COMPUTING DISCRETE LOGARITHMS WITH THE PARALLELIZED
KANGAROO METHOD

EDLYN TESKE

ABSTRACT. The Pollard kangaroo method computes discrete logarithms in arbitrary cyclic groups.
It is applied if the discrete logarithm is known to lie in a certain interval, say [a,b], and then has
expected running time O(+/b — a) group operations. In its serial version it uses very little storage.
It can be parallelized with linear speed-up, and in its parallelized version its storage requirements
can be efficiently monitored. This makes the kangaroo method the most powerful method to solve
the discrete logarithm problem in this situation. In this paper, we discuss various experimental and
theoretical aspects of the method that are important for its most effective application.

1. INTRODUCTION

The security of several important public-key cryptographic systems relies on the difficulty of the
discrete logarithm problem (DLP). Important examples are the Digital Signature Algorithm (DSA),
which is based on the DLP in multiplicative subgroups of finite fields, or its elliptic curve analogon
ECDSA, which is based on the DLP in groups of points of elliptic curves over finite fields (see
[MvOV96]).

We define the DLP as follows: Given a generator ¢ of a finite cyclic group G and a group element
h, find an integer z such that ¢* = h. Such a solution z is unique up to multiples of the element
order of g; we call it the discrete logarithm of / to the base g, and we write z = log h.

In discrete logarithm based signature schemes, the integer x is the secret key used for signature
generation, and h is the public key used for signature verification. One way to break such signature
schemes is to solve the discrete logarithm problem. In the settings of both DSA and ECDSA,
subexponential-time algorithms such as the index-calculus method do not apply, and the best
methods known to date to solve the underlying DLPs are the parallelized Pollard rho and kangaroo
methods. These methods are generic methods in the sense that they do not require any specific
knowledge about the group — we only assume that we can compute the product u % v of any two
group elements u and v, and that each group element can be uniquely represented as a binary
string.

The rho method [Pol78] is applied when 2 can be any non-negative integer smaller than ord g, where
ord g denotes the element order of ord g, i.e., the least positive integer n such that ¢” = 1. Then
the rho method can be implemented such that it requires an expected number of /7 (ord g)/2 +
O (log(ord ¢)) multiplications to solve the DLP.

In this paper, we are interested in the situation that an interval [a,b] C [0,ordg] is given such
that « € [a,b]. For example, this scenario is relevant in signature schemes: computing a signature
involves exponentiation of a group element by the secret key z, which can be done the faster,
the smaller z is. Thus, to speed up the signature generation, one might want to choose the
secret key z from an interval [0,] that is much smaller than the whole range [0, ord g]. However,

Date: February 26, 2001.
1991 Mathematics Subject Classification. 11Y16, 94A60.
1

2 EDLYN TESKE

this reduces the security of the scheme, because with Pollard’s kangaroo method [Pol78] one can
compute discrete logarithms = € [a,b] in expected running time 2v/b — a + O(log(ord g)) rather
than O(y/ord g) operations. Just as the rho method, the kangaroo method needs to store only a
small, constant number of group elements, and it can be parallelized with linear speed-up [vOW99].
In the parallelized case we have increased off-line space requirements but they can be efficiently
monitored.

We remark that also with the baby-step giant-step method one can fully exploit the knowledge
that & € [a, b] to compute the discrete logarithm in at most 2v/b — a group operations (3vb — a /2
on average). However, this method is not practical for large intervals since it has to store [v/b — a]
group elements, and it cannot be efficiently parallelized.

In the following, we discuss the kangaroo method in more detail. After a description of its serial
version (Section 2), we address the intrinsic differences between the kangaroo and the rho methods
(Section 3). We then describe the distinguished point method (Section 4) and discuss an appropriate
choice of its parameters. This method is crucial for the parallelization of the kangaroo method, both
in the variants by van Oorschot and Wiener [vOW99] and in the variant by Pollard [Pol00]. We
discuss both variants in Section 5, where we also address which sets of jumps and which spacings to
choose. In Section 6 we focus on the analysis of the running time. Here we examine the distribution
of the running time, the travel distances of the kangaroos, the probability that a kangaroo ends
up in a cycle, and the case that the number of processors is not known a-priori. We also discuss
the underlying heuristic assumptions for the running time analysis. In Section 7, where we deal
with the issue of useless collisions, a tricky phenomenon that occurs in the van Oorschot-Wiener
parallelization. We give a selection of experimental results in Section 8 that show the performance
of the method in practice and illustrate some of the material in the preceding sections. Finally
(Section 9) we discuss further applications of the (parallelized) kangaroo method.

