we have for a subring R of a ring T that

R∗ ⊂ R∩T ∗. As the above example makes clear, it is not necessarily true that R∗ = R∩T ∗,
although this is true if both R and T are finite rings.

Definition. Let x, y ∈ R. We call x and y zero divisors if x 6= 0 and y 6= 0, but xy = 0.

We also have a notion analogous to the center of a group. We use the same term,

although in the case of a ring it refers to the multiplicative operation, under which the

ring need not form a group.

Definition. Let R be a ring. The center of R is the set of elements

Z(R) = {a ∈ R : ar = ra, ∀r ∈ R}.

Note that the center of a ring is a subring, as is easily checked. Next, we shall discuss

the concept of modules. Let R be a ring. Then,

67



Definition. A left R-module is an additively written group M with a bilinear map

β:R×M →M such that for all r, s,∈ R,m ∈M , we have

β(r,m) = rm, r(sm) = (rs)m and 1m = m.

We can define right R-modules exactly analogously, using a bilinear map β:R×M →
M , written β(r,m) = mr. The associative law becomes

m(rs) = (mr)s, ∀m ∈M, r, s ∈ R.

As in the case of rings, we do not explicitly require the additive group M to be abelian. The

same argument applies in this case and guarantees thatM is indeed abelian. It is important

to note, however, that the ring R in the above definition need not be commutative.

Remark. For a ring R with multiplication m, the opposite ring Ropp has the same

additive group as R, but its multiplication mopp is defined by mopp(r, s) = m(s, r). With

this definition, a right R-module is the same as a left module over Ropp. Namely, given a

right R-module with bilinear map β, we can define a bilinear map β′:Ropp ×M →M as

β′(r, x) = r ∗ x = β(r, x) = xr,

and the first axiom is satisfied by β′ since

s ∗ (r ∗ x) = (xr)s = x(rs) = x(s ∗ r) = (r ∗ s) ∗ x,

where r ∗ s denotes multiplication in Ropp.

Recall from our treatment of (left) group actions that an action of G on S naturally

gives a homomorphism Φ:G→ Perm(S), by defining

g 7→ (Φ(g):x 7→ gx).

Conversely, such a homomorphism immediately yields a group action of G on S. Similarly,

we see that any ring homomorphism Ψ:R → End(M) induces a left R-module structure

on M . Namely, we define the bilinear map β:R×M →M such that (r,m) 7→ Ψ(r)(m) =

rm. Then we have

β(r1 + r2,m) = Ψ(r1 + r2)(m) = Ψ(r1)(m) + Ψ(r2)(m) = β(r1,m) + β(r2,m),

since Ψ is a homomorphism into End(M). Also, we have

β(r,m1 +m2) = Ψ(r)(m1 +m2) = Ψ(r)(m1) + Ψ(r)(m2) = β(r,m1) + β(r,m2),
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since Ψ ∈ End(M). Hence the map is bilinear. The associativity follows from the fact that

multiplication in End(M) is the composition of maps, and that Ψ is a homomorphism:

r(sm) = Ψ(r)(Ψ(s)(m)) = Ψ(rs)(m) = (rs)m.

The action of the identity follows since 1Rm = Ψ(1R)(m) = 1M (m) = m, i.e. Ψ carries the

identity to the identity.

Similarly, any R-module yields a homomorphism Ψ from the ring R to End(M), by

defining Ψ(r) = (m 7→ rm). Hence a homomorphism Ψ as above is equivalent to giving an

R-module structure on M .

Just as sets have subsets, and groups have subgroups, R-modules have submodules:

Definition. A submodule N of an R-module M is an additive subgroup of M such that

for all r ∈ R one has rN ⊂ N .

We may also examine the class of R-modules as a category (or rather as the objects

of a category). The morphisms in this category would be defined as follows:

Definition. A morphism of R-modules f :M → N is a group homomorphism with

respect to the additive groups, such that for all r ∈ R and m ∈ M , we have r(f(m)) =

f(rm). This property is known as R-linearity.

The notions of direct sum and direct product can also be defined for modules. Let

(Mi)i∈I be a family of R-modules. We define their direct product and direct sum to be

∏

i∈I
Mi and

⊕

i∈I
Mi,

respectively the direct sum and product of their abelian groups, with coordinatewise mul-

tiplication completing the R-module structure. That is, if (mi)i∈I is an element in the

direct product (or sum) of the Mi, then for all r ∈ R one defines r · (mi)i∈I to be (rmi)i∈I .

This definition is consistent with the general categorical definition of direct product (or

sum), as the reader can easily verify.

It is instructive to visit a few examples of R-modules to familiarize ourselves with the

concept. Here are the examples:

(i) Any (left) ideal of R is an R-module. One can view R itself as an R-module by using

the multiplication operation on R as the bilinear map. In this case, the left ideals are

the same as the R-submodules. In fact, two sided ideals (such as R itself) are both

left and right R-modules.

(ii) A Z-module is the same as an abelian group. In other words, given any abelian group,

there is exactly one way to impose a Z-module structure on it.
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(iii) Let K be a field. A K-module is the same as a vector space over K. Here, the equiv-

alence follows from a close reading of the definition of a vector space over K, which

can be seen to be just a rewording of the definition of a K-module.

(iv) Let K be a field and K[x] the ring of polynomials in x with coefficients in K. A

K[x]-module is the same as a vector space VK over K, together with a K-linear map

ε:VK → VK . Note that a K-linear map is the same as our standard notion of a linear

map between vector spaces.

(v) Let K[G] be a group ring. A K[G]-module is the same as a vector space VK over K,

together with a linear representation of G on VK , that is a homomorphism from G to

AutK(VK).

We noted in the above example that a Z-module is the same as an abelian group.

In fact, much of the basic theory of modules carries over from the basic theory of abelian

groups. We itemize some of the direct analogues here, just to emphasize the similarities.

(i) We have already defined the notion of an R-submodule, which is an additive subgroup

stable under the action of R.

(ii) We have the notion of a factor module M/N . This is just the quotient group with the

natural induced R-action.

(iii) We have already defined a homomorphism or R-modules; these are R-linear group

homomorphisms f :M → N .

(iv) We have the basic isomorphism theorem: Given a morphism f as above:

M/ ker(f) ∼= f(M) ⊂ N,

the homomorphic image f(M) being a submodule of N .

(v) The theorem of Jordan-Hölder also carries over, and in fact simplifies a little, since we

do not need to worry about the normality of subgroups. Hence we have the notions of

composition series of modules, and of simple modules. (Simple modules have exactly

two submodules, namely, 0 and M itself.)

(vi) We also have exact sequences of modules and the Snake Lemma.

(vii) We can also form direct products and direct sums of modules, as shown previously.

We have a characterization of simple R-modules.

Proposition. The following statements are equivalent:

(i) M is a simple R-module;

(ii) M ∼=R R/I, where I is a maximal left ideal in R.

Proof. We give a sketch of a proof. There is a bijective correspondence between the set

of left ideals J in R such that I ⊂ J ⊂ R, and submodules of R/I, by the map J 7→ J/I.

So a module of the form R/I, is simple if and only if I is maximal.
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Moreover, we can show that any simple module is of this form. Pick any non-zero

element x ∈ M , which exists since M is nonzero, and define the map f :R → M by

r 7→ rx. This is R-linear, so f(R) ⊂ M is a non-zero submodule of M , and since M is

simple, we have f(R) = M . So M ∼=R R/ ker(f).

Remark. One can ask whether there exists a unique maximal ideal such that M ∼=R

R/I. Since the choice of x in the above proof was arbitrary, a priori this is not clear. It

turns out that the ideal is unique if R is commutative, but in the non-commutative case

it may be wrong.

We can also approach the concept of the free module by taking a step back into category

theory. We have many categories (Group, the category of groups; Ab, the category of

abelian groups; RModule, the category of R-modules) which may be mapped via an

appropriate forgetful functor into Set, the category of sets. Let us examine the case of

the category of groups, with which we are already familiar. We have the “free” functor F

which takes a set S to F (S), the free group on S, and is a left adjoint to the forgetful

functor f :

Group
F←−
−→
f

Set.

In other words, given a group G, and a set S, there is a natural bijection

HomGroup(F (S), G)↔ HomSet(S, f(G)).

We are already aware of the natural analogous “free” functor for the case of the

category of abelian groups. We now consider the category of R-modules. Recall that any

abelian group can be viewed as a Z-module. Thus, for any set S, the functor F :Set→ Ab

maps

S 7→
⊕

i∈S
Z.

The extrapolation to modules over a general ring R is automatic. We define the free

R-module on a set S, denoted (as usual) by F (S), by

F (S) =
⊕

i∈S
R.

The map F is a covariant functor from Set to RModule, as the reader can verify.

When talking about the direct product (or sum) of a set of identical modules, one

often uses an alternative notation. In the case of a direct product, one often writes

RS =
∏

i∈S
R,
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and for a direct sum, one often writes

R(S) =
⊕

i∈S
R.

So if R Hom denotes the set of R-linear homomorphisms between two R-modules, we again

have

R Hom(R(S),M) ∼= Maps(S,M),

showing that the free functor is again a left adjoint of the forgetful functor. Free modules

will be discussed in greater depth later in the notes.

Some problems may be approached from a module-theoretic perspective in order to

gain insight. If two rings R and R′ share certain characteristics, then the classes of R-

modules and R′-modules may also show certain similarities. For example, the rings Z and

K[x] share the characteristic of being principal ideal domains. The Z-modules are abelian

groups, and we have a well-known result classifying the finite abelian groups, namely that

every finite abelian group is isomorphic to a direct product of finite cyclic groups. We can

attempt to make a similar classification of K[x]-modules, which are equivalent to vector

spaces VK over K equipped with a K-linear endomorphism ε on VK . That is, given a vector

space VK and a K-linear endomorphism ε on VK , we can view this as a K[x]-module in

the following way. Given a polynomial f(x) =
∑

i aix
i in K[x] and an element v in VK ,

we define a bilinear map β as follows: β(f(x), v) =
∑

i aiε
iv. It is easy to check that

this defines a K[x]-module structure on VK . The reader can also check that the process

reverses naturally; namely, given a K[x]-module M , one can view it as a vector space over

K equipped with a K-linear endomorphism.

Since we are restricting our attention to finite abelian groups in the classification, we

must make a similar restriction for the vector spaces. In fact, the restriction is the intuitive

one, namely that we restrict our attention to the finite-dimensional vector spaces. The

classification is found by examining the result in a module-theoretic form. If A is a finite

Z-module, then

A ∼=
t⊕

i=1

Z/pri

i Z,

where pi is a prime in the ring Z. There is a completely analogous statement which can be

made for finite-dimensional vector spaces over K with a K-linear endomorphism ε. This

analogy is most apparent when K is algebraically closed. If 〈VK , ε〉 is our n-dimensional

K[x]-module, we have

〈VK , ε〉 ∼=
t⊕

i=1

K[x]/((x− λi)ri ·K[x]),
∑

i∈I
ri = n
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since (x − λi) are the prime polynomials in the ring K[x]. The linear endomorphism on

this vector space sum is the n× n matrix:

ε =




































λ1 1 0 · · ·
0 λ1 1

. . .
...

. . .
. . .

. . .

λ1 1
λ1

︸ ︷︷ ︸

r1 columns

0

λ2 1
. . .

. . .

λ2
︸ ︷︷ ︸

r2 columns

0
. . .

λt 1
.. .

. . .

λt 1
λt

︸ ︷︷ ︸

rt columns




































In fact the proof for the classification of finite abelian groups can be translated directly

to prove this classification of finite-dimensional vector spaces over K with a K-linear en-

domorphism ε. This illustrates the usefulness of approaching certain objects as R-modules.

For the next section, let R be a commutative ring.

Definition. An R-algebra is a ring A with a ring homomorphism

f :R→ A

such that the image of R under f lies inside the center of the ring A, i.e. f(R) ⊆ Z(A).

A morphism of R-algebras is a ring homomorphism g : A → B such that the following

diagram is commutative:

R

fA ↙ ↘fb

Z(A) Z(B)


y



y

A
g−→ B
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First, we note that the ring A in the above definition need not be commutative. Also,

in many cases with which we are concerned, the map f :R→ A is injective; hence we can

view the R-algebra A as a ring with R lying inside its center as a subring. This latter fact

serves as an excuse for a notational shorthand in which the ring R is identified with its

image f(R), and the map is f : r 7→ f(r) = r ∈ A. This provokes confusion in cases where

f is not injective, since it makes it necessary to distinguish the condition “r = s in R”

from the condition “r = s in A.” Consider, for example, the case where Z/nZ is viewed as

a Z-algebra. The notation, however, is here to stay.

We note here that when the ring R happens to be a field (and A is non-zero), the ring

homomorphism f :R → A is injective, and therefore R can be canonically identified with

its image in A. Thus, for K a field, a non-zero K-algebra is, effectively, a ring containing

K as a subring.

It is also useful to note that if A is an R-algebra, then any factor ring A/M of A can

also be given an R-algebra structure in a natural way. Namely, we can compose the ring

homomorphism f with the projection map:

R
f−→ A

π−→ A/M.

The composite ring homomorphism π ◦ f is the required ring homomorphism from R to

A/M . We now present some examples.

(i) Any ring R can be viewed as a Z-algebra. Since Z is an initial object in the category

of rings, there exists only one homomorphism f :Z → R, and hence the category of

Z-algebras and the category of rings are equivalent.

(ii) Let K be an extension field of the rationals Q. Then K is a Q-algebra, where the

homomorphism f :Q→ K is simply inclusion.

(iii) Given a group G and a ring R, the group ring R[G] forms an R-algebra, where again

the homomorphism is simply inclusion.

The additive group of an R-algebra A can be given an R-module structure in the

natural way by defining the bilinear map

β: R× A → A
β: (r, a) 7→ r ∗ a = f(r)a.

This map is bilinear, since f is a homomorphism and because multiplication in A is

bilinear. Namely,

(r1 + r2) ∗ a = f(r1 + r2)a = (f(r1) + f(r2))a = f(r1)a+ f(r2)a = r1 ∗ a+ r2 ∗ a,

and similarly

r ∗ (a1 + a2) = f(r)(a1 + a2) = f(r)a1 + f(r)a2 = r ∗ a1 + r ∗ a2.
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Moreover, the action of the identity is satisfied since f carries the identity to the identity,

1R ∗ a = f(1R)a = 1Aa = a,

for all a ∈ A. Associativity follows from associativity of multiplication in A. Hence all

axioms are satisfied and A is indeed an R-module.

When we examine a homomorphism between groups, we are often interested in its

kernel and image. The same is true for ring homomorphisms, but the analogies are not

entirely trivial. In the case of a group homomorphism, its kernel is a normal subgroup

and its image is isomorphic to a quotient group. However we have no notion of a “normal

subring” and in fact the kernel of a homomorphism is rarely a subring at all. It is an ideal.

Definition. Let R be a ring. A left ideal I is an additive subgroup of R such that for

all r ∈ R one has rI ⊂ I.
A right ideal is defined as one would expect, and a two-sided ideal of R is defined to

be an additive subgroup that is both a left and right ideal of R.

It is worthwhile to emphasize that a left ideal I is a submodule of R, if we view R as

a (left) R-module. Many of the results we will prove about modules will, in particular, be

relevant to the study of ideals.

From the definition of an ideal, we can immediately present the following theorem.

Theorem. Let R and T be rings, with a ring homomorphism Φ:R→ T . The kernel of Φ

is a two-sided ideal of R.

Proof. If k1 and k2 are in the kernel of Φ, then

Φ(k1 + k2) = Φ(k1) + Φ(k2) = 0 + 0 = 0

so k1 + k2 is in the kernel of Φ. Furthermore, given any r ∈ R, and k in the kernel of Φ,

Φ(rk) = Φ(r)Φ(k) = Φ(r) · 0 = 0 and Φ(kr) = Φ(k)Φ(r) = 0 · Φ(r) = 0

so rk and kr are in the kernel of Φ. This shows that the kernel of Φ is a two-sided ideal.

An ideal being two-sided corresponds to a subgroup being normal. Given a ring and

a two-sided ideal, the notion of a quotient ring presents itself immediately.

Definition. Given a ringR and a two-sided ideal I ofR, the quotient ring,R/I is defined

to be the quotient group of the additive groups, with multiplication defined canonically.

That is, given r1+I and r2+I in R/I, their multiplicative product is defined to be r1r2+I.

That this multiplication is well-defined and satisfies the ring axioms is left as an

exercise for the reader. Furthermore, the reader may wish to check what happens when I

is not required to be a two-sided ideal.
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So if I is the kernel of a homomorphism Φ:R → T , the image of Φ is isomorphic to

the quotient ring, R/I.

It was mentioned that the kernel of a homomorphism is rarely a subring. In any ring

R, there is only one subset which is simultaneously an ideal and a subring.

Theorem. Let R be a ring, and I a left ideal of R that contains a unit. Then I = R.

Proof. Let u be a unit in I. Let v be such that vu = 1. Then for any r in R, rv is also in

R, so (rv)u ∈ I. But (rv)u = r(vu) = r(1) = r. Therefore I = R.

Since every subring contains the identity (which is certainly a unit), the only ideal of

R which is a subring is the ring R itself.

Certain ideals are of particular interest. A left ideal I of R is called a principal (left)

ideal if there is some r ∈ R such that Rr = I. In a commutative ring R, a proper ideal P

is called a prime ideal if for every a and b not in P , the product ab is also not in P , and an

ideal M is called a maximal ideal if for every ideal I, such that M ⊂ I ⊂ R, either I = M

or I = R but not both.

This last type of ideal has set-theoretic interest as well. There is a proof of the existence

of maximal ideals in any commutative ring, but it requires the axiom of choice. The details

of the proof will not be discussed, other than that it follows fairly straightforwardly from

the Zorn’s Lemma formulation of the axiom of choice.

Fact (assuming Axiom of Choice). Let R be a non-trivial commutative ring. Then

there is a maximal ideal M of R.

From this we can prove a slightly stronger (and more useful) statement about maximal

ideals.

Theorem. Let R be a commutative ring, and let I be a proper ideal of R. Then there is

a maximal ideal M of R such that I ⊂M .

Proof. Since R is commutative, I is automatically two-sided. Therefore the quotient ring

R/I is also commutative (and since I is proper, it is non-trivial). By the above fact, this

ring contains a maximal ideal, M ′. If Φ is the quotient map from R to R/I, let M be the

inverse image Φ−1(M ′). Since Φ is a ring homomorphism, a simple check shows that M is

an ideal. Furthermore, for any ideal N of R, if M ⊂ N ⊂ R, then M ′ ⊂ φ(N) ⊂ R/I. This

shows that M is maximal, and since 0 ∈M ′, we have that I ⊂M .

The theorem has the following corollary:

Corollary. Let R be a commutative ring, and let 〈Mi〉 be the set of maximal ideals of R.

Then
⋃

i

Mi = R \R∗.
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Proof. Suppose x ∈ R \R∗. Then the principal ideal Rx does not contain the identity, and

is therefore proper. So there is a maximal ideal M which contains x.

In the other direction, suppose x ∈M , a maximal ideal. Then since M can not contain

any units, x is not a unit. Therefore x ∈ R \R∗.
Definition. A field is a commutative ring R with the property R∗ = R\{0}.

A ring that satisfies the above property but is not necessarily commutative is called

a skew field. Note that the above set-theoretic equality automatically requires that 0 6= 1,

since 1 is a unit in R; so the zero ring is not a field. Here are two examples of fields.

(i) Q, the rational numbers, form a field.

(ii) Z/pZ, for p ∈ Z, forms a field if and only if p is prime. This also can be taken as the

definition of a prime in the ring of integers; note also that this requires that we do not

view 1 as a prime number.

Theorem. Let R be a commutative ring. Then R is a field if and only if R has exactly

two ideals, namely, the zero ideal and itself.

Proof. Suppose R has exactly two ideals. Let a ∈ R be a non-zero element and consider the

principal ideal Ra. Since this is non-zero, Ra = R. In particular, there exists an element

b ∈ R with ba = 1. Hence a is a unit.

Now suppose R is a field. Let I be a non-zero ideal. Then it contains some non-zero

element a ∈ I. Since a is a unit, by an earlier theorem concerning ideals with units, we

have I = R. So any non-zero ideal is all of R, and R has exactly two ideals.

Note that the conditions in the theorem above exclude that R is the zero ring. Given

this characterization of fields for commutative rings R, we can easily show that given any

ring R and a maximal ideal I, the quotient ring R/I is a field. Before the proof, we mention

two facts which are easy to check directly from the axioms. Namely, if f :A → B a ring

homomorphism, A, B commutative rings, and an ideal I ⊂ B, then f−1(I) ⊂ A is also an

ideal. Also, if A, B are as above, f : A → B a surjective ring homomorphism and I an

ideal in A, then f(I) is an ideal.

