Algebraic Number Theory Exercises 2. Rings of integers. Roma, 16 ottobre 2012.

- 1. Let F be a number field.
 - (a) Show that for any $x \in F$ there exist an integer $0 \neq m \in \mathbb{Z}$ such that $mx \in O_F$.
 - (b) Show that the field of fractions of O_F is F.
 - (c) Show that there exists an element $\alpha \in O_F$ for which $F = \mathbf{Q}(\alpha)$.
- 2. Let F be a number field. Show that every ideal $I \neq 0$ of O_F contains a non-zero integer $m \in \mathbb{Z}$.
- 3. Let F be a number field and let $\alpha \in O_F$. Show that $N(\alpha) = \pm 1$ if and only if α is a unit of the ring O_F .
- 4. Let $F \subset K$ be an extension of number fields. Show that $O_K \cap F = O_F$.
- 5. Let $d \neq 1$ be a squarefree integer.
 - (a) Compute the discriminant of $F = \mathbf{Q}(\sqrt{d})$.
 - (b) For d < 0 determine the units of the ring of integers of $\mathbf{Q}(\sqrt{d})$.
- 6. Let F and K be two quadratic number fields. Show that if $\Delta_F = \Delta_K$, then $F \cong K$.
- 7. Show that $25 = 5^2$ and $25 = (1 + 2\sqrt{6})(1 2\sqrt{6})$ are two factorizations of 25 into products of irreducible elements of the ring $\mathbb{Z}[\sqrt{-6}]$. Write the principal ideals (5), $(1 + 2\sqrt{6})$ and $(1 2\sqrt{6})$ as products of prime ideals of the Dedekind ring $\mathbb{Z}[\sqrt{-6}]$.
- 8. The ring $\mathbf{Z}[\frac{1+\sqrt{-23}}{2}]$ is the ring of integers of the number field $\mathbf{Q}(\sqrt{-23})$. Show that the ideal $(2, \frac{1+\sqrt{-23}}{2})$ and its square are not principal, but its third power is.
- 9. Consider the properties "Noetherian", "integrally closed" and "of Krull dimension 1" that characterize Dedekind domains. Give examples of rings that have two of these properties, but not the third.
- 10. Let R be a Dedekind domain and let \mathfrak{p} and \mathfrak{p}' be two different non-zero prime ideals of R.
 - (a) Show that $\mathfrak{p} + \mathfrak{p}' = R$.
 - (b) Show that the ring $R/\mathfrak{p}\mathfrak{p}'$ is isomorphic to $R/\mathfrak{p} \times R/\mathfrak{p}'$.
- 11. Let R be a Dedekind domain and let \mathfrak{p} be a non-zero prime. Show that there exists an element $x \in \mathfrak{p}$ with $x \in \mathfrak{p}^2$.
- 12. Let F be a number field and let $\omega_1, \ldots, \omega_n \in O_F$. Put $\Delta(\omega_1, \ldots, \omega_n) = \det(\operatorname{Tr}(\omega_i \omega_j))$. Dimostrare che $\Delta(\omega_1, \ldots, \omega_n) = m^2 \Delta_F$ for some $m \in \mathbb{Z}$.
- 13. Let α be a zero of the polynomial X³ X + 1.
 (a) Compute the trace of αⁱ for 0 ≤ i ≤ 4.
 (b) Show that Z[α] is the ring of integers of Q(α).
- 14. Let $a \ge 1$ and let \mathbf{R}^a be the product of a copies of \mathbf{R} . It is a ring with componentwise addition and multplication. Show that the projection maps $\mathbf{R}^a \longrightarrow \mathbf{R}$ are ring homomorphisms. Show that they are the only ring homomorphisms.