Notation: If a and b are non-negative integers, @ < b, and « is an integer chosen uniformly at
random from the interval [a, b], we write © €g [a, b]. For a group element g, we write (g) to denote
the set {1, ¢g,¢% ¢>,...}, which is finite if and only if ¢ is of finite order.

Acknowledgments. The author wishes to thank John Pollard for many interesting and helpful
comments, which particularly improved Section 6. The author is grateful to the Mathematical
Sciences Research Institute (MSRI) in Berkeley, California for its hospitality for a month in the
Fall 2000 during its program on Algorithmic Number Theory.

COMPUTING DISCRETE LOGARITHMS WITH THE PARALLELIZED KANGAROO METHOD 3

2. CATCHING KANGAROOS

Let g and h be group elements with g% = h, where 2 € [a, b] but unknown.

We present the kangaroo method not in its original version [Pol78] but in the version by van
Oorschot and Wiener [vOW99], which is faster than the original version if one allows slightly more
storage.

We have two actors in the kangaroo method, a tame and a wild kangaroo. Their positions are
represented by group elements, and they travel in the cyclic group G = (g). The tame kangaroo
is set off at the group element tq = ¢(@*9/2 and the wild kangaroo is set off at the group element
wp = h. Both starting points uniquely correspond to locations in the interval [a,b]: the tame
kangaroo starts at the middle of the interval, and the wild kangaroo starts at « = log, h. Since we
do not know z, we do not know the exact location of the wild kangaroo, and that is why it is called
wild. The purpose is to provoke a collision between the tame and the wild kangaroo, from which
we can deduce the wild kangaroo’s starting point.

For this, we define a set of jump distances
S={s1,...,8}
with s; > 0,5, = O(v/b —a) and r = O(1), and a set of jumps
J=A¢",...,9"}.

Here, the exact choice of the s; and r will be discussed further below and in Section 5.1. The
kangaroos’ travels consists of jumps, where each jump is a multiplication of the current position by
some g% € J.

We choose a hash function G — {1,...,r} that divides G into r pairwise disjoint sets My, ..., M,,
which gives a rule for the kangaroos’ jumps. For example, if ty € Mz, then the first jump of the
tame kangaroo gives t; = tg * g°*. In general, for £ =0,1,2,... we compute

the1 = tp*xg* where t, € M; ,

Wgt1 = Wk * g% where wy, € Mj |

and thus obtain two sequences (i) and (wy) in (g). At the same time, we keep track of the distances
the kangaroos travel by setting 0o tame = d0,wila = 0 and

5k—|—1,tame - 5k,tame + s where Ik € Ml)

Ok+1,wild = Okwild + 55 where wy, € M ,

which defines two strictly increasing sequences of integers.

With a high probability there will be indices k and &’ such that ¢ = wgs (the case that this does
not happen is addressed in Section 6.3). Notice that usually k # &', so that we only have a collision
between the two kangaroos’ paths rather than a collision between the kangaroos themselves (so no
one is getting hurt). Such a match ¢t = wys, which can be detected using the distinguished point
method (see Section 4), corresponds to the equation

b
g%-_ * g‘sk,tame — h * gék’,wild .

Since h = g%, this translates into

atb

(2.1) T = + 5k,tame — 5k’,wild (mod ord g) .

4 EDLYN TESKE

T

Rho method Kangaroo method Parallelized rho method

FiGURE 1.

We even have that (2.1) is most likely to hold over the integers (see Section 6.2):

at+b
T = 5 + 5k,tame - 5k',wild)

so that we do not need to know ord g to find = = log .

Van Oorschot and Wiener [vyOW99] have analyzed this method and have found that the expected
running time is minimized if the jump distances s; are chosen such that their mean value is ap-
proximately v/b — a /2. Then one obtains that the expected number of jumps of both kangaroos
until their paths collide is altogether 24/b — a.