Theorem. Let R be a commutative ring. Then an ideal I of R is maximal if and only if

R/I is a field.

Proof. Let I be an ideal of R such that R/I is not a field. Then there must exist some

non-trivial proper ideal J ′ of R/I. Let Φ:R → R/I be the quotient homomorphism. Let

J be the ideal Φ−1(J ′) ⊂ R. Then I ⊂ J ⊂ R, and these inclusions are strict since J ′ is a

proper ideal of R/I. Hence I is not maximal.

In the other direction, let I be an ideal of R such that R/I is a field. Let J be an ideal

such that I ⊂ J ⊂ R. Then Φ(J) is an ideal in R/I, and therefore must be 0 or R/I. This

means that either J = R or J = I. This shows that I is maximal.
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We now turn our attention to a special class of rings which can naturally be viewed

as subrings of fields.

Definition. A domain is a non-trivial commutative ring which contains no zero divisors,

i.e. has the property that if ab = 0, then a = 0 or b = 0.

In domains, the following useful fact holds: if ab = ac, a 6= 0, then b = c. This is often

called the cancellation law. That any subring of a field is a domain is clear, but in fact

given any domain D, there is a field K, and a subring R ⊂ K such that R ∼= D. This field

K is the field of fractions of D:

We construct the field of fractions Q(R) of the domain R. As a set, Q(R) is the

quotient of the set {(a, b) : a, b ∈ R, b 6= 0} by the equivalence relation

(a1, b1) ≡ (a2, b2)⇔ a1b2 = b1a2 ∈ R.

(That this is an equivalence relation requires the use of the cancellation law in R.) Denote

the equivalence class containing a pair (a, b) by a
b . Multiplication is defined by

a1

b1
· a2

b2
=
a1a2

b1b2
,

and addition by
a1

b1
+
a2

b2
=
a1b2 + a2b1

b1b2
.

It is straightforward to check that these operations are well-defined on the equivalence

classes, and that the ring axioms are satisfied. Moreover, Q(R) is a field, since every non-

zero element a
b

has an inverse, namely b
a
.

We remind the reader that a prime ideal P of a commutative ring R is a proper ideal

such that for all a, b not in P , then ab is also not in P . The relation between fields and

maximal ideals is analogous to the relation between domains and prime ideals. There are

other important points to make about prime ideals, but first we need a definition.

Definition. Let R be a commutative ring. A subset S of R is called a multiplicative

subset if 1 ∈ S and S is closed under multiplication.

The following statements are all equivalent to P being a prime ideal:

(i) P is an ideal of R whose complement is a multiplicative subset S.

(ii) P is an ideal such that R/P is a domain.

(iii) P is the kernel of a ring homomorphism Φ from R to a field K.

The first statement follows directly from the definitions. The third is equivalent to

the second, since R/P is a domain if and only if R/P is a subring of a field. We prove the

second statement as follows.
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Proof. Suppose that R/P is a domain, and let Φ be the quotient map from R to R/P . If a

and b are not in P , then Φ(a) and Φ(b) are not 0. Since R/P is a domain, Φ(ab) = Φ(a)Φ(b)

is also not zero. Therefore ab is not in P . This shows that P is a prime ideal.

Suppose P is a prime ideal. If Φ(a) and Φ(b) are non-zero in R/P , then a and b are

not in P . So ab is not in P , and therefore Φ(a)Φ(b) = Φ(ab) is also not zero. This shows

that R/P is a domain.

Prime ideals give, other than maximal ideals, rise to an interesting contravariant

functor from commutative rings to sets.

Definition. Let CommRing be the category of commutative rings and Set be the cat-

egory of sets. The functor Spec:CommRing → Set maps a ring to the set of its prime

ideals. Furthermore, if Φ:R1 → R2 is a ring homomorphism, Spec maps Φ to the function

Φ∗: Spec(R2)→ Spec(R1) where for any ideal I ⊂ R2, Φ∗ maps I to Φ−1(I).

The proof that Spec is a contravariant functor boils down to seeing that given any

ring homomorphism Φ, the inverse image of a prime ideal is a prime ideal. The proof for

this is fairly straightforward.

Proof. Let Φ:R1 → R2 be a ring homomorphism, and let I2 be a prime ideal of R2. Let

Ψ be a ring homomorphism from R2 to a field K such that I2 is the kernel of Ψ. Then

the composite Ψ ◦ Φ is a ring homomorphism from R1 to K. Let I1 be the inverse image

Φ−1(I2). Then I1 is the kernel of Ψ ◦ Φ, so I1 is a prime ideal of R1.

If S is a multiplicative subset of a ring R, one can construct an R-algebra, denoted

S−1R, and often called the ring of fractions of R by S or the quotient ring of R by S,

as follows. We define S−1R informally to be the ring of equivalence classes of fractions r
s ,

with addition and multiplication defined as one would expect, but with the equivalence of

fractions extended so that r
s ≡ r′

s′ if there exists some σ ∈ S such that

σs′r = σsr′.

Note that this equivalence relation is stronger than the usual equivalence for fractions

which requires σ to be 1, and therefore the inclusion map from R to S−1R sending r 7→ r
1

is a ring homomorphism, but not in general injective. Indeed, if S contains 0, S−1R is

trivial. However, it should be noticed that there is a natural R-algebra structure on this

ring via the above inclusion map.

Theorem. Let R be a commutative ring, and let S be a multiplicative subset of R. We

have that 0 /∈ S if and only if there exists a prime ideal P in R such that P and S are

disjoint.

Proof. If there exists such a prime ideal P , then since any ideal contains 0, we have 0 6∈ S.

Now suppose 0 6∈ S. Consider the set of ideals I of R such that I ∩ S = ∅. Let P be
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a maximal element of S (which exists by Zorn’s lemma). We claim that P is prime. Let

a, b ∈ R, ab ∈ P . Suppose a 6∈ P, b 6∈ P . Then the intersection of the ideal P+Ra generated

by P and a with S is nonempty, i.e. (P +Ra) ∩ S 6= ∅. Similarly, (P +Rb) ∩ S 6= ∅. Thus

we have elements p1 + r1a ∈ S, p2 + r2b ∈ S, for some p1, p2 ∈ P , r1, r2 ∈ R. Since S is a

multiplicative subset, we have

(p1 + r1a)(p2 + r2b) = p1p2 + p1r2b+ r1ap2 + r1r2ab ∈ S.

Since each term on the right hand side is contained in P , the sum is also contained in P ;

but P and S are disjoint. Hence P is prime, as desired.

Definition. An element r of a ring is nilpotent if there exists some positive integer n

such that rn = 0. The set of nilpotent elements of R is known as the nilradical of R.

In the case of a commutative ring R, it can be easily verified that the nilradical of the

ring is an ideal. This is not necessarily the case for a non-commutative ring. The nilradical

is closely related to the set of prime ideals, as in the following theorem.

Theorem. Let R be a commutative ring. The nilradical of R is equal to the intersection
⋂

Spec(R)

P.

Proof. If x is nilpotent, for any prime ideal P , there exists a positive integer n such that

n times
︷ ︸︸ ︷
x · x · · ·x = 0 ∈ P.

By definition of a prime ideal, this implies that either xn−1 ∈ P or x ∈ P (or both). By

induction on n, we see that x ∈ P .

In the other direction, if x is not nilpotent, let Sx be the subset

Sx = {xn : n ∈ Z, n > 0}.

Here we interpret x0 to be 1. Thus we see that Sx is a multiplicative subset. Since x is

not nilpotent, Sx does not contain 0. Therefore, by the previous theorem, there is a prime

ideal that is disjoint from Sx, and so in particular does not contain x. Then x is not in the

intersection of the prime ideals.

We drop for the moment our usual condition that R is commutative.

Let Ri, i ∈ I, be a family of rings. Then R =
∏

i∈I Ri is naturally a ring by compo-

nentwise operations. In this section, we restrict our attention to cases where I is finite. For

concreteness we take the case of a product of two rings; the other cases follow by induction.

Let R = R1 × R2. Then R contains two elements, namely (1, 0) and (0, 1), such that

(1, 0)2 = (1, 0), and (0, 1)2 = (0, 1). This property is important enough to formally name it,

and will come in handy when we consider the decomposition of rings into direct products.
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Definition. Let R be any ring. An element e ∈ R is called an idempotent if e2 = e.

Many questions about the product ring R reduce to questions about the rings R1 and

R2. For instance, the group of units R∗ of R consist of precisely those elements both of

whose components are invertible. Namely, one easily checks that R∗ = R∗1 ×R∗2.
Similarly, any left ideal I of R can be uniquely written in the form I1× I2, where each

Ii is a (left) ideal in Ri. This is a consequence of a fact proven below about R-modules,

since any ideal I ⊂ R is an R-module.

For a two-sided ideal I = I1 × I2, we have the convenient characterization of the

structure of the quotient ring R/I, namely

R/I ∼= (R1/I1)× (R2/I2),

by the natural map Φ: (a, b) + (I1 × I2) 7→ (a + I1, b + I2). It is straightforward to check

that this is well-defined and an isomorphism.

In the case when R1, R2 are both commutative, R is also commutative. Since we

know that I is prime or maximal if and only if R/I is a domain or a field, respectively,

and we have the above characterization of R/I, we see that I is a prime ideal if and only if

I = I1 × I2 where one of I1 or I2 is the whole ring, and the other is prime. The analogous

statement holds for maximal ideals.

Proposition. An ideal I = I1×I2 in the product ring R = R1×R2 is prime (maximal) if

and only if one of I1, I2 is equal to the corresponding ring R1, R2, and the other is prime

(maximal).

Proof. Let I be prime in R. Consider the elements in the quotient ring (0, 1) and (1, 0).

We know that (0, 1)(1, 0) = (0, 0) = 0 ∈ R/I. Since R/I is a domain, this means that

one of (1, 0) or (0, 1) must be 0 in R/I. This immediately implies that one of 1R1
∈ I1 or

1R2
∈ I2, i.e. one of the following holds: I1 = R1 or I2 = R2. Without loss of generality,

let R/I ∼= R1/I1. Clearly I is prime (maximal) if and only if I1 is prime (maximal).

As an extension of the above statement, we also know that if R1 and R2 are com-

mutative, the spec of the ring R is the disjoint union of those of the rings R1 and R2,

namely

Spec(R) = Spec(R1)q Spec(R2).

The spec of a ring can be endowed with a certain natural topology (which we will not

define here), and it turns out that if the spec of a product ring is decomposed as above, its

topology is the canonical topology on the disjoint union of the topological spaces Spec(R1)

and Spec(R2). In particular, if R1 and R2 are non-trivial, Spec(R) is not connected. Con-

versely, if R is not a product of non-trivial rings, Spec(R) is connected. Hence (by abuse
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of language) we shall call a commutative ring connected if it cannot be decomposed as a

direct product of nontrivial rings.

Much of what we have said applies also to R-modules. Let M1 be an R1-module, and

let M2 be an R2-module. The direct product M = M1 ×M2 of abelian groups naturally

has an R-module structure, where R is the direct product R = R1 ×R2.

The surprising fact is that any R-module is of the above form, namely any R-module

M can be uniquely decomposed into submodules M1, M2 such that M = M1 ×M2.

Theorem. Any R1×R2-module M can be uniquely decomposed into a direct product of

modules, i.e. M = M1 ×M2 where Mi is an Ri-module, i = 1, 2.

Proof. Let M1 = (1, 0)M , M2 = (0, 1)M . These are clearly R-submodules of M , since

(1, 0) and (0, 1) lie in the center of R. Now consider M1 ∩M2. Since (1, 0), (0, 1) are both

idempotents, (1, 0)(1, 0)m = (1, 0)m, ∀m ∈ M , so (1, 0) acts as the identity on M1, and

acts as 0 on M2. Hence M1 ∩M2 = 0. Since for any m ∈ M , we have m = (1, 1)m =

(1, 0)m+ (0, 1)m, we have M = M1 ⊕M2. But the Mi are naturally Ri-modules, by the

action r1m1 = (r1, 0)m1 (similarly for R2).

An analogous statement can be made for morphisms of (R1×R2)-modules. Certainly,

if Mi, Ni are Ri-modules (i = 1, 2), and fi:Mi → Ni are Ri-linear maps, then we can

define a R-linear map f :M → N componentwise, namely f = (f1, f2). We can show that

every map f arises in this way; i.e. every R-linear map can be uniquely decomposed as

above. Since N is a direct product of abelian groups N1, N2, we already have fiπi = πif ,

the projections onto the components, which are immediately homomorphisms of abelian

groups. We only need to show that each fi is Ri-linear. But

(r1, 0)π1f(x, y) = (r1, 0)(f1(x, y), 0)

= (r1f1(x, y), 0)

= π1((r1, 0)f(x, y))

= π1f((r1, 0)(x, y)),

since f is R-linear. Similarly, f2 is R2-linear. Hence we have f = (f1, f2) where the fi are

Ri-linear, and hence f is an R-module homomorphism.

Another way of phrasing this in categorical language, is to say that if RModule is the

category of R-modules, then for all rings R1 and R2, we have an equivalence of categories

between (R1×R2)Module and R1
Module × R2

Module, the direct product of categories

being defined in the obvious way.

We can apply certain operations to ideals to generate more ideals. Intersection, addi-

tion, and multiplication are all well-defined on ideals as follows:

Let R be a ring, and let I and J be additive subgroups of R.
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(i) The intersection I ∩ J is a left (right) ideal if both I and J are left (right) ideals.

(ii) The sum I + J = {x+ y : x ∈ I and y ∈ J} is a left (right) ideal if both I and J are

left (right) ideals.

(iii) The product I · J = {∑t
i=1 xiyi : t ∈ N, xi ∈ I, yi ∈ J} is a left (right) ideal if I is a

left ideal (and J is any subset of R).

When I and J are two-sided, we have

I · J ⊂ I ∩ J ⊂ I + J,

as the reader can easily verify. The simplest examples to illustrate these ideals come from

taking the ring R to be Z. Let nZ and mZ be two ideals in Z.

Examples.

(i) The sum nZ+mZ is the ideal tZ, where t is the greatest common divisor of n and m.

(ii) The intersection nZ ∩mZ is the ideal tZ, where t is the least common multiple of n

and m.

(iii) The product nZ ·mZ is the ideal tZ where t = nm.

We now proceed to a ring-theoretic generalization of a well-known elementary number

theory result. In this section, we assume R to be commutative. Most statements can, with

sufficient care, be made for general rings, but we do not bother to do so here.

Definition. Two ideals I, J of R are coprime if I + J = R.

Remark. Equivalently, we say I, J are coprime if there exists x ∈ I, y ∈ J such that

x+y = 1. The equivalence is easy to see: if such x and y exist, then for any r ∈ R, we have

r = r1 = r(x+ y) = rx+ ry ∈ I + J . On the other hand, if I + J = R, since 1 ∈ R there

must exist such x and y. Furthermore it is worth noting that any two distinct maximal

ideals must be coprime. (The reader can verify this easily.)

Chinese Remainder Theorem. Let R be a commutative ring, I, J coprime ideals in

R. Then IJ = I ∩ J , and the ring homomorphism f :R → (R/I) × (R/J) such that

f(r) = (r + I, r + J) induces an isomorphism

R/IJ ∼= (R/I)× (R/J).

Before we begin the proof, a notational clarification must be made. We will borrow

the mod notation from number theory. Let x and y be elements in the ring R. We write

x ≡ y (mod I),

to mean that x− y lies in the ideal I. In other words, if Φ is the canonical homomorphism

from R to R/I, then Φ(x) = Φ(y).
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Proof. First, we show the equality IJ = I ∩ J . (Recall that in general, we have only that

IJ ⊂ I ∩ J .) Let z ∈ I ∩ J . Since I, J are coprime, there exist x ∈ I, y ∈ J such that

x+y = 1. We have z = z1 = zx+zy. But since z ∈ I∩J , it is also true that zx ∈ JI = IJ ,

and zy ∈ IJ . Thus z ∈ IJ .

Since f is a homomorphism, by basic isomorphism theorems, we have that

R/ ker f ∼= f(R),

so it will suffice to show that f is surjective and that ker f = IJ . The latter is straightfor-

ward: by definition of f , we have

ker f = {z ∈ R : z ∈ I, z ∈ J} = I ∩ J = IJ.

Let x, y be as above. Since x + y = 1, y ∈ J , we have x = 1 (mod J). Similarly, y ≡ 1

(mod I). So given any r, s ∈ R,

f(rx+ sy) ≡ (sy + I, rx+ J)

≡ (s+ I, r + J).

Hence f is surjective, as desired.

We have an immediate generalization to finite collections of pairwise coprime ideals.

Definition. Let R be a commutative ring. A collection I1, I2, . . . , It of ideals is pairwise

coprime if for all i 6= j, 1 ≤ i, j ≤ t, we have Ii + Ij = R.

For such a collection of ideals, we have

R/(I1I2 · · · It) ∼= (R/I1)× (R/I2)× · · · (R/It).

The proof is a straightforward induction, but does require the following fact.

Proposition. Given a collection I1, I2, . . . , It−1 of ideals each of which are coprime to It,

the product J = I1I2 · · · It−1 is coprime to It.

Proof. To show that J and It are coprime, it suffices to show that the image of J in R/It
by the natural projection map contains 1. By assumption, since each Ii is coprime to It,

we can find in each Ii an element xi whose image is 1. The product x1x2 · · ·xt−1 lies in

the product J and its image in R/It is 1. Hence J and It are coprime.

A direct consequence of this proposition is that if I and J are coprime, then so are In

and Jn, where

In =

n times
︷ ︸︸ ︷

I · I · · · I .
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A few words of caution: there is the strong potential to misinterpret what I2 ought

to be, given an ideal I. It is not the ideal generated by the squares of elements in I! Also,

if one views a ring R as an ideal of itself, then Rn as an ideal is not the same thing as

Rn as an R-module. The notation here is ambiguous, yet unavoidably so, and therefore

the reader should try to take care to make explicit what the exponent means if it isn’t

absolutely unmistakable.

We can use this result (along with the Chinese Remainder Theorem) to classify certain

quotient rings.

Examples.

(i) Let n be a positive number in Z, with its factorization,

n =
∏

p, prime

pα(p).

Then

Z/nZ ∼=
∏

p, prime

Z/(pα(p)Z).

(ii) Let f be a monic polynomial in the polynomial ring K[x], with its factorization into

irreducibles,

f =
∏

g, irred.

gα(g).

Then

K[x]/fK[x] ∼=
∏

g, irred.

K[x]/(gα(g)K[x]).

In the first example, this gives us a classification for the finite cyclic rings, and in the

second this gives us a classification of the cyclic finite-dimensional K-algebras.

These rings, Z/(pαpZ) and K[x]/(gαgK[x]), are examples of local rings.

Definition. Let R be a commutative ring. We call R a local ring if it has exactly one

maximal ideal.

Remark. An equivalent property is that R \R∗ is an ideal of R. We leave the proof of

the equivalence to the reader.

In fact, the rings in the above examples satisfy the much stronger condition that they

have exactly one prime ideal. Therefore in these rings every element is either a unit or

nilpotent, making these rings easy to work with, which is the motivation for the above

decomposition.
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8. Exercises

8.1. Let R and S be rings. An R-S-bimodule is an abelian group M that is provided both

with a left R-module structure and with a right S-module structure, in such a way that

r(ms) = (rm)s for all r ∈ R, m ∈M , s ∈ S. Prove that the category of R-S-bimodules is

equivalent to the category of left modules over the ring R⊗ Sopp; here Sopp is the ring S

with the multiplication reversed, and the ring R⊗ Sopp is as defined in Exercise 6.15(a).

8.2. For a commutative ring R we denote, as in Exercise 1.33, by B(R) the set of idempo-

tents of R. From Exercises 1.33(b) and 1.34 we know that the set B(R) can in a natural

way be made into a Boolean ring.

(a) Prove that B extends to a covariant functor from the category Crg of commutative

rings to the category Bo of Boolean rings, and that B has a left adjoint H:Bo → Crg.

What is H(F2)?

(b) Does B have a right adjoint? Does the inclusion functor Bo ⊂ Crg have a right

adjoint? a left adjoint?

8.3. Let k be a field, and let R be a finite k-algebra, i. e., a k-algebra that, when viewed

as a vector space over k, has finite dimension. Let T be a sub-k-algebra of R. Prove that

T ∗ = T ∩R∗.

