Docente: Prof. René Schoof
Programma
- Si tratta di una introduzione alla teoria degli schemi.
- Prerequisiti: i corsi di algebra e geometria del primo e secondo anno.
Materiale
-
What should be learned in a first schemes course.
-
R. Hartshorne:
Algebraic Geometry, Graduate Texts in Mathematics 52, Springer-Verlag 1977.
- R. Vakil:
Foundations of algebraic geometry, in preparation, Stanford 2011.
- R. Vakil's
Foundations of algebraic geometry
blog.
- D. Eisenbud and J. Harris:
The geometry of schemes, Graduate Texts in Mathematics 197, Springer-Verlag 2000.
- Qing Liu: Algebraic Geometry and Arithmetic Curves, Oxford 2002.
- A. Grothendieck:
Éléments
de Géometrie Algébrique, IHES 1960-1965.
- K. Ueno:
Algebraic Geometry, Vols 1-3, AMS 1999.
- J. de Jong:
The Stacks project., Columbia University 2000-2010.
- M. Atiyah and
I. Macdonald:
Introduction to commutative algebra, Addison Wesley 1969.
- H. Lenstra:
Galois theory for schemes, Berkeley 2008.
- Cameron, F. and Masdeu M.:
Etale fundamental groups and cohomology, Concordia University 2008.
- D. Mumford:
The Red Book of Varieties and Schemes, Lecture Notes in Mathematics 1358, Springer-Verlag 2004.
Back to home page
|