3. KaANGAROO METHOD VERSUS RHO METHOD — OR: WHAT IS THE LAMBDA METHOD?

The kangaroo method is also known as the lambda method, but since the parallelization of the rho
method has become popular, the rho method is sometimes also referred to as the lambda method.
So both methods occasionally get mixed up. However, there is an intrinsic difference between them,
which we address in this section.

Where does the confusion come from?

In Pollard’s rho method for discrete logarithm computation a sequence (yi) in G is defined by
choosing an initial term yo € G and then following the rule yr1; = F(yx), k € N, where F : G — G
is a pseudo-random mapping. Such a sequence (yi) is ultimately periodic. If its terms are drawn
on a piece of paper starting at the bottom and ending in a cycle, the figure one obtains has the
shape of the Greek letter rho (Figure 1, left).

In the kangaroo method, if the terms of the sequences of both kangaroos are drawn on a piece
of paper, starting for (fx) at the bottom left and for (wg) at the bottom right and merging when
the collision of the paths occurs, the figure one obtains has the shape of the Greek letter lambda
(Figure 1, middle).

In the parallelized rho method, one works with a collection of sequences, one for each processor,
and the goal is that two such sequences collide. If we draw again the terms of all sequences, the big
picture shows a bundled rho, while if we zoom into the area of collision, we see a lambda (Figure
1, right).

Thus, the pictures we obtain from drawing the sequences do not suit well to distinguish between
the two methods. The real difference lies in the sequences themselves. As before, let G = (g) and
h € G, and we consider the problem of finding z = log, h.

COMPUTING DISCRETE LOGARITHMS WITH THE PARALLELIZED KANGAROO METHOD 5

Pseudo-random walk Walks with small jump distances

Ficure 2. The walks in the Pollard rho and kangaroo methods

Both the kangaroo method and the rho method in its improved version [Tes00] work with sequences
following the rule

(3.1) 4l = Zp Ay,
with m; € {m1,...,m,}, r = O(1), and ¢ = i(z) given by a hash function mapping G to the
integers 1,...,r.

The characterizing feature of the rho method is that a random walk in G is simulated. For this,
one works with m; = g% that are random powers of the generator g, i.e., the u; are thought to be
integers randomly chosen from [1, ord ¢g], and their mean value is about (ord g)/2.

In the kangaroo method we work with m; = ¢® where the s; are viewed as small distances, in the
order of Vb —a (with @ < =log,h < b). So we do not attempt to simulate a random walk in the
whole group, but we think of the jump distances as comparatively small integers whose mean value
is about v/b — a /2. Thus, even if « = 0 and b = ord ¢, that is, no information about the location of
the discrete logarithm is available, the jumps in the kangaroo method are much smaller-sized than
in the rho method. Note that if « = 0 and b = ord g, the kangaroo method takes about 1.6 times
longer than the rho method. The point of turnover is when b — a < 7/8 - ord g.

Figure 2 illustrates both kinds of walks. Here, we view the elements of G as lying on a circle, placed
equidistant starting with ¢ = 1 and such that clockwise, ¢g'*! comes right after ¢*, and such that
with ¢°"19 = 1 we close the cycle.

Thus, from the walk (3.1) we can easily distinguish between the two methods: we speak of the rho
method whenever random walks are used, and of the kangaroo method whenever walks with small
jump distances are used.

4. THE DISTINGUISHED POINT METHOD

The idea of the distinguished point method is to search for a match t; = wy not among all terms
of the sequences of the tame and the wild kangaroo, but only among a small subset of terms that
satisfy a certain distinguishing property. It is due to van Oorschot and Wiener [vOW99].

6 EDLYN TESKE

Let D be a subset of G. A group element z is called a distinguished point if z € D. For our purpose,
we fix an integer f and let

D=D;= {ze€G : the f least significant bits
in the representation of z as a binary string are zero} .

If 2 € Dy, we call z a distinguished point of degree f. This definition has the advantage that the
check whether a group element is a distinguished can be done very fast, and that we can monitor
the size of Dy by the parameter f.