8.4. Let R be a ring, and let (Mi)i∈I be a collection of R-modules. Prove that the direct

sum
⊕

i∈IMi is the sum (in the categorical sense) of the modules Mi in the category

RMod of R-modules, and that the product
∏

i∈IMi is the product (in the categorical

sense) of the Mi in RMod.

8.5. A module M over a ring is called simple if M has exactly two submodules, namely 0

and M itself.

(a) Let k be a field, n a positive integer, and let R be the ring M(n, k) of n × n-

matrices over k. Exhibit a natural R-module structure on kn, and show that kn is simple

as an R-module.

(b) Let R be a ring. In class it was shown that an R-module M is simple if and only if

it is isomorphic to R/I for some maximal left ideal I of R. Give an example to show that

I is not necessarily uniquely determined by M .

8.6. (a) Let R be a ring, let I be a left ideal of R, and let M be the R-module R/I. Prove

that I is a two-sided ideal if and only if it is equal to the kernel of the ring homomorphism

R→ EndM defining the R-module structure on M .

(b) Suppose that M is a simple module over a commutative ring R. Prove that there

is a unique maximal ideal I of R with M ∼=R R/I.

8.7. Let R be a ring, and let M be R, viewed as a left module over itself. Prove that the
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ring EndRM = {f :M →M : f is R-linear} is a subring of the ring of all endomorphisms

of the additive group of M , and that EndRM is isomorphic to the ring Ropp opposite to R.

8.8. Let R be a ring, let I be a two-sided R-ideal, and let M be the R-module R/I. Prove

that the group of R-automorphisms of M is isomorphic to the unit group of the ring R/I.

8.9. Let R be a ring. An R-module M is called cyclic if there exists x ∈ M such that for

every y ∈M there is an element r ∈ R with y = rx.

(a) Prove: an R-module M is cyclic if and only if it is R-isomorphic to an R-module

of the form R/I, where I is a left ideal of R.

(b) Let M be a cyclic R-module, and let N ⊂M be a submodule. Does it follow that

N is cyclic? Does it follow that M/N is cyclic? Give a proof or a counterexample in each

case.

8.10. Let R be a ring. An R-module M is said to be finitely generated if, for some non-

negative integer n, there are x1, . . . , xn ∈M such that for every x ∈M there are r1, . . . ,

rn ∈ R with x = r1x1 + r2x2 + · · ·+ rnxn.

(a) Prove: a module over a field is finitely generated if and only if it has finite dimension

as a vector space over that field.

(b) Prove: an R-module M is finitely generated if and only if for some non-negative

integer n there is an exact sequence Rn →M → 0 of R-modules; here Rn =
⊕n

i=1R.

8.11. Let R be a ring. An R-module M is called noetherian if every submodule of M is

finitely generated.

(a) Give an example of a ring R and a finitely generated R-module that is not noethe-

rian.

(b) Let 0 → M0 → M1 → M2 → 0 be a short exact sequence of R-modules. Prove:

M1 is noetherian if and only if both M0 and M2 are noetherian.

8.12. A ring is called left noetherian if it is noetherian when viewed as a left module over

itself (see Exercise 8.11). Let R be a ring. Prove that the following four properties are

equivalent:

(i) R is left noetherian;

(ii) every finitely generated R-module is noetherian;

(iii) for every chain I1 ⊂ I2 ⊂ I3 ⊂ . . . of left ideals of R there exists an integer m ≥ 0 such

that for every n ≥ m one has In = Im (this is called the ascending chain condition);

(iv) for every non-empty set S of left ideals of R there exists I ∈ S such that the only

J ∈ S with I ⊂ J is given by J = I.

8.13. A commutative ring is called noetherian if it is left noetherian (see Exercise 8.12).

(a) Is Z noetherian? Is Q[X] noetherian?

(b) Give an example of a commutative ring that is not noetherian.
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8.14. Let R be a ring. An R-moduleM is said to have finite length if, for some non-negative

integer n, there is a chain

0 = M0 ⊂M1 ⊂ . . . ⊂Mn = M

of submodules of M such that every module Mi/Mi−1 (0 < i ≤ n) is simple. In that case

n is called the length of M , notation: lengthM or lengthRM or lRM .

(a) Prove that lengthM is well-defined if it is finite, i. e., that it is independent of the

choice of the chain of submodules.

(b) Prove that every module of finite length is finitely generated.

(c) Exhibit a finitely generated Z-module that is not of finite length.

(d) Let M be an R-module, and let N ⊂M be a submodule. Prove that M has finite

length if and only if both N and M/N have finite lengths, and that if these conditions are

satisfied one has lengthM = lengthN + length(M/N).

8.15. (a) Let R be a non-zero ring. Prove that there is a simple R-module.

(b) A skew field (or division ring) is a ring k whose unit group is equal to k − {0}.
Describe all simple R-modules when R is a skew field, when R = Z, and when R = k[X]

for a field k.

8.16. (a) Let R be a ring. Prove that every finitely generated R-module has finite length

if and only if R has finite length when viewed as a left module over itself.

(b) Give an example of a ring satisfying the condition in (a) that is not a field.

(c) Let V be a finite dimensional vector space over a field k. Prove that lengthk V

exists and is equal to dimk V .

8.17. (a) Let A be an abelian group. Prove that A has finite length as a Z-module if and

only if A is finite, and express lengthZA in terms of #A if A is finite.

(b) Let k[X] be the polynomial ring in one indeterminate X over a field k, and

let M be a k[X]-module. Prove: M has finite length over k[X] if and only if M has

finite dimension when viewed as a k-vector space. Prove also that in that case one has

lengthk[X]M ≤ dimkM ; for which fields is it true that one always has equality here?

8.18. (a) A short exact sequence 0 → A
f→ B

g→ C → 0 of modules over a ring R is said

to split if there is an R-homomorphism h:A⊕C → B such that hi = f and gh = π, where

i:A → A ⊕ C is the canonical injection and π:A ⊕ C → C is the canonical projection.

Prove that any such h is automatically an isomorphism.

(b) Let 0 → A
f→ B

g→ C → 0 be a short exact sequence of modules over a ring R.

Prove that the sequence splits if and only if there is an R-homomorphism i:C → B with

gi = 1C , and if and only if there is an R-homomorphism p:B → A with pf = 1A.
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8.19. (a) Prove that every short exact sequence of modules over a skew field splits (see

Exercises 8.15 and 8.18 for the definitions).

(b) Give an example of a ring R and a short exact sequence of R-modules that does

not split.

(c) Let 0→ A→ B → C → 0 be a short exact sequence over a ring R with C ∼=R R.

Prove that the sequence splits.

8.20. Let R1 and R2 be rings, and let R be the product ring R1 ×R2.

(a) Prove: if Mi is an Ri-module, for i = 1, 2, then M = M1 ×M2 is in a natural

manner an R-module, and every R-module is isomorphic to one of this form.

(b) Let Mi and Ni be Ri-modules, for i = 1, 2, and let M and N be the R-modules

M1 × M2 and N1 × N2, respectively. Prove that the natural map R1
Hom(M1, N1) ×

R2
Hom(M2, N2)→ RHom(M,N) is a bijection.

Note. In categorical language one may express the results of this exercise by saying that

the assignment (M1,M2) 7→M1 ×M2 provides an equivalence between a suitably defined

“product category” R1
Mod× R2

Mod and RMod, the notation being as in Exercise 8.4.

8.21. Let R be a ring. If M is an R-module and x ∈M , then the annihilator of x in R is

defined by AnnR x = {r ∈ R : rx = 0}. It is the kernel of the R-homomorphism R → M

mapping 1 to x, so it is a left ideal of R. Let now M be a simple R-module.

(a) Prove: AnnR x is a maximal left ideal of R for every x ∈ M − {0}, and I =
⋂

x∈M AnnR x is a two-sided ideal of R. Prove also that R/I is isomorphic to a subring of

the ring EndM of all endomorphisms of the abelian group M .

(b) Prove that the ring EndRM of R-linear endomorphisms of R is a skew field (as

defined in Exercise 8.15(a)).

8.22. Let R be a ring.

(a) Prove that the intersection of all maximal left ideals of R is a two-sided ideal of R.

(b) Let I be a maximal left ideal of R, and put T = {r ∈ R : Ir ⊂ I}. Prove that T is

a subring of R containing I, that I is a two-sided ideal of T , and that T/I is a skew field.

8.23. Let R be a non-zero ring. Prove: R is a skew field if and only if every R-module is

free, and if and only if every simple R-module is free.
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9. Finite Algebras

In the previous section, we noted a certain similarity in the classification of certain finite

cyclic rings and of certain cyclic finite-dimensional K-algebras. In both cases, the condition

requiring finiteness turns out to be crucial. We now prove a theorem which is a general-

ization of the Chinese Remainer Theorem which holds for these special cases of algebras.

This theorem will be useful in the later context of Galois theory when we consider finite

field extensions, which are special cases of finite K-algebras.

Definition. Let K be a field. A finite K-algebra is a K-algebra A which is finite-

dimensional as a vector space over K.

Theorem. Let A be a commutative ring that is either finite or a finite K-algebra for some

field K. Then Spec(A) is finite (as a set), each M ∈ Spec(A) is maximal, and there exist

positive integers n(M), for M ∈ Spec(A), such that

A ∼=
∏

Spec(A)

(A/Mn(M)),

as an isomorphism of rings by the natural coordinate-wise projection map. Moreover, each

A/Mn(M) is a local ring, with maximal ideal M/Mn(M), and each element of A/Mn(M) is

either a unit or nilpotent.

Proof. We begin with a preliminary claim that if such an A as above is a domain, then it

must be a field. To see this, consider a non-zero element x ∈ A and the right multiplication

map y 7→ yx. Since A is a domain, x is not a zero-divisor and this map is injective. If A is

finite (as a set), then this map must also be surjective, so there exists y such that yx = 1

and hence x is a unit. If A is a finite-dimensional K-algebra, in particular it is a vector

space over K. The map is injective since A is a domain, as before. Since the multiplication

map is K-linear, the image xA ⊂ A is a subspace of A as a K-vector space. If the map

is not surjective, then by dimension-counting, we have a nontrivial kernel, but the map is

injective. Hence the map is surjective, and there exists y ∈ A such that xy = 1, and x is a

unit, as required. Hence A is a field.

We now show that every M ∈ Spec(A) is in fact maximal. Given a prime ideal M ∈
Spec(A), we have that A/M is a domain. Moreover, since A is finite or a finite-dimensional

K-algebra and the projection maps are surjective, A/M is also finite or a finite-dimensional

K-algebra. So by the previous claim, A/M is a field, and hence M must be maximal.

We show that Spec(A) is finite by exhibiting an upper bound on the number of (pair-

wise distinct) maximal ideals M1,M2, . . . ,Mt in A. Recall that any two distinct maximal

ideals are coprime. Hence by the Chinese Remainder Theorem, we have a surjective map

A→
∏

M

(A/M).
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Recall that each A/Mi is a field. Consider the case where A is finite, as a set. Since fields

are non-zero, in particular, they must contain at least 2 elements. We have the inequality

|A| ≥ 2t

given t distinct maximal ideals. Since A is finite, we have an upper bound on t, namely,

t ≤ log2 |A|. Consider the case where A is a finite-dimensional K-vector space. Then each

A/M is also a finite-dimensional K-vector space, and since it is non-zero, is of dimension

at least 1. Thus we have dim(A) ≥ t, again an upper bound on t. Hence Spec(A) is finite,

in either case.

We now study the kernel of the (natural coordinate-wise projection) map

A→
∏

M

(A/M),

where the product is over all maximal ideals M in A. The kernel is clearly the intersection
⋂

MM of all maximal ideals. However, we have already shown that for the given A, any

prime ideal is maximal (and vice versa). Recall that the intersection of all prime ideals is

the nilradical of A, the set of all nilpotent elements of A.

Claim. The nilradical,
√

0A, is itself nilpotent as an ideal.

Proof. There are two cases. If A is finite, the nilradical is also finite. If A is a finite K-

algebra, since any ideal of A is a submodule over K, in particular it is a subspace of a

finite-dimensional vector space, and hence finite-dimensional. In either case, there exists a

finite set b1, . . . , bs of elements in the nilradical such that

√
0A = Ab1 +Ab2 + · · ·+Abs.

We say that
√

0A = (b1, . . . , bs), or that it is the ideal generated by {b1, . . . , bs}.
It is easy to see that a power of the nil radical,

√
0A

N
is generated by elements of the

form
s∏

i=1

bni

i such that
s∑

i=1

ni = N.

Since each of the bi is nilpotent, for each there is an li such that blii = 0. We can take

N to be

N = 1 +
s∑

i=1

(li − 1).

We can now take any generator of
√

0A
N

in the above form,
∏
bni

i . Since the ni must

add up to N , by the pigeonhole principle, there must be some i for which ni ≥ li. For this
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i, bni

i = 0, and so the entire product is 0. This shows that every generator of
√

0A
N

is 0,

and so
√

0A
N

= {0}. This proves the claim.

This being so, we notice that

{0} =
√

0A
N

= (
⋂

M

M)N = (
∏

M

M)N =
∏

M

(MN)

by making use of the fact that maximal ideals are necessarily coprime, and the last equality

holds from associativity of ideal multiplication. Recall that if two ideals are coprime, so

are their powers (a corollary of an earlier proposition). Hence all the MN , M maximal,

are coprime. By the Chinese Remainder Theorem, we have that

A ∼= A/{0} ∼= A/(
∏

M

MN ) ∼=
∏

M

(A/MN ).

Further, we know that for each M ,

(A/M) = (A/MN )/(M/MN ),

and since A/M is a field, M/MN must maximal in A/MN .

By a previous proposition on maximal ideals, we know that

Spec(A) =
∐

M

Spec(A/MN ).

We count the number of elements in Spec(A/MN ) for each maximal ideal M . The

number of ideals in Spec(A) is the number of M , and since the above union is disjoint,

each set Spec(A/MN ) must therefore have exactly one element. So each A/MN has exactly

one prime (maximal) ideal, namely M/MN . In addition, we observe that every element is

either a unit (if it is outside this prime ideal) or nilpotent (if it is inside).

One might suspect that this talk of finite sets and finite algebras may have a further

generalization of some sort. Indeed, this is the case, and the above theorem holds for any

commutative Artinian ring, that is a ring which satisfies the “Descending Chain Condition”

(DCC) for ideals: every descending chain of ideals in the ring terminates.
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9. Exercises

9.1. Let p be a prime number. Prove that every ring of cardinality p2 is commutative. How

many are there, up to isomorphism? Prove the correctness of your answer.

9.2. Construct a commutative ring R with the property that for all positive integers n one

has
√

0R
n 6= (0).

9.3. Let R be a commutative ring. We call R an Artin ring, or artinian, if for every chain

I1 ⊃ I2 ⊃ I3 ⊃ . . .

of ideals of R there exists an integer m ≥ 0 such that for every n ≥ m one has In = Im
(this is called the descending chain condition).

(a) Prove: R is an Artin ring if and only if for every non-empty set S of ideals of R

there exists I ∈ S such that the only J ∈ S with J ⊂ I is given by J = I.

(b) Prove: a domain is artinian if and only if it is a field.

(c) Is Z artinian? Is Q[X]/(X12 − 729)2Q[X] artinian?

(d) Prove: every prime ideal of an Artin ring is maximal.

9.4. Let R be a commutative Artin ring (see Exercise 9.3).

(a) Prove that R has only finitely many maximal ideals.

(b) Let J(R), as in Exercise 1.29, be the intersection of all maximal ideals of R. Prove

that J(R) is nilpotent, i. e., that J(R)n = 0 for some integer n ≥ 0. (Hint : first find n such

that I = J(R)n satisfies I2 = I, and derive a contradiction from I 6= 0 by considering a

minimal principal ideal Ra with aI 6= 0.)

(c) Prove: there is a finite sequence of local Artin rings R1, . . . , Rt with nilpotent

maximal ideals such that R is isomorphic to
∏t
i=1Ri.

9.4a. Let R be a local ring, m its maximal ideal, and k = R/m its residue class field. For

a non-negative integer n, define mn by m0 = R and mi+1 = m ·mi.

(a) Let n be a non-negative integer. Prove that the R-module mn/mn+1 has the

structure of a vector space over k.

(b) Suppose in addition that R is finite. Prove that the cardinality of R is a power of

the cardinality of k.

9.5. Let R be a commutative ring. Prove: R is an Artin ring (as defined in Exercise 9.3) if

and only if R has finite length as a module over itself. Prove also that every commutative

Artin ring is noetherian (as defined in Exercise 8.13).

9.6. Let k be a field, let C be a group of order 3, and let A be the group ring k[C].

(a) Prove that A is a finite commutative k-algebra.
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(b) By (a) and a theorem proved in class, A can be written as the product of t local

k-algebras with nilpotent maximal ideals, for some non-negative integer t. Prove that one

has t ∈ {1, 2, 3}. Also, describe for which fields k one has t = 1, for which fields one has

t = 2, and for which fields one has t = 3. Do all three values of t actually occur?

(c) For which fields k is A a product of fields?

9.7. An algebra A over a ring R is said to be totally split if for some non-negative integer

n there is an R-algebra isomorphism A→ ∏n
i=1R, where

∏n
i=1R has componentwise ring

operations.

Let k be a finite field, and suppose that f ∈ k[X] is a non-zero polynomial for which

the k-algebra k[X]/fk[X] is totally split. Prove: deg f ≤ #k.

9.8. Let G be a finite abelian group, let C be the field of complex numbers, and let C[G]

be the group ring of G over C.

(a) Exhibit a bijection between the set of C-algebra homomorphisms C[G]→ C and

prove the set of group homomorphisms G → C∗, and that the cardinality of these sets

equals #G.

(b) Prove that C[G] is totally split as a C-algebra (see Exercise 9.7).

9.9. Let G be a finite abelian group, let R be the field of real numbers, and let R[G] be the

group ring of G over R. Prove that there are integers n > 0 and m ≥ 0 with n+2m = #G

such that there is an R-algebra isomorphism R[G] ∼= Rn × Cm. Can you find a formula

for n?

9.10. Let Fb be the category of finite Boolean rings, and let sets be the category of finite

sets. Prove that the functors Fb → sets and sets → Fb sending R to SpecR and X to

P (X) (see Exercise 1.36), respectively, are anti-equivalences of categories.

9.11. Let p be a prime number, k a field of characteristic p, and G a finite abelian p-group.

Prove that the group ring k[G] is local.

10. Homomorphism modules and tensor products

We recall that in Section 8 we defined the notion of a free module. Given a set S, the free

R-module, F (S) = R(S), is
⊕

i∈S
R.

One can ask in general if a given module, M , can be considered “free.” In essence, the

issue is whether M is isomorphic to a module of the above form. The answer to whether

a module is free lies in the existence (or lack thereof) of a basis.
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Definition. Given an R-module, M , we say that a subset S ⊂M is a basis of M if every

element x of M can be written uniquely as

x =
∑

s∈S
rss

where each rs is in R and almost all rs are equal to zero (so that the sum makes sense).

There are two parts to this definition. If every element x ∈ M can be written in this

form, we say that S spans M . If the way of writing any given x ∈M in this form is unique,

we say that the elements of S are linearly independent. So in other words, a basis is a

linearly independent subset of M which spans M .

Definition. An R-module is called free if it has a basis.

For example, let K be a field. A K-module is a vector space over K, which we know

from linear algebra must have a basis (even if it is not finite-dimensional). Therefore, all

K-modules are free.

If M has a basis S, then M ∼=R R
(S), via the isomorphism

∑

s∈S
rss←→ 〈rs〉s∈S

which the reader can verify to be an isomorphism.

The module Rn is called the free module of rank n. This leads us to the natural

question: If Rn ∼=R Rm, then can we conclude that n = m? The answer in general is

no, for with non-commutative rings counterexamples can be found. We know from linear

algebra that if R is a field, the answer is yes. What about for other commutative rings?

If R = {0}, then the answer is quite clearly no, but for all other commutative rings, the

problem may be reduced to the case for fields by factoring through a maximal ideal.

In fact, we can ask a more general question about free modules. Namely, if we have

two sets, S and T , such that

F (S) ∼=R F (T ), i.e. R(S) ∼=R R
(T ),

can we conclude that #S = #T? Again, if R is a field, we know from linear algebra that

this is true. What about general rings? As seen above, if #S is finite, then this depends

on whether the ring is commutative. However, if #S is infinite, then regardless of whether

the ring is commutative, the answer is yes. We have the following lemma.

