Teoria algebrica dei numeri. 1. Campi di numeri.

- 1. Let F be a number field and let $\alpha \in F$. Show that there exist an integer $0 \neq m \in \mathbb{Z}$ such that $m\alpha \in O_F$.
- 2. Show that for every number field F there exists an *integral* element $\alpha \in O_F$ such that $F = \mathbf{Q}(\alpha)$.
- 3. Let F be a number field. Show that the field of fractions of O_F is F.
- 4. Let F be a number field. Show that every ideal $I \neq 0$ of O_F contains a non-zero integer $m \in \mathbb{Z}$.
- 5. Let F be a number field and let $\alpha \in O_F$. Show that $N(\alpha) = \pm 1$ if and only if α is a unit of the ring O_F .
- 6. Let $F \subset K$ be an extension of number fields. Show that $O_K \cap F = O_F$.
- 7. Let F be a number field. Let r be the number of distinct embeddings $F \hookrightarrow \mathbf{R}$ and let 2s be the number of remaining homomorphisms $F \hookrightarrow \mathbf{C}$. Show that the sign of Δ_F is $(-1)^s$.
- 8. Let d be a squarefree negative integer. Determine the units of the rings of integers of $\mathbf{Q}(\sqrt{d})$.
- 9. Let F and K be two quadratic number fields. Show that if $\Delta_F = \Delta_K$, then $F \cong K$.
- 10. Let $d \neq 1$ be a squarefree integer. Compute the discriminant of $F = \mathbf{Q}(\sqrt{d})$.
- 11. Let $n \ge 1$ be an integer and let ζ_n denote a primitive *n*-th root of unity. Show that $\zeta_n 1$ is a unit if and only if *n* is not the power of a prime. (Hint: substitute T = 1 in $(T^n 1)/(T 1) = \prod_{d \mid n, d \ne 1} \Phi_d(T)$.
- 12. Let $a \ge 1$ and let \mathbf{R}^a be a ring with componentwise addition and multplication. Show that the projection maps $\mathbf{R}^a \longrightarrow \mathbf{R}$ are ring homomorphisms. Show that they are the only ring homomorphisms.
- 13. Let F be a number field and let $\omega_1, \ldots, \omega_n \in O_F$. Put $\Delta(\omega_1, \ldots, \omega_n) = \det(\operatorname{Tr}(\omega_i \omega_j))$. Dimostrare che $\Delta(\omega_1, \ldots, \omega_n) = m^2 \Delta_F$ for some $m \in \mathbb{Z}$.
- 14. Let α be a zero of the polynomial $X^3 X + 1$. Show that $\mathbf{Z}[\alpha]$ is the ring of integers of $\mathbf{Q}(\alpha)$.
- 15. Show that every unique factorization domain is integrally closed.
- 16. Consider the properties "Noetherian", "integrally closed" and "of Krull dimension 1" that characterize Dedekind domains. Give examples of rings that have two of these properties, but not the third.
- 17. Prove the Chinese Remainder Theorem: let R be a commutative ring and suppose that I and J are two ideals of R that are relatively prime i.e. I + J = R. Then the canonical homomorphism

$$R/IJ \longrightarrow R/I \times R/J$$

is an isomorphism.

18. Let R be a Dedekind ring and let \mathfrak{p} and \mathfrak{p}' be two different non-zero prime ideals of R. Then $\mathfrak{p} + \mathfrak{p}' = R$.