We now explain how we use distinguished points to detect collisions in the kangaroo method. We
compute the sequences (f;) and (wy) of the tame and the wild kangaroos, where each t; can be
written as t, = ¢(@t0)/2+dkame and each wy as wy = h * ¢*%wid | After each jump of a kangaroo, we
check for the current term whether it belongs to Dy. If a term is a distinguished point, the pair
(tk, Ok tame) T€SD. (Wk, O wild) is stored. Then we go on. The check whether a collision has occurred
can be done whenever a new distinguished point is being stored (for example, we could use a hash
table for this), or we could store the distinguished points in a separate file and search it for a pair
tr. = wyr by a separate routine.

To analyze the distinguished point method, let © denote the proportion of group elements that
are distinguished. For D = Dy, we have O = 2=f. The average running time for each kangaroo
to find a distinguished point is 1/© = 2/ jumps. That means that after the paths of the two
kangaroos have collided, an expected number of 2/0 jumps is performed until that collision is
detected, which together with the aforementioned van Qorschot-Wiener analysis gives an expected
running time of altogether T := 2v/b — a4 2/+! jumps. The expected storage requirements amount
to M = 27/+1/b — a+ 2 pairs (z,1) € G x N where [= O(b— a) (cf. Section 6.4). Thus, if we put

(4.1) 0< f= [bgz mw _C,
for some C' € Ny, then © ~ 2°/v/b — a,
Wo—a(14+1/29 < T < 2Vb—a(141/297Y
and
2042 < M < 20t 42,

So, just as in the baby-step giant-step method we find some time-memory trade-off. The great
advantage of the distinguished point method is that we need the memory only “off-line”, and that
we have the parameter C' with which we can efficiently monitor this trade-off.

Remark 1: The above inequalities suggest that putting, for example, C' = 10 might be a good choice
to get very small storage requirements and a minor increase of the O-constant. But sometimes a
larger choice for C' might be necessary. For example, when distinguished points serve as checkpoints,
the expected number of /b — a /2¢ jumps that it takes to find one distinguished point can be too
large.

Remark 2: On analyzing the asymptotic performance of the distinguished point method in the
setting of the rho method, Schulte-Geers [SGO00] finds that the distinguished point set must be at
least of “critical size” av/A, where A is the cardinality of the corresponding cyclic group and a
should not be too small (in fact, the larger «, the better). Applied to the kangaroo method, where
the computation happens in a set of const - (b — a) elements (cf. Section 6.4), this means that we

need Q(v/b — a) distinguished points on the kangaroos’ paths. This is met by © = Q(1/v/b — a).

COMPUTING DISCRETE LOGARITHMS WITH THE PARALLELIZED KANGAROO METHOD 7

5. PARALLELIZATION OF THE KANGAROO METHOD

Van Oorschot and Wiener [vOW99] have shown how the kangaroo method can be parallelized with
linear speed-up: Assume we have m processors, m even. Then, instead of one tame and one wild
kangaroo, we work with two herds of kangaroos, one herd of m/2 tame kangaroos, and one herd
of m/2 wild kangaroos, with one kangaroo on each processor. The distinguished point method is
used to detect a collision.

On each of the m processors, we use the same set of jumps J, where the jump distances s; are
chosen such that their mean value, say (3, satisfies

(5.1) Bmin = mVb—a /4 .

Let v be an integer that indicates the spacing between members of the same herd, for example

VR mL/Zﬁ (see Section 5.2 for a discussion of v). Then, m/2 tame and wild kangaroos T1,. .., T, /2
and Wy, ..., W,/ are set off at
to(T}) = glatb)/ 241w and wo(W;) = h * gl=bv i=1,...,m/2,

one on each processor. The initial travel distances are set to 6o tame(Ti) = o wita(W;) = (¢ —1)v and
each kangaroo is provided with a tag indicating whether it is tame or wild. Then they jump, and
after each jump it is checked whether the new kangaroo spot is a distinguished point. If this is the
case, that distinguished point together with the corresponding travel distance and the tame/wild
tag is sent to a central server where it is stored, and where the check for a collision between a
tame and a wild kangaroo is done. Such a collision is expected to occur after 2¢/b — a /m jumps of
each kangaroo (see [vOW99] and Section 6), so that the expected running time on each processor
amounts to 2v/b — a /m + 1/0O group operations, where © as in the previous section denotes the
proportion of distinguished points in (g).