Lemma. Let R be a non-zero ring, and let S and T be sets such that at least one of them

is infinite. Let R(S) ∼=R R
(T ). Then #S = #T .

Proof. Let Φ be the isomorphism from R(S) to R(T ). We examine what this does to the

basis of R(S). Each basis element s is mapped to a linear combination of a finite subset Ts
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of T . Yet the union of these sets Ts spans R(T ), so T =
⋃

s∈S Ts. Hence if S is finite, then

T is also finite. By symmetry, if either of these sets (T or S) is finite, then so is the other,

and therefore if either of these sets is infinite, then so is the other. Our condition was that

at least one of these is infinite, so we can conclude that they both are. Furthermore, from

T =
⋃

s∈S Ts it follows that

#T = #
( ⋃

s∈S
Ts

)
≤ #S ·#N = #S,

and by symmetry, #S ≤ #T . Therefore, #S = #T .

In what follows, we let R be an arbitrary ring, not necessarily commutative. Let

M,N be left R-modules. Then the set of R-linear maps HomR(M,N) has the structure

of an abelian group, with addition defined pointwise, (f + g)(x) = f(x) + g(x). (Since

r(f + g)(x) = rf(x) + rg(x) = f(rx) + g(rx) = (f + g)(rx), this map is still R-linear.)

In the case where R is commutative, this abelian group has the additional structure

of an R-module. There are two different ways of defining the action of R on an element

f ∈ HomR(M,N), but they turn out to be the same. Namely, we have

R× HomR(M,N) → HomR(M,N)

(r, f) 7→
(

rf :x 7→
{

(i) r(f(x))
(ii) f(rx)

)

,

where the first definition rf :x 7→ r(f(x)) uses the R-module structure of N , and the latter

uses that of M . These are equivalent because the map f is R-linear. We still need to check,

however, that this rf is R-linear, and to show this we need to use the commutativity of

R. Namely,

rf(sx) = r(sf(x)) = (rs)f(x) = (sr)f(x) = s(rf(x)).

In the case where R is non-commutative, the group of homomorphisms HomR(M,N)

acquires a module structure if we assume that the modules M , N have some additional

structure. First, we need a definition.

Definition. An abelian group M is an R-S-bimodule, where R, S are arbitrary rings,

if it is

(i) a left R-module;

(ii) a right S-module (with the same additive group);

(iii) it satisfies the compatibility condition (rm)s = r(ms), for all r ∈ R, m ∈M , s ∈ S.

Notice that any R-S-bimodule is automatically a left R-module and a right S-module.

Also, any left R-module is a R-Z-bimodule, and similarly any right S-module is a Z-S-

bimodule. (These are the default rings; remember that any abelian group is naturally a
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Z-module.) The simplest example of a bimodule is the ring R itself: any ring R is an

R-R-bimodule.

Now suppose that M is an R-S-bimodule, and N is an R-T -bimodule. We can give

HomR(M,N) the structure of an S-T -bimodule in the following natural way:

(ft)(x) = f(x)t, (sf)(x) = f(xs).

It is left as an exercise for the reader to verify that these definitions do indeed yield a

bimodule structure.

If R is commutative, then every left R-module can be made a right R-module by

defining mr = rm, r ∈ R,m ∈ M . It is left to the reader to verify that this is in-

deed a right R-module structure on the underlying abelian group of M . (Note, however,

that the commutativity of R is used in the verification!) This right module structure

is compatible with the original left R-module structure, so in fact, M can be regarded

as an R-R-bimodule. The compatibility condition simply reduces to the statement that

s(rm) = (sr)m = (rs)m = r(sm). (However, for most commutative rings R, not every

R-R-bimodule arises in this way.)

The “Hom” functor is also left exact, namely, if

0→ N1 → N2 → N3

is exact, then

0→ HomR(M,N1)→ HomR(M,N2)→ HomR(M,N3)

is also an exact sequence of abelian groups, of R-modules (if R is commutative), or of

S-T -bimodules (if M is an R-S-bimodule, the Ni are R-T -modules), depending on the

context. Similarly, if

M1 →M2 →M3 → 0

is exact, then

0→ HomR(M3, N)→ HomR(M2, N)→ HomR(M1, N)

is also exact.

Since HomR(R,N) is an R-Z-bimodule, it is in particular a left R-module. In this

special case where M = R, and we view HomR(R,−) as a functor on left R-modules, we

see that we have an isomorphim HomR(M,N) ∼= N , by the following map: f 7→ f(1). So

the functor HomR(R,−) is exact, not just left or right exact. (One needs to check that the

isomorphism given above is compatible with maps between theNi.) This is actually true for

any free R-module M = R(S). Namely, we have the isomorphism HomR(R(S), N) = NS,

and one can check that exact sequences are preserved.
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Definition. Let M be an R-module. Then M is projective if the functor RHom(M,−)

is exact.

As we have just seen, every free module is projective. Further investigation reveals

that while not every projective module is free, that for every projective module M there is

a module N such that M ⊕N is free. (A book entitled Serre’s Conjecture (which has now

become a theorem) by T.-Y. Lam discusses the conditions under which projective modules

are and are not free in greater depth.) There is a parallel notion for the contravariant case.

Definition. Let N be an R-module. Then N in injective if the functor RHom(−, N) is

exact.

While projective modules are quite easy to construct with free modules, injective

modules in general require more effort. An example of an injective module is provided here

for flavor:

Example. An abelian group G is called divisible if the map n:G→ G (which takes x 7→ nx)

is surjective. A Z-module is injective if and only if it is divisible as an abelian group.

We now shift our attention to tensor products. If R is any ring, and M is a right

R-module, and N is a left R-module, then we define the tensor product

M ⊗R N

to be the abelian group generated by elements of the form x⊗ y with x ∈ M and y ∈ N ,

and with relations

(i) (x1 + x2)⊗ y = (x1 ⊗ y) + (x2 ⊗ y);
(ii) x⊗ (y1 + y2) = (x⊗ y1) + (x⊗ y2);
(iii) (xr)⊗ y = x⊗ (ry);

for all r ∈ R, x, x1, x2 ∈M , and y, y1, y2 ∈ N .

Definition. Let M and N be right and left R-modules respectively, and let C be an

abelian group. Let f :M ×N → C be a map. We say that f is R-bilinear if for all m, m1,

m2 ∈M , n, n1, n2 ∈ N , and r ∈ R, we have

(i) f(m1 +m2, n) = f(m1, n) + f(m2, n).

(ii) f(m,n1 + n2) = f(m,n1) + f(m,n2).

(iii) f(mr, n) = f(m, rn).

So the tensor map ⊗ : M ×N →M ⊗R N is R-bilinear, and if C is an abelian group,

then

Hom(M ⊗R N,C) ∼= BilR(M ×N,C),
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where BilR denotes the set of R-bilinear maps. If M is an S-R-bimodule and N is an

R-T -bimodule, then M ⊗R N is an S-T -bimodule, by multiplying as follows:

s(x⊗ y) = (sx)⊗ y
(x⊗ y)t = x⊗ (yt)

When R is commutative, this simplifies our picture somewhat. If M and N are R-

modules (and therefore R-R-bimodules), then M⊗RN is an R-module. Another interesting

thing to notice is that for any ring R (even non-commutative), we have

R⊗RM ∼= M,

generalizing what we noticed earlier, taking the tensor products of abelian groups and

finding that Z ⊗ G ∼= G. We note, for emphasis, some important facts and examples of

tensor products.

(i) Let M be a right R-module, and N a left R-module. The tensor product over R of

the two modules, M ⊗R N , is an abelian group.

(ii) Let R be a commutative ring and let M and N be R-modules. The tensor product

M ⊗R N has the additional structure of an R-module.

In the remainder of this section, we collect some facts about tensor products which will

become quite useful in the context of Galois theory. If not explicitly stated, an “R-module”

is a “left R-module.”

Fact (i). Let M be a right R-module, N be a left R-module. The functors − ⊗R N and

M ⊗R− are right exact functors. That is, the functor −⊗RN takes a right exact sequence

of right R-modules to a right exact sequence of abelian groups, and the functor M ⊗R −
takes a right exact sequence of left R-modules to a right exact sequence of abelian groups.

Fact (ii). We have a “distributive law” for direct sums and tensor products, namely

(⊕

i∈I
Mi

)
⊗R N ∼=

⊕

i∈I
(Mi ⊗R N),

by the natural map. (The proof mainly consists of checking that this map is well-defined.)

Fact (iii). One can view the next property as a generalization of the first two properties. It

will be stated using the language of categories. Namely, the functors −⊗RN and M ⊗R−
commute with arbitrary right limits. This can be proved by invoking one of the exercises,

in which it is shown that a functor that has a right adjoint preserves right limits, and that

a functor that has a left adjoint preserves left limits.
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Fact (iv). The following property is crucial in that it allows us, on occasion, to get rid of

a tensor product sign. Namely,

R⊗R N ∼= N,

through the natural map r⊗ x 7→ rx, and the inverse map is x 7→ 1⊗ x. The isomorphism

is not just as abelian groups, but also as R-modules. Note, by the way, that in many of

these properties we have actually a natural map which does the job of the isomorphism.

Fact (v). If I is a right ideal in R, recall that R/I is a right module over R. This property

is a generalization of an observation made in the case of tensor products of abelian groups,

i.e. Z/nZ⊗ A ∼= A/nA, where A an abelian group. In the setting of modules, we have

(R/I)⊗R N ∼= N/IN,

where we define the product of an ideal I of R with the R-module N to be the subgroup

of N generated by the set {xy : x ∈ I, y ∈ N}.

Proof. We sketch the proof. We use the right-exactness of the functor − ⊗R N . Namely,

we have the right exact sequences

I → R → R/I → 0,
I ⊗R N → R⊗R N → (R/I)⊗R N → 0.

We already know from the previous property that R ⊗R N ∼= N , and since the sequence

is exact, we only need that the image of I ⊗R N is exactly IN . The map from I ⊗R N
to R ⊗R N is the inclusion map taking x ⊗R y as an element of I ⊗R N to x ⊗R y as an

element of R⊗R N . The canonical map from R⊗R N to N takes x⊗ y (x ∈ I, y ∈ N) to

the element xy ∈ IN . Since IN is exactly generated by these elements, the image is IN

and we are done.

Fact (vi). For the statement of this property, let S be any set (not a ring, as it often is).

Then

R(S) ⊗R N ∼= N (S),

where N (S) denotes a direct sum of S copies of N . This follows from properties (iv) and

(ii). Note that we use our explicit map from R⊗R N 7→ N to construct the isomorphism.

Fact (vii). For some R-modules, M , the functor M ⊗R − is not only right exact, but is

left exact as well. An R-module is called flat if the functor M ⊗R − is exact.

In particular, all free modules are flat. This can be seen quite easily by noticing that

if M ∼= R(S), we have

M ⊗R − ∼= (−)(S),
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which is trivially an exact functor. Lang shows that a module is flat if and only if it is a

direct limit of free modules. (Chapter XVI, Exercise 13).

We can see an example of a non-projective flat module even when we take the ring

R to be Z. An example of a flat Z-module which can be shown to be non-projective is

the additive group Q of rational numbers. However, any flat Z-module that is finitely

generated is projective.

Another quick interesting example comes if we let R = R. Since C is a free module

over R, and therefore flat, it follows that C⊗R − is an exact functor.

Fact (viii). Let M be an S-R-bimodule, N be an R-T -bimodule, and P be a T -U -

bimodule. Then

(M ⊗R N)⊗T P S
∼=U M ⊗R (N ⊗T P ).

Fact (ix). If R is commutative, then M ⊗R N ∼= N ⊗RM .

Fact (x). Let A be an R-algebra, an N be an R-module. Then A ⊗R N has a natural

A-module structure. The additive group is clear, and scalar multiplication goes by

a1(a2 ⊗ n) = (a1a2)⊗ n.

Fact (xi). Let A and B be R-algebras. The tensor product A⊗R B is an R-algebra. We

already have the additive structure. The ring structure can be defined through coordinate-

wise multiplication:

(x⊗ y)(z ⊗ w) = (xz)⊗ (yw),

for all x, z ∈ A and y, w ∈ B. (Recall that one must use the universal property of tensor

products to verify that this is a well-defined map on a general element of the tensor

product.) The map f ′ = fA⊗RB from R into A⊗R B is given by the diagram below:

A
−⊗1−→ A⊗R B

fA

x



f ′↗
x

1⊗−

R −→
fB

B

Next suppose that R, A, and B are commutative. Then for any commutative R-algebra

C and any pair of R-algebra maps α:A → C and β:B → C there is a unique R-algebra

map Φ: (A ⊗R B) → C such that α = Φ ◦ (− ⊗ 1) and β = Φ ◦ (1 ⊗ −). Hence if R is

commutative, then −⊗R − is a coproduct in the category of commutative R-algebras.
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10. Exercises

10.1. Let R be a ring. An R-module is called free if for some set S it is isomorphic to R(S).

(a) Suppose that R is non-zero and that S is a set. Prove that R(S) is a finitely

generated R-module if and only if S is finite.

(b) Let M be an R-module and let S be a set. Prove that there is a bijection

RHom(R(S),M)→MS that is functorial in M . Are your bijections group isomorphisms?

(c) Let F be a free R-module. Prove that every short exact sequence 0→M → N →
F → 0 of R-modules splits (as defined in Exercise 8.18).

10.2. (a) Let k be a field. Prove that every short exact sequence of k-modules splits.

(b) Let R be a finite commutative ring with
√

0R = 0. Prove that every short exact

sequence of R-modules splits.

(c) Let R be a commutative ring with
√

0R 6= 0. Prove that there is a short exact

sequence of R-modules that does not split.

10.3. For a ring R, we denote by Rn the direct sum of n copies of R; this is an finitely

generated free R-module.

(a) Suppose that R is non-zero and commutative, and let n and m be non-negative

integers. Prove: if Rn ∼= Rm as R-modules, then n = m. (Hint : reduce to the case that R

is a field.)

(b) Construct a non-zero abelian group A for which A ⊕ A ∼= A (as abelian groups),

and prove that for any such A the ring R = EndA has the property that R ∼= R2 as

R-modules, and R 6= {0}.

10.4. Let R be a ring, and let P be an R-module. Recall that P is called projective if

the functor M 7→ Hom(P,M) from the category of R-modules to the category of abelian

groups is exact.

(a) Prove that the following properties of P are equivalent:

(i) P is projective;

(ii) for every surjective map f :M → M ′′ of R-modules, the map f∗:RHom(P,M) →
RHom(P,M ′′) is surjective;

(iii) every short exact sequence 0→M ′ →M → P → 0 of R-modules splits;

(iv) there is an R-module Q for which P ⊕Q is free.

(b) Suppose that P is finitely generated and projective. Prove that there is a finitely

generated projective R-module Q such that P ⊕Q ∼= Rn for some non-negative integer n.

10.5. Let R be a ring. Recall that an R-module M is called flat if − ⊗R M is an exact

functor from the category of right R-modules to the category of abelian groups. Prove that

every projective R-module is flat.

10.6. (a) Prove that a Z-module is projective if and only if it is free.
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(b) Prove that a Z-module is flat if and only if it is torsionfree (i. e., has no non-zero

elements of finite order).

10.7. Let R, S, T , U be rings, M an R-S-bimodule, N an S-T -bimodule, and P a U -T -

bimodule. Exhibit an isomorphism

HomT (M ⊗S N,P ) ∼= HomS

(
M,HomT (N,P )

)

of U -R-bimodules that is functorial in each of M , N , and P . You do not need to check

that your map is well-defined, that it is an isomorphism, or that it is functorial; but do

list what needs to be checked.

Note. Similarly, if Q is an R-U -bimodule, there is a functorial isomorphism

RHom(M ⊗S N,Q) ∼= SHom
(
N,RHom(M,Q)

)

of T -U -bimodules, where RHom denotes the group of left R-module homomorphisms.

10.8. Let R be a commutative ring, P a finitely generated projective R-module (see Ex-

ercise 10.4), and M an R-module.

(a) Exhibit an isomorphism ϕ: HomR(P,R)⊗RM ∼= HomR(P,M) of R-modules.

(b) Define the trace EndR P → R by composing the map

ϕ−1: EndR P = HomR(P, P )→ HomR(P,R)⊗R P

from (a) (with M = P ) with the map HomR(P,R)⊗R P → R that sends f ⊗ p to f(p).

Prove that this is the usual trace map when P is free.

10.9. Let R, A be rings, and let f :R → A be a ring homomorphism. View A as a (left)

A-module in the usual way, and as a right R-module through a · r = a · f(r); this makes A

into an A-R-bimodule. Denote by RMod and AMod the categories of R- and A-modules,

respectively. Let F :RMod→ AMod be the functor A⊗R−, and G:AMod→ RMod the

functor that turns an A-module M into an R-module by rm = f(r)m. Prove that (F,G)

is an adjoint pair, as defined before Exercise 7.25.

10.10. Let R be a commutative ring, and R′ a commutative R-algebra. For an R-module

M , we write M ′ for the R′-module R′ ⊗RM .

(a) Prove: M ′ ⊗R′ N ′ ∼= (M ⊗R N)′ as R′-modules, for any R-modules M and N .

(b) Prove that M ′ is projective as an R′-module if M is projective as an R-module.

(c) Prove that M ′ is flat as an R′-module if M is flat as an R-module.

10.11. Let R be a ring and let I be an R-module. Prove that the following three properties

of I are equivalent (you may use Zorn’s lemma):

(i) I is injective;
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(ii) for any two R-modules M ′ and M , and any injective map f :M ′ →M of R-modules,

the map f∗:RHom(M, I)→ RHom(M ′, I) is surjective;

(iii) for any left ideal J ⊂ R and any R-linear map f : J → I there exists x ∈ I such that

for all r ∈ J one has f(r) = rx;

(iv) every short exact sequence 0→ I →M →M ′′ → 0 of R-modules splits.

10.12. Prove that a Z-module is injective if and only if it is divisible (see Exercise 6.5(a)).

10.13. Let G be a group. A G-module is a module over the group ring Z[G] (see Exercise

1.25).

(a) Prove that endowing an abelian group A with a G-module structure is equivalent

to giving a group homomorphism G→ AutA.

(b) For a G-module A, write AG = {a ∈ A : for all g ∈ G one has ga = a}. This

is a subgroup of A (you do not have to check this). Is the functor from the category of

G-modules to the category of abelian groups sending A to AG exact? left exact? right

exact?

(c) Construct a G-module M such that for every G-module A there is a group iso-

morphism GHom(M,A) ∼= AG that is functorial in A.

10.14. Let R be a commutative ring, and R′ a commutative R-algebra. As in Exercise

10.10, we write M ′ = R′ ⊗RM for any R-module M , and for an R-linear map f we also

write f ′ for the R′-linear map f ⊗ 1R′ .

Let P be a finitely generated projective R-module. Exhibit an R′-algebra isomorphism

EndR′(P
′) ∼= EndR(P )′ that composed with the map trace′: EndR(P )′ → R′ gives the trace

over R′ (see Exercise 10.8 for the trace).

10.15. Let R be a ring, M an R-module, and F the functor − ⊗RM (from the category

of right R-modules to the category of abelian groups). Recall that F commutes with

taking arbitrary right limits (cf. Exercise 6.14), and that M is called flat if F is exact in

the sense that for every exact sequence A → B → C of right R-modules the sequence

FA→ FB → FC is also exact.

(a) Prove that M is flat if and only if F transforms every short exact sequence into a

short exact sequence, and if and only if F commutes with taking kernels.

(b) Let a diagram, as defined in Exercise 7.9, be called finite if the sets V and E from

Exercise 7.9 are finite. Prove that M is flat if and only if it commutes with taking left

limits of arbitrary finite diagrams.

10.16. Denote by (−)∞ a countably infinite direct product. Prove that the natural map

(Z∞) ⊗Z Q → Q∞ is not an isomorphism. Deduce that − ⊗Z Q does not commute with

taking arbitrary left limits, although Q is a flat Z-module.
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10.17. Let R, M , and F be as in Exercise 10.14. We call M faithfully flat if M is flat and

for every non-zero right R-module N one has FN 6= 0.

(a) Prove: if M is free and non-zero, then M is faithfully flat.

(b) Suppose that M is faithfully flat, and let f be a morphism of right R-modules.

Prove: f is injective if and only if F (f) is injective; f is surjective if and only if F (f) is

surjective; and f = 0 if and only if F (f) = 0.

(c) Suppose that M is faithfully flat. Prove that a sequence A → B → C of right

R-modules is exact if and only if the sequence FA → FB → FB of abelian groups is

exact.