Remark: If m is odd or indefinite, we can simulate m’ = 2m virtual processors by having one pair
of wild and tame kangaroos on each processor, and letting them jump alternately. Then the same
analysis as above carries over with m replaced by m’, and the work on each of the m processors is
just twice the work on each of the m’ virtual processors.

Of course, in the above version of parallelization collisions between kangaroos of the same herd may
occur. We call such collisions useless, and we call a collision between a tame and a wild kangaroo
useful. A useless collision does not give any information about the discrete logarithm, and since
after a useless collision the colliding kangaroos continue with exactly the same path, computing
time is wasted. This effect will be studied in Section 7.

Pollard [Pol00] has developed a version of parallelization where useless collisions cannot occur. His
idea is the following: One works with v tame and v wild kangaroos, where u and v are coprime and
such that v ~ v &~ m/2 and v + v < m. The r jump distances in the set of jumps are multiples
of wv, say s; = q;uv for positive integers ¢;, ¢ = 1,...,r. The set-off points of the tame and wild
kangaroos are g(@+b)/2+iv (i=0,...,u—1)and hx g’ (j =0,...,v—1), respectively. This implies
that any two tame kangaroos (and also any two wild kangaroos) travel with travel distances that
are in distinct residue classes modulo uv. Also, since the equation

a+b

+iv=xz+ ju (mod uv)

has a unique solution in ¢ and j, there is exactly one pair of tame and wild kangaroos that travel
in the same residue class modulo uv. Hence, no collisions between members of the same herd can
occur, and exactly one useful collision can occur. The analysis of this variant (see [Pol00] and

8 EDLYN TESKE

Section 6) shows that the mean value of the ¢; should be close to \/(b— a)/(uv)/2, i.e. the mean
value of the jump distances s; should be close to

(5.2) Bmin = Vuv(b—a) /2

for optimal results. Then the expected running time is /(b — a)/(uv) + 1/0 jumps on each pro-
cessor. If uw and v are close to m/2, this yields approximately the same value for S, and also
approximately the same expected running time as for the van Qorschot-Wiener parallelization.

Notice that Pollard’s variant of parallelization only works when the number of processors is fixed
and known in advance, and all processors take part in the computation until the very end. Since
from the very beginning of the computation it is determined which pair of kangaroos is the one to
collide, a failure of one of the two corresponding processors would be fatal: the computation would
not finish.

For both versions of parallelization, the linear speed-up has been confirmed in practice, and their
performance is quite similar (see Section 8).

5.1. The set of jumps. The jump distances s; must be chosen with care to obtain the theoretically
predicted performance. Let P = 1 for the variant of van Qorschot and Wiener, and P = wv for
Pollard’s variant, with u and v as above. Then the jump distances are of the form s; = ¢;P. We
discuss the choice of the ¢; and give two concrete choices that work well in practice.

Apart from the aforementioned condition on the mean value of the ¢;, we need ged{q,...,q} = 1.
This is because if the ¢; have a common factor, say M, then each kangaroo travels with a travel
distance that is in a fixed residue class modulo M. Thus, a tame and a wild kangaroo can meet
only if they travel in the same residue class modulo M, which may cause the algorithm to take
longer, or even to fail.

5.1.1. Powers of two. A first good choice is letting the ¢; be the powers of two starting with ¢; = 1
and up to ¢, = 2”71 where r is such that the mean value (2771 —1)/r of the ¢; is close to the optimal
value 8 from (5.1), respectively (5.2). Notice that since 8 varies with the number of processors and
the interval length, the number of jumps r varies as well.

Pollard has suggested powers of two as jump distances already in his 1978 paper [Pol78]. In [Pol00]
he proves that in the serial case and also in his variant of parallelization this choice indeed yields
the desired result. See also Section 6.6.

Remark: In practice, we choose the largest jump distance differently in order to better meet the
optimal mean value. We let r be the largest integer such that R := [(2"~! — 1)/r] < 8/P and put
¢, = r(|8/P] — R). Experiments show that this leads to a slightly better performance than using
exclusively powers of two.

5.1.2. Random distances. A second good choice consists of 20 integers {qi, ..., ¢20} randomly cho-
sen from the interval [1,23/P], subject to the conditions that they are pairwise distinct and that

ng{qh e 7(]20} =1.