10.18. Let R be a ring. An R-module M is called finitely presented if there is an exact

sequence Rm → Rn →M → 0 of R-modules, with n, m non-negative integers.

(a) Prove that every finitely generated projective R-module is finitely presented.

(b) Suppose that R is left noetherian (see Exercise 8.12), and let M be an R-module.

Prove: M is finitely presented if and only if it is finitely generated.

10.19. Let R, R′, and the notation ′ be as in Exercise 10.14. Suppose that R′ is flat over R.

(a) Prove: if M is a finitely presented R-module, and N is any R-module, then one

has HomR(M,N)′ ∼= HomR′(M
′, N ′) as R′-modules. (Hint. First do the case in which M

is free.)

(b) Suppose that R′ is faithfully flat over R (see Exercise 10.17), and let M be an R-

module. Prove:M is finitely generated as an R-module if and only ifM ′ is finitely generated

as an R′-module. Prove also: M is finitely generated and projective as an R-module if and

only if M ′ is finitely generated and projective as an R′-module.

11. Finite étale algebras

For this section let R be a commutative ring.

We return to our observation that for any R-algebra A and R-module M , A⊗RM is

an A-module, and that this defines a functor

F :RModule→ AModule

called an “extension of scalars” functor. We often denote the extension of scalars to a

module by subscripting it appropriately:

F (M) = MA = A⊗RM.

Many useful properties held by MR which we will consider will hold also for MA. In

particular, this will be true of the properties of being projective, flat, and free, or more

more specifically, free of a given rank. As an example, we shall show the last claim.
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Example. Let MR be a free R-module, and let S be such that MR
∼= R(S). Then

MA = A⊗RMR

∼=R A⊗R R(S)

∼=R (A⊗R R)(S)

∼=R A
(S),

as we have already observed in the previous section on the properties of tensor product.

and a simple check shows that the isomorphisms hold when viewed as A-modules rather

than R-modules. It is also clear from this that the rank must be the same.

If R is a field, and M is a finite-dimensional R-module (in other words a finite-

dimensional vector space over R), we know from linear algebra that we can describe any

R-linear endomorphism from M to M by a matrix (provided that we are given a basis for

M). In fact, this description does not in general require that R be a field, but only that it

be a commutative ring and that M is a free R-module of finite rank n. If we are equipped

with a basis for M , we may write any endomorphism ε:M → M as a matrix E. In other

words, if EndR(M) is the ring of R-linear endomorphisms in M and M(n,R) is the ring

of n× n-matrices over R, then

EndR(M)
Φ∼=M(n,R),

where Φ is a ring isomorphism depending only on the choice of basis for M .

Many of the our notions from linear algebra carry over into this new ring. Given any

matrix E ∈M(n,R) we can define functions

Tr:M(n,R)→ R,

Det:M(n,R)→ R,

Ξ:M(n,R)→ R[t],

(the trace, determinant, and characteristic polynomial respectively) by constructions that

are completely analogous to their counterparts in linear algebra. For example, if the entries

of a matrix E are indexed eij , we define Tr by

Tr(E) =

n∑

i=1

eii.

We would like these functions to be defined on EndR(M), and the above isomorphism

Φ allows us to do this, provided that these functions are independent of the choice of basis.

In other words, if ε is an R-linear endomorphism in M , we define Tr(ε) by

Tr(ε) = Tr(Φ(ε)),
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which is well-defined as long as the trace is independent of the choice of a basis. It is an

exercise from linear algebra to show that this is true (as is the corresponding statement

for the determinant, etc.). In short, one can show that Tr(BC) = Tr(CB), and from this

it follows that Tr(UAU−1) = Tr(A), by setting U = B and AU−1 = C. Furthermore, one

can show that any change of basis is accomplished by conjugating by an invertible matrix

U , and this completes the proof that the trace is well-defined regardless of a choice of basis.

There is a cleaner way to show this, however, without explicitly computing with the linear

algebra, except to invoke the existence of a basis.

For the remainder of this section, let A be a commutative R-algebra, which when

viewed as an R-module is free of finite rank n. (Note: much of what will be said only needs

that A is projective and finitely generated, but we will stick with the stronger condition,

as this suffices for our considerations.)

The trace map Tr can now be viewed as a map from A to R, denoted by TrA/R, by

defining TrA/R(a) to be Tr(µa), where µa is the R-linear endomorphism in A that maps x

to ax.

Example. Let R be the ring Q, and A be the Q-algebra Q(
√

5). Then A is free of rank

2 over R, and every element is of the form a = r + s
√

5, where r, s ∈ Q. The matrix

associated with the map (x 7→ ax) is
[
r 5s
s r

]

,

and its trace is 2r. Therefore

TrQ(
√

5)/Q(r + s
√

5) = 2r.

A simple check reveals that TrA/R is always an R-linear morphism from A to R (as

R-modules). Therefore, we may regard TrA/R as an element of HomR(A,R) which is the

R-module dual to A. That HomR(A,R) is also free of rank n can be seen quite easily, since

if A ∼= Rn, then

HomR(A,R) ∼= HomR(Rn, R) ∼=
(
HomR(R,R)

)n ∼= Rn.

(Note: if we relaxed our condition that A be free of finite rank as an R-module, to say

that it is finitely generated and projective, then it would again be true that HomR(A,R)

is finitely generated and projective, but A and HomR(A,R) might not be isomorphic as

R-modules.)

Finally, we can construct a module morphism Φ:A→ HomR(A,R) which maps

a
Φ7→ (aTrA/R) =

(
b

Φ(a)7→ TrA/R(ba)
)
.

We are now ready to define the concept of finite étale.

107



Definition. Let R be a commutative ring, A a commutative R-algebra which is free of

rank n as an R-module. We say A is finite étale if the map Φ described above is an

isomorphism.

Note that the map Φ is both R-linear and A-linear. Therefore, if A is finite étale,

A and HomR(A,R) are isomorphic both as R-modules and as A-modules. The map Φ

described above sends the identity 1 to the element Tr. In other words, considered as an

A-module, HomR(A,R) must be free of rank 1, with the trace map Tr as a basis element.

There is a notion of general étale which is not restricted by the condition of finiteness, but

it will not be used in this course, and we may free our minds of its existence.

We leave the slight generalization for projective modules to the reader.

Example. Let us take again the case A = Q(
√

5), R = Q. We consider the action of the

map Φ on the basis elements 1,
√

5 of A.

We examine what our map Φ:Q(
√

5)→ HomQ(Q(
√

5),Q) does on the basis elements

of Q(
√

5), 1 and
√

5.

1 7→
{

1 7→ 2√
5 7→ 0

√
5 7→

{
1 7→ 0√
5 7→ 10

Thus if we use as our basis elements for HomQ(Q(
√

5),Q) the two maps φ1, φ2 where

φ1(1) = 1, φ1(
√

5) = 0, φ2(1) = 0, φ2(
√

5) = 1, the transformation matrix associated to Φ

with respect to this basis is
[

2 0
0 10

]

,

which is nonsingular. Hence Q(
√

5) is finite étale over Q.

We note that the same computation as above shows that Z[
√

5] is not finite étale over

Z, since 20 is not invertible in Z.

Let L, K be fields, L a finite extension of K of degree n. Then L is finite étale over

K if and only if the trace map Tr:L→ K is not the zero function, as we will show in the

next lemma. In other words, we have a sequence of implications

charK = 0⇒ n 6≡ 0 mod charK

⇒ Tr(1) 6= 0

⇒ L is finite étale over K.

Lemma. Let L, K be fields, and L a finite extension of K of degree n. Then L is finite

étale over K if and only if the trace map Tr:L→ K is not the zero function.

Proof. Recall from previous observations that HomL(L,K) is an L-vector space. Since the

dimension of HomK(L,K) as a K-vector space is n, we know from linear algebra that
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dimL(HomK(L,K)) = 1. Hence Φ is an isomorphism exactly when the trace map spans

the one-dimensional space, which happens exactly when it is nonzero.

As an immediately corollary, we see that every finite extension of a field of character-

istic zero is finite étale. For vocabulary’s sake, we introduce another term.

Definition. Let L be a finite extension of K. We say L is separable over K if L is finite

étale over K.

The reader may already be familiar with the notion of separability in connection with

the number of possible extensions of embeddings of K into an algebraically closed field K̄.

It turns out that the definitions are equivalent, but this will be shown later.

It may sound to the reader as if all field extensions are finite étale; we now give a

counterexample. Let K = Fp(t), the field of rational functions over Fp, and L = K( p
√
t),

where we adjoin the p-th root of the variable t. Then this extension is inseparable, since

the trace map is identically zero.

We collect here some properties of finite étale algebras which will be useful in the

sequel.

(i) Viewed as an R-algebra, R itself is finite étale over R. That R is free, of rank 1, is

obvious. Furthermore, the above map Φ (from the definition prior to the last) sends

an element r to its corresponding element in its dual, HomR(R,R), and this is clearly

an isomorphism.

(ii) If A and B are both finite étale over R, so is A×B (as an R-algebra), and conversely.

We will not give a full explanation, but will sketch the reasons here. That A×B is

free of finite rank as an R-module is again clear. The trace over A×B of an element

(a, b) ∈ A× B is

Tr(A×B)/R(a, b) = TrA/R(a) + TrB/R(b).

We see this by writing the matrix representation of the maps µa, µb by picking some

appropriate basis; i.e. we have
[
M 0
0 N

]

.

Also, as R-modules, we have already seen that

HomR(A× B,R) ∼= HomR(A,R)×HomR(B,R).

(iii) If we give the R-module Rn an R-algebra structure through componentwise multipli-

cation, it is also finite étale. This result follows directly from the last two. Note that

this is true even if n = 0, meaning that the zero ring is trivially finite étale over R.
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An R-algebra A is called totally split if A ∼= Rn, as R-algebras (not as R-modules!),

for some n <∞.

(iv) We have already discussed the extension of scalars functor, and we shall now introduce

notation to accompany it: If R′ is a commutative R-algebra, we denote R′⊗RA by A′.

So if A is finite étale over R, then A′ is finite étale over R′. To prove this, we simply

check that the change of scalars functor preserves all the relevant properties involved.

As an R-algebra, R′ is equipped with a homomorphism f :R→ R′. Then for all a ∈ A
and its corresponding a′ = a⊗R 1 ∈ A′, we have

f(TrA/R(a)) = TrA′/R′(a
′).

In other words, if M ∼= Rn as an R-module, the following diagrams commute:

HomR(M,M) −→ HomR′(M
′,M ′)

Trace



y



yTrace

R
f−→ R′

A
R′⊗R−−→ A′

ΦA



y ΦA′



y

HomR(A,R) −→ HomR′(A
′, R′).

In fact, in the top diagram, the right trace map is equal to the tensor product of the

left map with f , modulo the necessary identifications. The proof that these diagrams

commute is straightforward.

(v) Moreover, if R′ is free and non-zero as an R-module, we have the following result:

A is finite étale over R ⇔ A′ is finite étale over R′.

Namely, if R′ is free, the converse of (iv) also holds. To show this, we need to show

that the map ΦA:A → HomR(A,R) is an isomorphism if and only if the induced

map ΦA′ :A
′ → Hom′R(A′, R′) is an isomorphism. Since R′ is free as an R-module, we

have a module-isomorphism R′ ∼=R R
(S). (Note that S 6= ∅, since R′ is assumed to be

nonzero.) Then A′ = A(S), as before, and moreover

HomR′(A
′, R′) = (HomR(A,R))(S).

But then ΦA′ = Φ
(S)
A , so clearly ΦA is an isomorphism if and only if ΦA′ is an

isomorphism.
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This already leads us to some interesting results which we could have proved earlier,

but from a different perspective.

Example. Let f ∈ Q[x] an irreducible monic polynomial. Then

Q[x]/(f) = Q[x]/fQ[x]

is a finite field extension of Q, and since the characteristic of Q is zero, this is finite étale.

Following the above notation, let A = Q[x]/(f), R = Q, R′ = C. Then we know that

A′ = A⊗Q C is finite étale over C.

Let us examine more closely the tensor product A⊗QC. This is precisely C[x]/fC[x].

To see this, we use the exactness properties of the tensor product. We have the exact

sequence

Q[x]
·f−→Q[x]

π−→Q[x]/(f)→ 0,

which we can tensor with C. Since C⊗Q Q[x] = C[x], we have

C[x]
·f−→C[x]→ A⊗Q C→ 0

is an exact sequence. Notice, however, that we know the structure of A ⊗Q C explicitly.

Since f is irreducible, we know that each factor (x− a) in the factorization of f in C[x] is

of multiplicity one, i.e.

f =

t∏

i=1

(x− ai)m(i) =

t∏

i=1

(x− ai),

where the roots ai are distinct. So the Chinese Remainder Theorem says

C[x]/fC[x] ∼=
∏

ai

C[x]/(x− a)C[x]

∼= Cdeg(f),

as C-algebras. So A⊗Q C is totally split over C, so certainly finite étale.

In fact, we can describe the category of totally split K-algebras, TotallySplitAlgK ,

with K-algebra morphisms between them. We now describe in detail these morphisms. The

objects in this category are the K-algebras isomorphic (as K-algebras) to Kn, for some

n ∈ Z≥0. Given two such objects Km, Kn, a morphism Φ between them is equivalent to

giving n morphisms φi:K
m → K, since the Kn is a direct product. Hence to count the

number of possible morphisms from Km to Kn, it suffices to count the number of possible

K-algebra homomorphisms from Km to K. Each of them is certainly a surjective map,

since it is K-linear. But the kernel must be a maximal ideal, since the image is a field.

111



But we have already described all maximal ideals of a product of rings, and since each

component is a field, we see that the only possible K-linear maps are the projections.

Hence we have mn possible morphisms.

We note that this is the reverse of what happens in the category of sets, where there

are nm possible morphisms from a set of size m to a set of size n. We have the following

theorem.

Theorem. For any field K, the category TotallySplitAlgK of totally split K-algebras

is anti-equivalent to the category FiniteSet of finite sets.

The theorem actually holds in more generality, for the category of totally split R-

algebras, where R commutative and connected. In other words, we can define contravariant

functors

F :TotallySplitAlgR → FiniteSet

A 7→ {R-algebra homomorphisms Φ:A→ R},
and G:FiniteSet→ TotallySplitAlgR

S 7→ RS = {maps f :S → R}.

We can exhibit isomorphisms of the functors 1TotallySplitAlgR
→ GF and 1FiniteSet → FG.

For instance, an isomorphism between A and GF (A) = {maps: AlgebraK(A,K) → K}
is given by taking the element a to (f 7→ f(a)), the evaluation homomorphism.

Before we go on to the discussion of more general finite étale K-algebras, we note one

more fact.

Theorem. Let K be a field, A a totally split K-algebra, and B ⊂ A a sub-K-algebra.

Then B is also totally split.

Proof. Note first that any sub-K-algebra is by definition also a subring, and hence contains

the unit element. Without loss of generality, we consider A = Kn for some finite n ∈ Z≥0.

The n projection maps Kn → K restricted to B give surjective K-algebra maps B → K.

(The map is surjective since B contains the unit, and the projections πi are K-linear.) The

kernels M1,M2, . . . ,Mn of the πi are maximal ideals since the image is a field in each case,

and the intersection is trivial, since if πi(x) = 0 for each projection, then x = 0 ∈ Kn.

Note that we do not know that the Mi are pairwise distinct. We take some sub-

set M1,M2, . . . ,Mt which are pairwise distinct, with t maximal. Then they are pairwise

coprime. We still have
⋂t
i=1Mi = 0, so by the Chinese Remainder Theorem,

B ∼= B/(
t⋂

i=1

Mi) ∼=
t∏

i=1

B/Mi
∼= Kt.
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Thus B is also totally split, as required.

Note that this theorem is not a consequence of the previous theorem about the category

of totally split K-algebras. This proof depends upon the fact that K is a field, whereas (as

we have already noted) the anti-equivalence of categories holds in more generality.

Example. We give a counterexample to the above theorem in the case of an R-algebra, R

not a field. Consider

A = {(a, b) ∈ Z× Z : n ≡ m (mod 2)} ⊂ Z× Z.

Then A is a sub-Z-algebra of a totally split Z-algebra, but is not totally split over Z. In

fact, it is not even finite étale over Z.

There is a theorem (which we will not prove) which states that a Z-algebra is finite

étale if and only if it is totally split. Recall that this is not the case for the rationals Q or

for the reals R, but is the case for the complex numbers C; any finite field extension of Q

is finite étale but certainly does not need to be totally split.

We now make a definition which will allow us to classify certain K-algebras which are

particularly simple in structure.

Definition. A field K̄ is called separably closed if it has no finite separable field exten-

sion, except K̄ itself.

Theorem. Let K be a field, and A a K-algebra. Then A is finite étale if and only if A

is isomorphic (as a K-algebra) to the finite product
∏
Li for certain finite separable field

extensions Li ⊃ K. In particular, if K̄ is separably closed, then A is finite étale if and only

if A is totally split.

Proof. The “if” direction is clear. In the “only if” direction, let A be a finite K-algebra, so

A is isomorphic to a finite product of A/Mn(M), for maximal ideals M ⊂ A. So A is finite

étale if and only if each A/Mn(M) is finite étale.

We claim M ∼= Mn(M). Let Ã = A/Mn(M), and M̃ = M/Mn(M). Let a be an element

of M̃ . Then the endomorphism in Ã defined by x 7→ ax is clearly nilpotent. From linear

algebra we know that the trace of any nilpotent endomorphism is 0. So the image of the

trace map TrÃ/K restricted to M̃ is {0}. We know that Ã is finite étale, so the mapping

from Ã to HomK(Ã,K) defined by

b 7→ (c 7→ Tr(bc))

is an isomorphism. So every f ∈ HomK(Ã,K) “kills” M̃ . This means that the kernel M̃

must be trivial. So since M̃ is trivial, we know that M = Mn(M), proving the claim.
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So each Ã is A/M , which is a field. Therefore, A is the product of fields, which must

be finite separable extensions of K. In particular, if K̄ is separably closed, each Li = K̄,

so A is finite étale if and only if A is totally split.

We mention here a few facts about algebraic closures of fields, with which we assume

the reader is already familiar.

Definition. Let K̄ be a field. We say K̄ is algebraically closed if the only field extension

L of K̄ which is finite is L = K̄ itself.

Definition. A field extension K̄ of K is an algebraic closure of K if these conditions

are satisfied:

(i) K̄ ⊃ K is algebraic, i.e. every element β ∈ K̄ is the root of some polynomial in K[x].

(ii) K̄ is algebraically closed.

So the definition of an algebraically closed field matches the definition of a separably

closed field identically, but without the word “separable.” Thus any algebraically closed

field is automatically separably closed. The condition of separable closure is therefore

weaker than algebraic closure, but it turns out that it is not much weaker. For example,

the conditions are the same if K̄ has characteristic 0.

We mention two useful facts, the proofs of which can be found in Lang (Ch. V §2).

Theorem. Every field K has an algebraic closure.

Theorem. Let K, L be fields, and σ:K → L a field isomorphism. Suppose K ⊂ K̄, an

algebraic closure of K. Then if L̄ is an algebraic closure of L, there exists an isomorphism

τ : K̄ → L that extends σ.

It is important to note in the latter fact that the isomorphism τ is usually not unique.

Hence, although some authors refer to the algebraic closure of a field K, one should in fact

refer to an algebraic closure. (Similarly, one speaks of a field of order q = pn, where p is

prime, since the isomorphism between fields of order q is not canonical if n > 1.)

We also assume that the reader is familiar with some elementary properties of algebraic

closures. For instance, given L ⊃ K an algebraic extension and L̄ an algebraic closure of

L, then L̄ is also an algebraic closure of K.

We indulge next in a casual and motivational comparison of the classical and modern

approaches to Galois theory. In all current textbooks, Galois theory is studied using finite

separable field extensions L of a given base field K. Our approach follows that of the

Grothendieck formulation, in which the objects under consideration are finite étale K-

algebras A. We now consider the relation between the two perspectives.
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Recall that we have shown earlier on that all finite étaleK-algebras are a finite product

of finite field extensions of K, i.e. given a finite étale K-algebra A,

A ∼=K

t∏

i=1

Li,

where each Li is a finite separable extension.

One can see from this decomposition of finite étale K-algebras that there is only a

marginal difference, so to speak, between the objects under study in the modern formu-

lation and those in the classical formulation. We have already emphasized that products

of rings are rarely more interesting than the individual rings. One could still ask, nev-

ertheless, why we have decided to consider such products of field extensions in the first

place—especially if they are no more interesting than their components. It turns out that

finite étale algebras satisfy some crucial properties which finite field extensions do not.

Recall that many “good” properties of an R-algebra A were preserved under base changes,

as has been observed previously. We refer the reader back to the previous section. For in-

stance, we already know that for a finite extension L of a field K and a finite-dimensional

algebra A over K, A is finite étale over K if and only if A′ = A⊗K L is finite étale over

L. Hence the property of being finite étale is preserved under base changes. We have the

following diagram.
A⊗K L

↗ ↖ f.é.

A L

f.é. ↖ ↗

K

On the other hand, what is the situation in classical Galois theory? Perhaps the

analogous statement is true. Namely, given a field K and two field extensions L and L′, is

it true that L is finite separable over K if and only if L⊗K L′ is finite separable over L′?

L⊗k L′

↗ ↖ finite separable

L L′

finite separable ↖ ↗

K

The question may at first seem odd, since we have defined an extension to be separable

if it is finite étale. However, it is not necessarily the case that the object L⊗K L′ is again

a field, so in fact the diagram above does not hold, as the following example illustrates.
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Example. LetK = Q, L = Q(
√

5), L′ = R. Then L⊗KL′ = Q(
√

5)⊗QR = R[x]/(x2−5) =

R × R. This is clearly not a field, so we cannot even hope that it is a finite separable

extension.

So we see that in order to preserve the “good” qualities of extensions under base

changes, it is necessary to expand the universe under our consideration.

We now proceed to some further results which make it clear why it is easier to talk

about finite étale algebras than finite separable extensions. Recall that a separably closed

field is one for which there does not exist any finite separable extension except itself. Since

any field has an algebraic closure, any field is contained in a separably closed field.

Theorem. Let K be a field, K̄ a separably closed field extension of K. Let A be a K-

algebra, and define AK̄ = A ⊗K K̄. Then A is finite étale over K if and only if AK̄ is

totally split over K̄.

Proof. This follows from our previous results as the following sketch shows. We know

already that A is finite étale over K if and only if AK̄ is finite étale over K̄. By previous

results, AK̄ is a finite product of finite separable extensions Li of K̄. Since K̄ is separably

closed, each such Li is K̄ itself. Hence AK̄ = K̄n for some finite n and hence is totally

split over K̄.

Corollary. Let A be a finite étale algebra over a field K, and B ⊂ A a sub-K-algebra.

Then B is also finite étale over K.

Proof. Again, we give a sketch of the proof. The inclusion map B ↪→ A gives an inclusion

BK̄ ↪→ AK̄ . That is, given the exact sequence

0→ B → A,

we use the fact that the tensor product − ⊗ K̄ is an exact functor (i.e. a free module is

flat) and see that

0→ BK̄ → AK̄

is also an exact sequence. By the previous theorem, AK̄ is totally split over K̄, and (being

a sub-K̄-algebra) BK̄ is also totally split over K̄, and hence B is finite étale over K.

Note that if L is a field extension of K and A is an L-algebra, we can view A as a K-

algebra in a natural way. Namely, if A is an L-algebra, then there exists a homomorphism

Φ:L→ A. Since we also have the inclusion map K ↪→ L, we compose the two maps to get

a homomorphism Φ′:K → A, and this yields the K-algebra structure on A.
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Theorem. Let L ⊃ K be a finite separable extension of fields. Let A be a finite étale

L-algebra. Then A is also finite étale over K.

Proof. We give a sketch of the proof. We tensor everything with K̄, where K̄ is a separably

closed field extension of K. That is, we have two sequences

K −→ L
f.é.−→ A

K̄ −→ LK̄
f.é.−→ AK̄

and since K̄ is separably closed, LK̄ = K̄n, since LK̄ is finite étale. It can be shown

routinely that any algebra A over a product of rings R1 × R2 is actually a product of

algebras A1 × A2. The proof follows that for the case of modules over a product of rings.

If A is an algebra over R = R1 × R2, then A is finite étale if and only if A1 is finite étale

over R1, and A2 is finite étale over R2. We leave this for the reader. Since AK̄ above is

finite étale over K̄n, this means AK̄ = B1 × B2 × · · · × Bn, where each Bi is finite étale

over the i-th component ring K̄ of K̄n. Each Bi is totally split over K̄, since K̄ separably

closed. So AK̄ is a finite product of copies of K̄, and hence totally split over K̄. Hence by

our previous theorem, A is finite étale over K.

We can now begin to compare our results with results which may appear more familiar

to the reader acquainted with classical Galois theory. First we introduce the notion of a

derivative.

Definition. Let R be a commutative ring, and let R[x] be the ring of polynomials. For

any polynomial f ∈ R[x] such that

f =
t∑

i=0

rix
i,

we define the derivative of f to be the polynomial f ′ ∈ R[x], where

f ′ =
t∑

i=1

irix
i−1.

Theorem. Let k be a field, and let f ∈ K[x] be a non-zero polynomial. Then K[x]/fK[x]

is finite étale over K if and only if gcd(f, f ′) = 1, or equivalently, fK[x] + f ′K[x] = K[x].

In fact, this statement is valid not just in the case of fields, but for any commutative

ring.

Before proving the theorem, we remind the reader of a useful fact. Note that we

can always normalize our polynomials to be monic; this allows us to define the greatest

common divisor of two polynomials uniquely. Recall that f is divisible by g if and only if f

is contained in the ideal (g) generated by g. Hence we define the greatest common divisor

of two polynomials f, g to be the unique monic generator of the ideal (f, g). (We assume

the ideal is non-zero.)
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Lemma. Let K be a field, L ⊃ K a finite extension, and f ∈ K[x] a non-zero polynomial.

Then

(gcd(f, f ′) ∈ K[x]) = (gcd(f, f ′) ∈ L[x]).

Proof. The greatest common divisor of f and f ′ in K[x] is characterized by being the monic

polynomial with the property

fK[x] + f ′K[x] = gcd(f, f ′)K[x].

If this holds for K then upon multiplying this identity by L[x] one sees that it also holds

for L. This proves the lemma.

We now prove the theorem.

Proof. Let K̄ be algebraically closed, and K ⊂ K̄. We now reduce the proof of the theorem

to the corresponding result over K̄. We already know from a theorem earlier on that

K[x]/(f) is finite étale if and only if K̄[x]/(f) is finite étale (and since K̄ separably closed,

totally split) over K̄. Since K̄ is algebraically closed, f splits linearly in K̄[x], i.e.

f =
<∞∏

i

(x− ai)ni .

Hence K̄[x]/(f) is totally split if and only if each K̄[x]/(x − ai)ni is finite étale over K̄.

This is true if and only if each factor is linear, i.e. ni = 1, for all i. Hence f can have no

double roots in K̄, and hence K̄[x]/(f) is finite étale over K̄ if and only if gcd(f, f ′) = 1.

We can now define the notion of separability for an element α ∈ L, a finite extension

of K. Let fαK = Irr(α,K) be the unique monic irreducible polynomial f of α over K. Then

we know that

K(α) ∼=K K[x]/(f).

Definition. Let α, L, K and f be as above. Then α is separable over K if K(α) is

separable over K, or equivalently, if f and f ′ are coprime.

Under what conditions is an element α not separable over a field K? When we parse

down the requirements, we see that in fact, this occurrence is relatively rare. (A field

in which this never happens—i.e. every finite extension is separable—is called perfect.)

Suppose α is not separable over K. Then f and f ′ are not coprime, but since f is an

irreducible polynomial, this immediately implies that f divides f ′. But since f ′ is of degree

strictly less than f , this means that f ′ = 0. Recall that the derivative of any non-zero

polynomial f =
∑n
i=0 aix

i is defined to be f ′ =
∑n
i=1 iaix

i−1. Since at least one of the ai
is non-zero, if f ′ is zero, this means that the characteristic of K is positive; let char(K) =
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p > 0. Since each iai = 0, each i is a multiple of p, and we have that f = g(xp), for some

g ∈ K[x]. Since f is irreducible, this implies that the Frobenius map F :K → K which

sends a 7→ ap can not be surjective. Otherwise, f would be reducible, namely

f =
n∑

i=1

aix
ip =

n∑

i=1

bpi x
ip = (

n∑

i=1

bix
i)p.

(Recall that (a+ b)p = ap + bp in characteristic p.) In particular, since the Frobenius map

is always surjective for finite fields, we have just shown that any finite extension of a finite

field is separable.

We are now in a position to prove the equivalence of the conditions of separability.

Theorem. Let L be a finite field extension of K. The following are equivalent:

(i) L is separable over K (i.e. it is finite étale).

(ii) Every element α ∈ L is separable over K.

(iii) L = K(α1, α2, . . . , αt), where each αi is separable over K.

Proof. (i)⇒ (ii). Let α be any element in L. We have a tower of extensions K ⊂ K(α) ⊂ L,

where K(α) is a sub-K-algebra of L. We have already seen that a subalgebra of a finite

étale algebra over K is also finite étale. Hence α is separable.

(ii) ⇒ (iii). Since L is a finite extension, and in particular a finite dimensional vector

space over K, we can certainly write L = K(α1, α2, . . . , αt). Since each element in L is

separable, so is each αi.

(iii) ⇒ (i). Suppose L = K(α1, α2, . . . , αt), and each αi is separable over K. We can

do this by induction on t. Recall that if K ⊂ L ⊂ M is a tower of extensions and L is

separable over K and M is separable over L, then M is also separable over K. We can

apply this theorem and do a straightforward induction, provided that we know that αt
is separable over K ′ = K(α1, α2, . . . , αt−1). To show this, we only need to show that the

irreducible polynomial of αt is coprime to its derivative. Hence it would suffice to show

that it has no double roots. But since the irreducible polynomial Irr(αt, K
′) of αt over K ′

must divide the irreducible polynomial Irr(αt, K) of αt over K, since αt is separable over

K, this implies that Irr(αt, K
′) also has no double roots. Hence L is separable over K, as

required.

We now consider the separable closure of a field K, which will have useful properties

somewhat akin to those of algebraic closures. Let K be a field, and K̄ an algebraic closure

of K. Let Ks be the subset of K̄ of elements which are separable over K. Then Ks is a

subfield of K̄. To show this, we must show that the sum, product, and other algebraic

relatives of two elements α, β of Ks are also contained in Ks. However we know already

from the previous argument that if α and β are separable over K, K(α, β) is separable
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(i.e. finite étale) over K. But then any element γ ∈ K(α, β) is separable over K. So in

particular, α+β, αβ, α−1, β−1, . . ., are all separable over K. Hence Ks is actually a subfield

of K̄.

This subfield Ks satisfies certain properties which we will later make into a definition.

(i) First, it is algebraic over K, since each element is the root of some polynomial in K[x].

Moreover, each element is separable over K. Both of these follow from the definition

of Ks.

(ii) Second, Ks is separably closed, i.e. it has no finite separable extension except itself.

Proof. Let L be a finite separable extension of Ks. Let α ∈ L be an element of this

extension; we would like to show that α ∈ Ks. Consider the tower of extensions Ks ⊂
Ks(α) ⊂ L. We know that α is separable over Ks (L is a separable extension of Ks), but

we want that it is separable over K. Now consider the irreducible polynomial of α over

Ks, Irr(α,Ks) =
∑n
i=1 βix

i. Since α is the root of a polynomial in K(β1, β2, . . . , βn)[x], it

is separable over this subfield K(β1, β2, . . . , βn) of Ks. We now have a tower of extensions

K ⊂ K(β1, β2, . . . , βn) ⊂ K(β1, β2, . . . , βn, α), each step of which is separable. Hence the

whole thing is separable and hence α is separable over K.

Definition. We call a field extension L̄ of K a separable closure of K if it is algebraic

over K, every element of L̄ is separable over K, and L̄ is separably closed.

Our discussion above shows that every field has a separable closure, since we can just

look at the subfield Ks of an algebraic closure. Moreover, a separable closure is unique

in precisely the same fashion as an algebraic closure. Namely, if K,K ′ are fields with

separable closures K̄, K̄ ′, respectively, and there exists σ : K → K ′ an isomorphism, then

there exists an isomorphism τ : K̄ → K̄ ′ of their separable closures which extends σ. As in

the case of the algebraic closures, this extension τ is by no means unique, except in the

case when it is not an extension at all—namely, when K,K ′ are already separably closed.

In fact, if Ks and K ′s are separably closed, and K̄s, K̄ ′s are algebraic closures, then τ is

unique.

(A word about notation. From here on, we will place a bar over a field to designate

either separable closure or algebraic closure. We hope that it will be clear from the context

which is meant.)
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11. Exercises

11.1. Let G be a finite abelian group, and let k be a field of characteristic not dividing

the order of G. Denote by k[G] the group ring of G over k, viewed as a k-algebra.

(a) For each g ∈ G, viewed as an element of k[G], compute the trace Trk[G]/k(g), and

prove that k[G] is finite étale over k.

(b) Suppose that k is separably closed. Prove that k[G] is, as a k-algebra, isomorphic

to the product of #G copies of k, and deduce that the number of group homomorphisms

G→ k∗ equals #G.

11.2. Let R be a commutative non-zero ring, R[t] the polynomial ring in one variable t

over R, and M a free R-module of finite rank n. Let a be an R-endomorphism of M , and

f = det(t − a) ∈ R[t] the characteristic polynomial of a; this is the determinant of the

R[t]-endomorphism 1M ⊗ t − a ⊗ 1 (= t − a) of the free R[t]-module M ⊗R R[t]. Prove

Newton’s identity

f ′

f
=
∞∑

m=0

Tr(am)

tm+1

in the ring R[[1/t]][t] of formal Laurent series in 1/t over R. (Hint. One way to proceed is

to rewrite this as f ′/f = Tr
(
1/(t − a)

)
, properly interpreted. To compute Tr

(
1/(t − a)

)
,

take a second variable u, and consider the coefficient of det
(
u− (t− a)−1

)
at un−1.)

11.3. Let R be a commutative ring, and let A be the R-algebra R[X]/(X3−X − 1)R[X].

Prove that A is finite étale over R if and only if 23 ∈ R∗.
11.4. Let R be a commutative ring, f ∈ R[X] a monic polynomial, and A the R-algebra

R[X]/fR[X]. Write n = deg f and α = (X mod f) ∈ A.

(a) Prove that 1, α, . . . , αn−1 is an R-basis for A, and that A is finite étale over

R if and only if the determinant of the matrix
(
TrA/R(αi+j)

)n−1

i,j=0
belongs to R∗; that

determinant is called the discriminant of f .

(b) Define π:A → R by π
(∑n−1

i=0 riα
i
)

= rn−1, for r0, r1, . . . , rn−1 ∈ R. Prove that

HomR(A,R) is A-free of rank 1, a basis being given by π.

(c) Prove that the characteristic polynomial of the R-linear map A→ A sending x to

αx equals f(t).

11.5. Let R, f , A, n, α, π be as in Exercise 11.4.

(a) Let i be a non-negative integer, and denote by f ′ the derivative of f . Prove that

the element
∑∞
m=i TrA/R(αm) · ti−m−1 · f(t) of R[[1/t]][t] actually belongs to R[t]; that it

has degree < n in t; and that it equals the remainder of f ′(t) · ti upon division by f(t).

(Hint. Use Newton’s identity from Exercise 11.2.)

(b) Prove: TrA/R = f ′(α) · π. Prove also that A is finite étale over R if and only if

f ′(α) ∈ A∗, and if and only if f ′R[X] + fR[X] = R[X].
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11.6. Let k be a field, p a prime number, and a ∈ k∗.
(a) Prove: Xp − a is irreducible over k if and only if it has no zero in k.

(b) Prove: the trace map k[X]/(Xp − a)k[X]→ k is zero if and only if char k = p.

(c) Give an example of a finite inseparable (i. e., not separable) extension of fields.

11.7. Let R be a commutative ring that is connected (see Exercise 1.33).

(a) Let n be a non-negative integer, and let A be the totally split R-algebra Rn. Prove

that any R-algebra homomorphism A→ R is equal to one of the n projections.

(b) Prove that the category TsR of totally split R-algebras is anti-equivalent to the

category sets of finite sets.

11.8. Let R be the field of real numbers, and let G be a group of order two.

(a) Prove that an R-algebra A is finite étale if and only if there exist non-negative

integers n, m such that A ∼=R Rn ×Cm (as R-algebras).

(b) Prove that the category FEtR of finite étale R-algebras is anti-equivalent to the

category Gsets of finite G-sets, in which the morphisms are the G-maps.

11.9. Let R be a commutative ring, R′ a commutative R-algebra, and let the notation M ′,

f ′ be as in Exercise 10.14. Let A be an R-algebra that is finitely generated and projective

as an R-module. In class we exhibited an isomorphism ϕ: HomR(A,R)′
∼−→ HomR′(A

′, R′).

(a) Verify that when the A-linear map A → HomR(A,R) sending 1 to TrA/R is ten-

sored with 1R′ and next composed with ϕ, we obtain the A′-linear map A′ → HomR′(A
′, R′)

sending 1 to TrA′/R′ . (You may take the result of Exercise 10.14 for granted.) Conclude:

if A is finite étale over R, then A′ is finite étale over R′.

(b) Suppose that R′ is faithfully flat as an R-module (see Exercise 10.17). Prove: A is

finite étale over R if and only if A′ is finite étale over R′.

11.10. Let R be a commutative ring, and R′ a commutative R-algebra that is faithfully

flat over R. Let A be a commutative R-algebra, and write A′ = A⊗RR′. Prove: A is finite

étale over R if and only if A′ is finite étale over R′. (You may take the result of Exercise

10.19(b) for granted.) (Note. This is a little sharper than Exercise 11.9(b), in which it is

already assumed that A is finitely generated and projective as an R-module.)

11.11. (a) Supply the details of the following proof that every field k has an algebraic

closure: the “infinite tensor product” R =
⊗

f k[X]/fk[X] (taken over k), with f ranging

over the non-constant polynomials f ∈ k[X], is a non-zero k-algebra, and if m ⊂ R is any

maximal ideal, then k′ = R/m is an algebraic field extension of k in which every non-

constant polynomial f ∈ k[X] has a zero; the union of the fields k ⊂ k′ ⊂ k′′ = (k′)′ ⊂
k′′′ ⊂ . . . is now an algebraic closure of k.

(b) Supply the details of the following proof of the theorem that any field isomorphism

k → l can be extended to an isomorphism between any algebraic closures K and L of k
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and l, respectively: the ring K⊗k L is non-zero, and for any maximal ideal n ⊂ K⊗k L the

natural maps g:K → (K ⊗k L)/n and h:L→ (K ⊗k L)/n are isomorphisms; the required

isomorphism K → L is now h−1g.

11.12. A field k is called perfect if every finite extension k ⊂ l is separable. Prove: k is

perfect if and only if either char k = 0, or char k = p > 0 and the map F : k → k defined

by F (a) = ap is a field automorphism.

(a) Give an example of a field that is not perfect.

(b) Let k ⊂ l be a finite extension of fields. Prove: k is perfect if and only if l is perfect.

11.13. Let k be a field. An algebraic extension l of k (possibly infinite) is called separable

if every element of l is separable over k. (In class we showed that, for finite extensions

of fields, “separable” is the same as “finite étale”.) A field extension K of k is called a

separable closure of k if K is separably closed and separable algebraic over k.

(a) In class the existence of separable closures was proved. Prove: if k, l are fields,

and K, L are separable closures of k, l, respectively, then any isomorphism k → l can be

extended to an isomorphism K → L.

(b) Let k ⊂ l be a field extension, and let L be a separable closure of l. Prove that L

contains a separable closure of k. Prove also that L itself is a separable closure of k if and

only if l is separable algebraic extension of k.

12. The main theorem of Galois theory

We define a notion from the homework exercises which will show up later in our Galois

theory.

We give the definition from Lang, Ch. I, Section 10. An inversely directed family of

finite groups is a family {πi}i∈I of finite groups πi, where I is a directed partially ordered

set, together with a family of group homomorphisms

f ji :πj → πi,

one for each pair of elements i, j ∈ I with j � i, such that the following compatibility

conditions hold: for k � i � j, we have

f ik ◦ f ji = f jk , and f ii = id .

The inverse limit of the family is defined to be a closed subset of the product
∏

i∈I πi,

where each finite group πi is given the discrete topology and the product is given the

product topology. Namely, we let the inverse limit

π = lim
←

i∈I
πi
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consist of elements 〈xi〉 ∈
∏

i∈I πi such that for all i and j � i we have f ji (xj) = xi. This

can be easily verified to be a closed subgroup of the product.

We call a group which is an inverse limit of finite groups a profinite group. Note that

we can give π the subspace topology, which makes it into a topological group. It turns out

that we can characterize, by topological conditions, those topological groups which can be

written as an inverse limit of finite groups.

Theorem. A topological group is profinite if and only if it is Hausdorff, compact, and

totally disconnected.

An example of a topological group which is compact and Hausdorff, but not totally

disconnected and hence not profinite, is the circle group, R/Z. It is easy to see, at least,

that any profinite topological group satisfies the three given conditions, but the other

direction is harder. The interested reader can find further information in Hewitt and Ross,

Abstract Harmonic Analysis.

Definition. Let π be a profinite group which acts on a set S. We say this action is

continuous if for all s′ ∈ S the set

{(σ, s) : σs = s′}

is open in the product topology on π × S, where π has been given the profinite topology,

and S is taken with the discrete topology.

In other words, the action is continuous if the map π × S → S defining the action is

continuous, if S is given the discrete topology and π × S is given the product topology.

Profinite groups are at the center of our discussion of Galois Theory. One profinite

group in particular is at the core of our investigation.

Definition. Let K be a field, and let K̄ be a separable closure. The fundamental group

or absolute Galois group of K is the group of K-automorphisms of K̄.

The fundamental group can be denoted alternatively as π, πK , G, or GK , depending

on how obvious the field K in question is, and whether we are examining the group from

a more topological or more algebraic perspective.

It is important to recognize that we have defined the fundamental group by using a

not-necessarily-unique separable closure K̄. It is reasonable to ask how a different choice

of the separable closure would affect the fundamental group. We know that the separable

closure of a field, while not unique, is unique up to (non-unique) isomorphism. It follows

that the fundamental group is also unique up to an isomorphism that is itself unique up

to an inner automorphism.

Examples.
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(i) If K = C, then K̄ = C, so π is trivial.

(ii) If K = R, and K̄ = C, then the only R-automorphisms of C are the identity and

complex conjugation. So π ∼= Z/2Z.

Let K be any field. We show that the fundamental group π of K can be viewed as a

profinite group. Let F be the set of monic polynomials f ∈ K[X] with gcd(f, f ′) = 1, and

for each f ∈ F let Z(f) be the set of zeroes of f in K̄. For any polynomial f ∈ F , the

set Z(f) is finite, with cardinality equal to the degree of f , since each root of f lies in K̄.

Moreover, since each element of K̄ is the root of a monic polynomial of this type, we have

the equality
⋃

f∈F
Z(f) = K̄.

Furthermore, for any root α of f and any element σ ∈ π, the image σ(α) is also a root

of f . Namely, if f =
∑

i aix
i, then we have

f(σα) =
∑

ai(σ(α))i =
∑

σ(ai)(σ(α))i = σ
(∑

aiα
i
)

= σ(f(α)) = σ(0) = 0.

Hence π acts on Z(f) for each f . Let G(f) ⊂ SymZ(f) be the image of the resulting map

π → SymZ(f); the group G(f) is called the Galois group of f . One now readily checks

that the induced map from π to the projective limit of the groups G(f) (with F ordered by

divisibility) is an isomorphism. Since all groups G(f) are finite, this shows that π has the

structure of a profinite group. In particular, π has a natural topology, which is called the

Krull topology, after the German algebraist Wolfgang Krull (1899–1971). In this topology

on π, two elements σ and τ are “close” to each other if they agree on a “large” finite subset

of K̄. More formally, let E be a finite subset of K̄, and let σ be an element of π. Then

Uσ,E = {τ ∈ π : τ |E = σ}

is open, and these Uσ,E form a basis for the topology on π. The reader should check that

this is equivalent to the definition we gave earlier for the topology of a general profinite

group.

We are now about to state and prove the Main Theorem of Galois theory. We should,

however, ask the reader to remember that we have left many questions unanswered about

the fundamental groups of fields. Indeed, we have yet to explore some basic concrete

examples, such as the fundamental group of Q.

Our version of the Main Theorem follows Grothendieck’s formulation. Recall an earlier

theorem that the category of totally split K-algebras is anti-equivalent to the category of

finite sets. We now wish to generalize this statement. (In fact, the previous theorem will

play an important role in the proof of the generalization.) First, we define the category
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π-FiniteSet of finite sets equipped with a continuous action of the profinite group π, the

automorphism group of the algebraic closure of K. The morphisms between objects in

this category are the maps which preserve the π-action, i.e., given objects S, T in this

category, the morphisms from S to T are the maps f :S → T satisfying f(σs) = σf(s) for

all σ ∈ π and all s ∈ S. We can also define the category KFiniteÉtaleAlg of finite étale

K-algebras, with K-algebra homomorphisms as morphisms.

In the discussion of that theorem, we constructed functors F and G between the two

categories in a natural way; namely, we took a totally split algebra to the set of K-algebra

homomorphisms from A to K, and took a finite set to the K-algebra of maps from S to

K. We now generalize this.

Denote by KAlgebra(A, K̄) the set of K-algebra homomorphisms from A to K̄, and

denote by π−Set(S, K̄) the K-algebra of maps from S to K̄ which preserve the π-action.

Consider the contravariant functor

F :KFiniteÉtaleAlg→ π − FiniteSet

A 7→ KAlgebra(A, K̄).

Similarly, we consider the contravariant functor

G:π-FiniteSet→ KFiniteÉtaleAlg

S 7→ π − Set(S, K̄).

For F (A) to be an element of the category π−FiniteSet, we need to define a π-action on

KAlgebra(A, K̄). For σ ∈ π, and f a K-algebra homomorphism from A to K̄, we let the

action be composition; namely, we define

σf = σ ◦ f.

We will, of course, need to check that these functors are well-defined. We will first

consider, however, the action of F and G on products and coproducts, since this will aid

the proof by allowing us to reduce to our already-known cases.

We note first that for two finite étale K-algebras A1 and A2, we have

F (A1 ×A2) ∼= F (A1) t F (A2).

This follows from the fact that the image of any element of F (A1×A2) is a subfield of K̄.

Hence the result follows from our discussion of maximal ideals in product rings. Since we

have already shown that any finite étale K-algebra A is (as a K-algebra) isomorphic to a

product of finite separable field extensions of K, we can thus reduce our proof to the case

where the K-algebra A is a finite separable field extension of K.
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Similarly, we note that for two finite π-sets S1 and S2, each equipped with an action

of π, we have

G(S1 t S2) ∼= G(S1)×G(S2).

Namely, given any morphism f from S1 t S2 to K̄ which preserves the π-action, we can

immediately define morphisms f1 from S1 to K̄ which also preserves the π-action (simply

by restricting to S1), and similarly for f2. An analogous construction holds for the other

direction.

The reader might notice a symmetry between products and coproducts by the action

of the functors F and G. In fact, this property must hold if F and G are to be contravariant

equivalences, which we intend to prove in the Main Theorem.

We now show that F is well-defined.

Lemma. The functor F , as defined above, is well-defined; i.e. given A a finite étale K-

algebra, F (A) is a finite set, and the π-action as defined above is continuous.

Proof. Let A be an algebra in KFiniteÉtaleAlg. We define a K̄-algebra, B, by

B = AK̄ = A⊗K K̄.

We have an isomorphism of sets

F (A) = KAlgebra(A, K̄) ∼= K̄Algebra(B, K̄)

by the natural map f 7→ f ⊗ 1. Since K̄ is separably closed, we see that the set on the

right is finite, and has cardinality dimK̄(B), which we know to be the same as dimK(A).

Therefore, F (A) is finite with cardinality dimK(A). This proves the first half of the lemma.

To show that the π-action is continuous, we need only show that the action is contin-

uous in the special case when A is a finite separable field extension of K. This follows by

our remarks on the action of F on products of algebras. Hence, without loss of generality,

we let A = L, a finite separable field extension of K.

Let S be the set F (L) = KAlgebra(L, K̄). Then the cardinality of S is just the degree

of L over K. Pick some λ ∈ S. Then λ is an injective K-algebra homomorphism from L

to K̄.

We claim that the π-action on S is transitive. Let µ be a second element of S. Since λ

and µ are both injective, µ◦λ−1 is a field isomorphism from λL to µL. We know that K̄ is

also a separable closure of λL and of µL. Thus, from the uniqueness of separable closures,

we can extend µ ◦λ−1 to an automorphism σ ∈ π. (Notice that this extension clearly fixes

K, and hence is in fact in π.) So by the π-action on S, we see that

σλ = µ,
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and so π acts transitively on S.

Since this action is transitive, S is isomorphic (as a π-set) to π/ρ, where ρ is the

stabilizer of λ. So in fact,

S ∼=π π/ρ.

An element σ ∈ π is in the stabilizer of λ when σλ = λ, i.e. for all elements l ∈ L we

have σ(λl) = λl. Hence σ fixes every element in λL pointwise. Thus, the stabilizer is the

subgroup of automorphisms of K̄ fixing the subfield λL, namely, ρ = AutλL(K̄).

We claim that ρ is open in π. Namely, since λL is a finite extension of K, any element

of ρ agrees with every other element on a finite set, namely, some basis set of λL viewed

as a vector space over K. Moreover, since every element σ which fixes these basis elements

must fix all of L, AutλL(K̄) is a basis open set by definition of our topology, and thus ρ

is open. We claim that the action of π on π/ρ is continuous. For any two cosets σ1ρ, σ2ρ,

the set {σ ∈ π : σσ1ρ = σ2ρ} = σ2ρσ
−1 is open (it is another basis open set, as can be

checked). Since the inverse image under the continuous action is a union of these open sets,

it is also open, and therefore the action is continuous.

The reader is asked to keep in mind the contructions in the above proof, since they

will be used again in the first half of the proof of the Main Theorem. We will not complete

the proof that G is well-defined before we prove the Main Theorem, since it will require

a result which we prove en route to the results of the Main Theorem. We will, however,

give an idea of the proof now, and reduce the proof of the well-definedness of G to this

result. It will also serve to illustrate our claim that the previous results over separably

closed fields will be crucial in our proof of the Main Theorem. We will be examining the

following diagram:

KFiniteÉtaleAlg
F−→
←−

G

π − FiniteSet

H



y



yforgetful functor

K̄FiniteÉtaleAlg
F−→
←−

G

FiniteSet

where the functor H is our familiar extension of scalars functor taking A to AK̄ = A⊗K K̄,

and the map from π−FiniteSet to FiniteSet is the (appropriate) forgetful functor.

Lemma. If the above diagram commutes (using the G functors), then G is well-defined,

i.e. given a π-set S, G(S) is a finite étale K-algebra.

Proof. Given S a π-set, notice that G(S)K̄ = HG(S), in the above diagram. We now go

the other way around the diagram, first applying the forgetful functor and then taking the

K̄-algebra of maps from S to K̄, yielding the object K̄S . Since the diagram commutes,

G(S)K̄ = K̄S, so certainly G(S)K̄ is finite étale (it is even totally split). But G(S) is

finite étale over K if and only if G(S)K̄ is finite étale over K̄. Hence G(S) is a finite étale

K-algebra, as desired.
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We will show that this diagram commutes (using the G functors) in the proof of the

Main Theorem.

Before embarking on the proof, we present some examples.

Example. This is our “motivating” example, which we will use in our proof of the main

theorem. Let K be itself separably closed. (For example, let K be the complex num-

bers C.) The fundamental group of C is trivial, as noted earlier. As we have already

observed, KFiniteÉtaleAlg is just the category of totally split K-algebras, and this

is anti-equivalent to the category FiniteSet of finite sets. Furthermore, it is clear that

FiniteSet is equivalent to π-FiniteSet when π is trivial.

Our second example is somewhat more revealing, since in this case the fundamental

group is non-trivial (though still quite simple!).

Example. Let K be the field of real numbers, R, and let K̄ be the field of complex

numbers C, such that the fundamental group π is isomorphic to Z/2Z. We can classify

KFiniteÉtaleAlg quite simply, since every finite étale algebra over R is isomorphic to

R×R× · · · ×R
︸ ︷︷ ︸

a×

×C×C× · · · ×C
︸ ︷︷ ︸

b×

= Ra ×Cb

as an R-algebra. This corresponds to the set of order a+ 2b consisting of a 1-cycles, and

b 2-cycles, on which π acts in the obvious way.

There are two interesting things to notice in this last example. First, if A is a finite étale

R-algebra, then dim(A) = #F (A) and the number of field constituents of A is the same

as the number of π-orbits in F (A). Both of these equalities will become more transparent

as we explore the fundamental group further.

We now state the theorem.

Theorem. Let K be a field, K̄ a separable closure of K, and π the resulting fundamental

group. Then the category KFiniteÉtaleAlg of finite étale K-algebras is anti-equivalent

to the category of π- FiniteSet of finite sets provided with a continuous action of π.

Proof. We need to show that the composite functors FG and GF are isomorphic to the

corresponding identity functors.

We first examine the object GF (A): this is the set of maps from KAlgebra(A, K̄) to

K̄ which preserve the π-action defined on both sets. We note also that for any set S, G(S)

can naturally be given a K-algebra structure by pointwise addition and multiplication, and

a homomorphism f :K → G(S) given by the constant functions. (The hard part, of course,

is proving that it is finite étale.) In order to show that ΦA is a K-algebra isomorphism, we

will explicitly construct a map which will turn out to be an isomorphism.
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We define ΦA : A→ GF (A) by

ΦA(a) = (f 7→ f(a)),

the evaluation homomorphism. We need to check, first, that each ΦA(a) is indeed a map

preserving the π-action. However, since the action of π on KAlgebra(A, K̄) is just com-

position, we have for any f ∈ KAlgebra(A, K̄), a ∈ A, σ ∈ π,

(σf)(a) = (σ ◦ f)(a) = σ(f(a)),

and so the π-action is preserved.

We claim that ΦA is a K-algebra isomorphism for any finite étale K-algebra A. As

in our proof that F is well-defined, we need only consider the case where A = L, a finite

separable field extension of K, for the same reason. Hence we assume without loss of

generality that A = L. Recall that π acts transitively on S = F (L) ∼=π π/ρ, where ρ is the

stabilizer of some arbitrary element λ ∈ S.
We now define a new subfield K̄ρ of K̄,

K̄ρ = {α ∈ K̄|σα = α, ∀σ ∈ ρ}.

The reader should check that this is indeed a subfield of K̄. This is often called the “fixed

field” of ρ. We claim that there exists a bijection between K̄ρ and GF (L). Recall that

GF (L) = π−FiniteSets(π/ρ, K̄). Note that any map of π-sets f : π/ρ→ K̄ is completely

determined by where f sends the single element λ, since we have just shown that the action

of π is transitive. Now notice that for any element σ ∈ ρ, we have

f(σλ) = σf(λ) = f(λ),

since the π-action is preserved, and since ρ is, by definition, the stabilizer of λ in π. We

have just shown that the image of λ under any map f ∈ GF (L) must lie in the fixed field

K̄ρ. On the other hand, λ can be mapped to any such element in the fixed field K̄ρ. Hence

there is a bijective correspondence between GF (L) and K̄ρ. But it is straightforward to

check that this is also a K-algebra homomorphism, where K̄ρ is viewed as a K-algebra in

the natural way.

We can now define a map ΦL:L → K̄, first by mapping any element l to the π-set

map f 7→ f(l), f ∈ KAlgebra(L, K̄), and then using the above bijective correspondence

to identify the π-set map with the image of λ. As a map, this means that ΦL(l) = λ(l). To

prove that ΦL is an isomorphism of K-algebras, it now suffices to show that K̄ρ = λL.

It is clear that λL ⊂ K̄ρ. Let α be an element in K̄ρ. We now apply a counting

argument. We know that

AutλL(α)(K̄) = AutλL(K̄),

130



by the definition of K̄ρ. If we look at the index of each of these in π, we see that

[λL(α) : K] = [L : K],

and so [λL(α) : λL] = 1, which means that λL(α) = λL. This shows that α is in fact in

λL, so K̄ρ ⊂ λL.

This shows that Kρ
S = λL, and therefore ΦL is an isomorphism, and so GF ∼=

id
KFiniteÉtaleAlg.

We have finished the first half of the proof of the Main Theorem; we now claim that the

functor G is well-defined, and that FG ∼= idπ−FiniteSets . More specifically, we claim that

the map S → FG(S) = AlgK(G(S), K̄) given by sending each element s to the K-algebra

homomorphism (f 7→ f(s)) is an isomorphism.

Recall that we have already shown that it suffices to show that the diagram

KFiniteÉtaleAlg
F−→
←−

G

π − FiniteSet

H



y



yforgetful functor

K̄FiniteÉtaleAlg
F−→
←−

G

FiniteSet

commutes in order to show that G is well-defined. We now show that, in fact, this also

suffices to show that FG ∼= id .

Let S be a π-set. We know from previous arguments that S ∼= AlgK̄(K̄S, K̄), (where

we have applied the forgetful functor to S). If the diagram commutes, then we have

an isomorphism S ∼= AlgK̄(G(S)K̄ , K̄). We have already noted that AlgK(G(S), K̄) ∼=
AlgK̄(G(S)K̄ , K̄), as π-sets. But AlgK(G(S), K̄) = FG(S), by definition. Hence S ∼=
FG(S). (We have not yet explicitly constructed the isomorphism which proves that the

diagram commutes. Once we do so, one needs to check that the composition of the three

isomorphisms mentioned above is indeed given by the natural map sending an element s

of S to the K-algebra homomorphism (f 7→ f(s)). This is straightforward.)

In order to show that this diagram commutes, we need for a π-set S an isomorphism

π − FiniteSet(S, K̄)⊗K K̄ → K̄S .

It is actually straightforward to define a homomorphism ΘS from the left-hand side to K̄S;

π−FiniteSet(S, K̄) is a K-algebra of functions on S, and in particular can be seen as a

subset of K̄S. Multiplying these elements by general elements in K̄ defines a bilinear map

and thence a K-algebra map from the tensor product. For a general set S, however, it is

quite tricky to show that this ΘS is an isomorphism. However, in the case where S actually

“comes from” a K-algebra A, we can see that ΘS is an isomorphism almost immediately.
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We have already shown, in the proof that GF ∼= id, that the map ΦA is an isomorphism.

Hence we have the diagram

π − FiniteSet(S, K̄)⊗K K̄ −→ K̄S

x

 l

A⊗K K̄ = B

where B is just A ⊗K K̄ by definition, and the isomorphism between B and K̄S comes

from the fact that K̄ is separably closed, and hence all finite étale K̄-algebras are totally

split. We will use this result to show that ΘS is an isomorphism for a general set S.

Since S is a π-set, we can view it as a disjoint union of its orbits Si under the π-action.

Each Si is a transitive π-set, and therefore is isomorphic (as a π-set) to π/ρi, where ρi is

the stabilizer of some designated x ∈ Si. In other words,

S ∼=π

∐

i

π/ρi

for some subgroups ρi of π. Since the action of π on S is continuous, it can be seen that

the stabilizer of any element is actually open. So each ρi is open, and therefore contains

some basis open set. Namely, AutLi
(K̄) ⊂ ρi for some finite separable field extensions

K ⊂ Li ⊂ K̄. We define a new π-set T =
∐

i π/AutLi
(K̄). It is clear that T ∼= F (

∏

i Li),

and so by our earlier result ΘT is an isomorphism.

Since ρi ⊃ AutLi
(K̄), we know that π/AutLi

(K̄) maps onto π/ρi, so T maps onto S.

In particular we have a map G(S) ↪→ G(T ), by composition with the projection map. We

now characterize the set of elements of G(T ) which can be considered as images of elements

of G(S). Let f ∈ G(T ) = π−FiniteSets(T, K̄). Then f is in the image of the inclusion

map if and only if f(t1) = f(t2), for all pairs t1, t2 with the same image in S (i.e. lie in the

same coset ρi/AutLi
(K̄). In other words, we must have (t1, t2) ∈ T ×S T, the fiber product

of π-sets over S. Note that we also have inclusion maps g1 and g2 from π-FiniteSet(T, K̄)

to π-FiniteSet(T×S T, K̄) by g1(f) = f ◦P1 and g2(f) = f ◦P2, where Pi is the projection

to the ith coordinate. We now forget for a moment that the G(S), G(T ), and G(T ×S T )

have an algebra structure. We have an exact sequence of K-vector spaces

0 −→ G(S)
incl.
↪→ G(T )

g1−g2−→ G(T ×S T ).

Notice that this is just a linear map of vector spaces; in particular, g1 − g2 maps 1 to 0.

Tensoring everything with K̄, and remembering that tensoring with a free module preserves

exactness, we have the following diagram.

0 −→ G(S)K̄ ↪→ G(T )K̄ ↪→ G(T ×S T )K̄


yΘS



yΘT



yΘT×ST

0 −→ KS ↪→ KT −→ KT×ST
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By diagram-chasing, we see that to show ΘS is an isomorphism, it would suffice to show

that ΘT×ST is an isomorphism. (We already know that ΘT is an isomorphism.) To show

that ΘT×ST is an isomorphism, it is enough to show that the stabilizer of each (t1, t2) is of

the form AutL(K̄) ⊂ π for some finite separable field extension K ⊂ L ⊂ K̄. If this were

the case, then T×ST = F (
∏
L) for some set of L, and then ΘT×ST will be an isomorphism

for the same reasons as in the case of ΘT . We already know that the stabilizers of both

t1 and t2 in T are of this form. The stabilizer of (t1, t2) is their intersection, which is

AutLL′(K̄). Since LL′ is also a finite separable field extension, ΘT×ST is an isomorphism.

Hence the diagram commutes, FG ∼= id, the categories are anti-equivalent, and the

Main Theorem is proved.

Remark. Every open subgroup ρ ⊂ π is of the form AutL(K̄). To see this, apply the functor

G to the π-set, π/ρ, to see that

π/ρ ∼= FG(π/ρ) ∼= F (Kρ) = π/AutK̄ρ(K̄).

We have thus shown that the category of finite étale K-algebras is anti-equivalent to

the category of sets equipped with a π-action, where π is the fundamental group of K in its

separable closure K̄. The anti-equivalence comes from expressing a finite étale K-algebra

A as a finite product

A =

t∏

i=1

Li

(where each Li is a finite separable extension of K), and by expressing a π-set S as a finite

disjoint union

S =
t∐

i=1

π/ρi

(where each ρi is an open subgroup of π). The anti-equivalence comes from identifying the

Li with the ρi by

Li = K̄ρi , ρi = AutLi
(K̄).

This gives us an inclusion-reversing bijection between finite separable extensions of K

and open subgroups of π. (The inclusion-reversing nature of the bijection is a consequence

of the anti-equivalence of the categories.) In fact there is a more general formulation of

this bijection by extending it to a bijection between all separable extensions of K (not

necessarily finite) and closed subgroups of π. This statement implies that, in fact, all open

subgroups are also closed; this is a general fact about topological groups. Let ρ be an open

subgroup. Then all cosets of ρ are open, and therefore the union of all the cosets (except

ρ itself) is open, so ρ is closed.
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This brings up some questions. Is the opposite true, that every closed subgroup is

open? Certainly not, since the trivial subgroup is closed and yet certainly not open (since

this would ascribe the discrete topology to π which is not the case unless π is finite). One

might also ask whether there are subgroups which are neither open nor closed. The answer

for profinite groups is in general yes. For example, suppose π is the direct product

π = (Z/2Z)∞ =
∞∏

n=1

Z/2Z.

The subgroup (Z/2Z)(∞) is dense in π, and yet not equal to π. This shows that this

subgroup must not be closed (and therefore also not open.) As another example, consider

the profinite completion of the integers,

π = Ẑ = lim
←

Z/nZ

(where the integers are ordered by divisibility), and Z is imbedded in the natural way into

Ẑ, then Z forms a dense subgroup of Ẑ that is clearly not the whole group, showing that

Z is not closed, and so also not open in Ẑ.

The extended bijection above between the not-necessarily-finite separable extensions

of K and closed subgroups of π comes from noticing that every separable extension is a

union of finite separable extensions, and therefore corresponds to an intersection of open

subgroups, which is also an intersection of closed subgroups, and therefore closed. One will

notice that this correspondence implies that all closed subgroups of profinite groups are

intersections of open subgroups. This can be seen by examining the closure of a subgroup.

Let π be a profinite group with components πi, and let ρ be a subgroup. Then the

closure ρ̄ of ρ is the subgroup

ρ̄ = lim
←
ρi

where ρi is the image of ρ under the projection map Pi from π to the i-th component πi.

This shows that ρ̄ is the intersection of the open subgroups

ρ̄i = P−1
i (ρi).

The proof of the extended bijection is straightforward and left as an exercise for the

reader.

As another example of the use of our dictionary, we examine an arbitrary subgroup ρ

of π. Let L be the fixed field of ρ, L = K̄ρ. Let AutL(K̄) = ρ′. Clearly, ρ ⊂ ρ′. We claim

that ρ′ = ρ̄, the closure of ρ. Since ρ′ is an open subgroup of π and hence also closed, we

know that ρ ⊂ ρ̄ ⊂ ρ′. This immediately implies

K̄ρ′ ⊂ K̄ ρ̄ ⊂ K̄ρ,

134



and since we defined ρ′ so that K̄ρ = K̄ρ′ , the inclusions are actually equalities, and hence

K̄ρ′ = K̄ ρ̄, and hence ρ′ = ρ̄.

In fact, suppose T is an arbitrary subset of π. Consider the fixed field K̄T of S, and

let ρ′ = AutK̄T (K̄). By a similar argument, ρ′ is seen to be the closure of the subgroup

generated by T .

We can now travel easily between the two descriptions of the goings-on in the separably

closed extension of K. However, we note that we do not know many concrete examples of

this profinite group. Indeed, up until this point, we have in our arsenal only two examples: if

K is already separably (or algebraically) closed, then π is the trivial group, and if K = R,

then π = Z/2Z. Both of these, being finite, illustrate little of the rich structure of the

profinite group which has been our topic of discussion. It happens, however, that for a

general field K it is extremely difficult to write down the structure of π. Nevertheless, in

the case where K is a finite field, we can show that π = Ẑ.

Let K be a finite field of size q = pn. Our strategy for showing that π = Ẑ will

be to examine carefully the role of a particular element in π, namely, the Frobenius map

φ:α 7→ αq.We first need to check that this is an element of π, i.e. that it is an automorphism

of K̄ fixing K. It is easy to see that φ fixes K, since 0 is automatically fixed, and K∗ is

cyclic of order q−1. Also, φ is a homomorphism of K̄ since the p-th power map is always a

field homomorphism in characteristic p, and φ is just a composition of p-th power maps. In

fact, φ fixes exactly the elements of K and no others, since xq −x has at most q roots and

#K = q. Since any field homomorphism is injective, given any finite extension L of K, φ is

also a surjection when restricted to L (since L is also finite). Hence φ is an automorphism.

We now look at the subgroup 〈φ〉 of π generated by φ. From the observation above,

K̄〈φ〉 = K. But AutK(K̄) = π, so in fact ¯〈φ〉 = π. In other words, topologically speaking,

φ generates π.

We know that the closure of a cyclic subgroup of any profinite group is a homomorphic

image of Ẑ, by the map

Ẑ → G
1 7→ φ.

where φ is a generator of the dense subgroup ofG. (That is, ifG is procyclic, thenG ∼= Ẑ/aẐ

for some Steinitz number a.)

In the case of finite fields, we happen to know exactly the fixed field of φn for any

integer n ≥ 0. We have

K̄〈φ
n〉 = {α ∈ K̄|αqn − α = 0},

and since the polynomial xq
n − x has no double roots (one can see this by calculating

the derivative), we have that #K̄〈φ
n〉 = qn, and hence [K̄〈φ

n〉 : K] = n. From previous

arguments, we know that K̄
¯〈φn〉 = K̄〈φ

n〉, so [K̄
¯〈φn〉 : K] = n also. This gives us an induced
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isomorphism

Ẑ
f−→ π



y



y

Ẑ/nẐ −→ π/ ¯〈φn〉,

for each n. Since this is an isomorphism for each n, the map f is also an isomorphism, and

hence π ∼= Ẑ.

Now we know the structure of the absolute Galois group of any finite field. We warn

the reader again, however, that this explicit description of the absolute Galois group of

a field is a rare phenomenon: for instance, no one can write down the absolute Galois

group of the rationals Q. It turns out, however, that in most practical instances, questions

involving algebraic number fields (finite field extensions of Q) can be answered if we know

something about the finite “shadows” of π, i.e. the structure of the projections G(f) for

some polynomials f in Q[x].

We now take a look at the notion of a Galois extension – an idea heavily used in most

presentations of classical Galois theory. From our standpoint, we see that the condition can

be stated in many different ways. The generalization of the definition to the case of infinite

extensions will be immediate and straightforward. We require a preliminary definition.

Definition. Let L be a field extension of K. We say L is normal over K if for any α ∈ L,

the irreducible polynomial Irr(α,K) splits linearly in L.

Theorem. Let L be a field extension of K. The following are equivalent.

(i) L is finite over K, separable, and normal over K;

(ii) L is the splitting field of a polynomial f with gcd(f, f ′) = 1;

(iii) L is an intermediate field of some separable closure of K corresponding to an open

normal subgroup of π.

(iv) There exists a finite subgroup G of Aut(L) such that K = LG.

(v) L is finite over K, and K is the fixed field of the relative automorphism group of L,

i.e.

K = LAutK(L).

Definition. If all of the above (equivalent) conditions hold, then L over K is called finite

Galois over K.

To generalize the statement of the theorem to the case of (possibly) infinite extensions

requires only a few changes. First, L is allowed to be an algebraic extension of K, not

just a finite extension. In part (iii) of the theorem, L is allowed to correspond to a closed

subgroups (i.e. an intersection of open subgroups) of π. In part (iv), the requirement is that

there exists a compact subgroup G of Aut(L) such that the statement holds, where we give
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Aut(L) the topology induced by the product topology on LL, where each automorphism

is viewed as a map of sets. (It is necessary to show that this is in fact a topological group.)

We can reformulate a classical version of the Main Theorem of Galois theory as follows.

Let L be a Galois extension of a field K, and let G = Gal(L/K) be the corresponding

topological Galois group. Then we have the following three correspondences:

{intermediate fields between K and L} ↔ {closed subgroups of G}
{intermediate finite extensions} ↔ {open subgroups}
{intermediate Galois extensions} ↔ {normal subgroups}

Let L be a Galois extension of K, with Galois group G, and intermediate Galois

extension M . The Galois groups are related by

K

G
︷ ︸︸ ︷

⊂
︸︷︷︸

G/H

M ⊂
︸︷︷︸

H

L

It is important to notice that this formulation has two “variables” as it were, both

K and the Galois extension L. But in fact all information that can be found in this for-

mulation is inferrable from the situation where L is K̄, the separable closure of K. The

Grothendieck formulation which we discussed therefore has the advantage that it elimi-

nates the “unnecessary” second variable by setting it automatically to the most informative

case. It has the additional advantage that it generalizes much more easily to the replace-

ment of fields by commutative rings. One can track Galois theory through the years from

being a discussion of polynomials, to an exploration of splitting fields, and finally to the

Grothendieck formulation that we have used in this unit.

One well-known application of Galois theory is the study of solving polynomials by

radicals. Let K be a field of characteristic 0, let f be a monic polynomial in K[x], and

let Z(f) be the set of zeroes of the polynomial in the separable (algebraic) closure K̄. We

say that f is solvable by radicals if K(Z(f)) is a subset of Kt, which is the end of a finite

sequence

K = K0 ⊂ K1 ⊂ . . . ⊂ Kt

where Ki+1 = Ki(αi) and each αi ∈ K̄ is such that αmi

i ∈ Ki for some positive integer

mi. By Galois theory we can determine that f is solvable by radicals if and only if G(f)

is solvable (as a group). If f has degree n, then G(f) is a subgroup of Sn, the symmetric

group on the roots of f , a set of n elements.

If f has degree n less than or equal to 4, since Sn (and any of its subgroups) is

solvable, f is solvable by radicals. That these groups are solvable is an elementary group
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theory result. But equally elementary is the result that the alternating group A5 is simple,

so S5 not solvable. Therefore a polynomial of degree greater than 4 is not in general solvable

by radicals. (Certainly some are, such as f(x) = x5 − 2, but others aren’t. For example

the polynomial f(x) = xn − x− 1 has Galois group G(f) = Sn, and so is not solvable by

radicals for any n ≥ 5.)

Another famous application of Galois theory is toward the ancient Greek notion of

constructibility. Let K be a subfield of the real numbers R, and let f be a polynomial

in K[x]. We say that f is constructible from K if f is solvable and each of the mi from

the “solution chain” is 2. Equivalently f is solvable if G(f) has cardinality a power of

2. The reason why constructible polynomials are interesting is that they correspond to

constructible objects in the complex plane using a ruler and compass. The constructible

points in the complex plane are precisely the roots of the constructible polynomials.

One can see that for example the trisection of an angle corresponds to constructing

the root of a cubic polynomial. Since a typical cubic polynomial f has a Galois group

of order divisible by 3, most angle trisections are not constructible. (Some, such as the

trisection of a right angle, are.) The Greeks asked what regular polygons are constructible.

It is easy to see that a constructible polygon corresponds to constructing the roots of unity.

Let f be the polynomial f(x) = xn−1. The factors of f are called cyclotomic polynomials,

and G(Z(f)) is called a cyclotomic extension (over any field K such that charK does not

divide n). We see that

G(f) ⊂ Aut(Z/nZ) = End(Z/nZ)∗ ∼= (Z/nZ)∗

with equality if K = Q. The cardinality of G(f) is the number of units in Z/nZ, which is

the Euler function, ϕ(n). So a regular n-gon is constructible if and only if ϕ(n) is a power

of 2. For example, since ϕ(10) = 4, a regular decagon is constructible. This the Greeks

knew by actually constructing it. Since the Greeks did not know the theory behind these

constructions, they couldn’t go much further.

The applications and explorations of Galois theory go far beyond those enumerated

in this unit. But it should provide a good launching point for those who are interested in

a modern understanding of some of the basic results from Galois theory.
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12. Exercises.

12.1. Let G be a group. The profinite completion Ĝ of G is defined to be the projective

limit

Ĝ = lim
←
G/N,

with N ranging over the set of normal subgroups of finite index in G, ordered by N ≤ N ′
if and only if N ⊃ N ′. This is a profinite group.

(a) Prove that there is a natural group homomorphism f :G → Ĝ, and that f(G) is

dense in Ĝ. Can you give an example in which f is not injective?

(b) Let Gsets denote the category of finite sets provided with an action of G, and let

Ĝsets denote the category of finite sets provided with a continuous action of Ĝ. Prove that

these two categories are equivalent.

12.2. Let I be a partially ordered set that is directed in the sense that for any two elements

i, j ∈ I there exists k ∈ I with k ≥ i and k ≥ j. A system
(
(πi)i∈I , (f

j
i )i,j∈I,i≤j

)
of groups

πi and group homomorphisms f ji :πj → πi is said to be directed if one has f ii = 1πi
for

every i ∈ I and f ji ◦ fkj = fki for any i, j, k ∈ I with i ≤ j ≤ k.
Let

(
(πi)i∈I , (f

j
i )i,j∈I,i≤j

)
be a directed system in which every group πi is finite and

every f ji is surjective. Write π = lim
←
πi; this is a profinite group.

(a) Prove that for each i ∈ I the natural map π → πi is surjective.

(b) Suppose that π acts on a finite set S. Prove that the following are equivalent:

(i) the action is continuous in the sense that the map π × S → S defining the action is

continuous, if S is given the discrete topology, π the profinite group topology, and π × S
the product topology; (ii) for each s ∈ S the stabilizer πs is open in π; (iii) the kernel of

the map π → SymS that defines the action is open; (iv) there exists i ∈ I such that the

action of π on S arises from an action of πi on S through the map π → πi.

12.3. Let Ẑ be the profinite completion of the additive group of Z.

(a) Prove that there is a unique ring structure on Ẑ for which (i) the ring operations

are continuous maps Ẑ×Ẑ→ Ẑ, and (ii) the natural map Z→ Ẑ is a ring homomorphism.

(b) Prove that Ẑ/nẐ ∼= Z/nZ for every positive integer n.

(c) Prove that every action of Ẑ on a finite set is continuous.

12.4. Let Ẑ be as in Exercise 12.3.

(a) Prove that Ẑ is flat as a Z-module. Is it faithfully flat?

(b) What are the closed maximal ideals of Ẑ? Does Ẑ have any maximal ideals that

are not closed?

12.5. Let S be a finite set, F (S) the free group determined by S (as in Chapter 5 of these

notes), and F̂ (S) its profinite completion (see Exercise 12.1). Prove that the natural map

F (S)→ F̂ (S) is injective.
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12.6. Let k be a field, ks a separable closure of k, and π = Autk ks the group of k-

automorphisms of ks. The purpose of part (a) of this exercise is to show that π has in a

natural manner the structure of a profinite group. The resulting topology on π is often

called the Krull topology (Wolfgang Krull, German algebraist, 1899–1971).

(a) Let F be the set of monic polynomials f ∈ k[X] for which gcd(f, f ′) = 1. For

f ∈ F , the group π permutes the set Z(f) of zeros of f in ks, and we let the Galois group

G(f) of f be the image of the resulting map π → SymZ(f). Prove that the natural map

π → lim
←
G(f), with f ranging over F (ordered by divisibility), is a group isomorphism.

(b) Let ρ ⊂ π be a subgroup. Prove that ρ is open in π if and only if there exists a

finite extension l of k with l ⊂ ks and Autl ks ⊂ ρ (deduce this directly from the definitions,

and do not use the Main Theorem).

12.7. (a) Let D be the category whose objects are pairs (S, σ), where S is a finite set and

σ belongs to SymS, a morphism (S, σ)→ (T, τ) being a map f :S → T with f ◦ σ = τ ◦ f .

Prove that the category D is equivalent to the category
Ẑ
sets of finite sets provided with

a continuous action of Ẑ.

(b) Let p be a prime number, and let C be the category of finite commutative rings

R with
√

0R = {0} and #R equal to a power of p. Prove that C is anti-equivalent to D.

12.8. Let f :π → ρ be a continuous bijective group homomorphism from a profinite group

π to a profinite group ρ. Prove that f is an isomorphism of topological groups (i. e., that

the inverse of f is also continuous).

12.9. Let p be a prime number. The ring Zp of p-adic integers is defined to be the

projective limit of the rings Z/pnZ, with n ranging over the set of non-negative integers;

the transition maps Z/pmZ → Z/pnZ, for m ≥ n, are the unique ring homomorphisms.

Prove that Zp is a local principal ideal domain, with maximal ideal pZp, and with residue

class field Fp.

12.10. Prove that there is an isomorphism Ẑ ∼=
∏

p Zp of topological rings (definition

obvious), the product ranging over all prime numbers p, with Zp as in Exercise 12.9.

12.11. A Steinitz number or supernatural number is a formal expression

a =
∏

p

pa(p),

where p ranges over the set of all prime numbers, and a(p) ∈ {0, 1, 2, . . . ,∞} for each p

(Ernst Steinitz, German mathematician, 1871–1928). If a =
∏

p p
a(p) is a Steinitz number,

then we write aẐ for the subgroup of Ẑ that under the isomorphism Ẑ ∼=
∏

p Zp from

Exercise 12.10 corresponds to
∏

p p
a(p)Zp, with p∞Zp = {0}.
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(a) Let a be a Steinitz number. Prove that aẐ is the intersection of all groups nẐ,

with n ranging over the positive integers that divide a (in an obvious sense).

(b) Prove that the map sending a to aẐ gives a bijection from the set of Steinitz

numbers to the set of closed subgroups of Ẑ. For which Steinitz numbers a is aẐ an open

subgroup of Ẑ?

(c) Let k be a finite field. Explain how Steinitz numbers classify k-isomorphism classes

of algebraic field extensions l of k.

12.12. Let π be a profinite group. We call π procyclic if there exists σ ∈ π such that the

subgroup generated by σ is dense in π. Prove that the following assertions are equivalent:

(i) π is procyclic; (ii) π is the inverse limit of a directed family of finite cyclic groups;

(iii) π ∼= Ẑ/aẐ for some Steinitz number a (see Exercise 12.11); (iv) for any pair ρ, ρ′ ⊂ π
of open subgroups of π with index(π : ρ) = index(π : ρ′) one has ρ = ρ′. Prove also that

the Steinitz number a in (iii) is unique if it exists.

12.13. (a) Prove that every a ∈ Ẑ has a unique representation as an infinite sum a =
∑∞
n=1 cnn!, with cn ∈ {0, 1, . . . , n}.

(b) Let b ∈ Z, b ≥ 0, and define the sequence (an)
∞
n=0 of non-negative integers by

a0 = b, an+1 = 2an . Prove that the limit lim
n→∞

an exists in Ẑ, and that it is independent

of b.

(c) Let a = lim
n→∞

an as in (b), and write a =
∑∞
n=1 cnn! as in (a). Compute c1, c2,

. . . , c10.

12.14. Let A be an abelian group with the property that every a ∈ A has finite order (such

a group is called a torsion group). Prove that A carries a unique Ẑ-module structure.
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