That we work with a set of size 20 stems from our work on the rho method [Tes00] where we
showed that with 20 jump distances chosen randomly from [1, ord g] we have enough randomness to
simulate a random walk in the cyclic group {g). In the kangaroo method, we want to simulate jumps
with distances randomly chosen between 1 and 25/P. This analogy, supported by comprehensive
testing in practice, suggests that 20 random jump distances from [1, 25/ P] yield sufficiently random
kangaroo paths.

COMPUTING DISCRETE LOGARITHMS WITH THE PARALLELIZED KANGAROO METHOD 9

5.2. The spacings. In the variant of parallelization by van Oorschot and Wiener we have to
decide how far apart we set off kangaroos of the same herd. Here, it is simplest to choose equidistant
spacings, that is, we let the tame kangaroos start at group elements glatb)/2+iw (1=0,1,...,m/2—
1) for some integer v, and correspondingly for the wild kangaroos. On the one hand, we do not
want v to be too large. More precisely, we want that v < $/(m/2). Then the maximum distance
between any two set-off points of kangaroos of the same herd is bounded by £, which means that
with one jump the hindmost kangaroo is expected to catch up with the leading kangaroo of the
same herd. This enables us to view the herds as travelling clusters rather than loose collections
of individual kangaroos. On the other hand, we do not want v be too small, especially when the
set of jumps contains many jumps with small distances, as it is the case if the jump distances are
the powers of two. In this case, it might easily happen that small jump distances add up to make
two members of the same herd collide. Indeed, this effect is quite remarkable, as our experimental
results show. It therefore seems reasonable to choose v close to 5/(m/2).

6. ANALYSIS

We first analyze the parallelized kangaroo method in the version of van Qorschot and Wiener
[VOW99], with m processors and one kangaroo on each processor, half of them tame and half of
them wild. We make the (admittedly, idealistic in a widely distributed attack) assumption that all
processors begin with their computation at the same time and operate with the same speed. We
count the running time in terms of iterations, where one iteration comprises one kangaroo jump
on each processor. Then one iteration requires m group operations altogether. We do not consider
any ordering of these m operations.

We view the travels of the kangaroo as movements (to the right) on a line £ where the group
elements ¢* are placed equidistantly and ordered by increasing exponent 2.

The running time splits up into three parts: the time while the two herds of kangaroos travel
in separate regions of £, and the time when they travel in a common region, and the time from
when a useful collision has occurred until it is being detected by the distinguished point method.
With Zg, Z¢ and Zp we denote the respective running times on one processor in terms of group
operations.

We assume that the spacing v between members of the same herd is chosen small enough that the

kangaroos T4, ..., Ty, 0 and Wy, ..., W, /; can be viewed as clusters on £. Then let
d=|2 +b —z
2

be the distance on £ between the two herds. Since we do not know which of the two herds is further
to the right on £, we simply speak of the leading and the following herds; it does not matter which
is tame and which is wild. As before, let

1 T
p= - Z 5
=1

be the mean value of the exponents s; in the set S. Then, for the following herd, it takes on average
d/B iterations to cover the distance to the set-off points of the leading herd. Hence, Zg = d/p.
Only after that, when their paths overlap, collisions between tame and wild kangaroos can occur.
Of course, at any time in the algorithm, a useless collision can occur. Here we do not consider the

computing time wasted due to this. It is small, in general, and analyzed in Section 7.

10 EDLYN TESKE

To proceed, we make the simplistic assumption that in the path of each kangaroo, each jump can
be viewed as a jump with a jump distance chosen randomly from the interval [1,25]. Then the
following holds: 1.) For each leading kangaroo, in every interval on £ of length 25, we expect
two spots of its path. 2.) Every jump of a following kangaroo hits one of these two spots with
probability 2/(28). Thus, each jump of a (fixed) following kangaroo hits the path of a (fixed)
leading kangaroo with probability 1/5. Assuming independence among the m/2 members of each
herd, we conclude that for each iteration, a useful collision occurs with probability (%)2 /3. Hence,
the expected running time in the second stage where the paths of both herds overlap amounts to
43/m? iterations. That is, Zc = 48/m?. Taking derivatives, we find that the expected running
time Zg + Z¢ is minimal when B, = m\/a/2 But we do not know d — otherwise we could have
immediately solved the DLP. However, in applications we might know the expected value of d,

which we denote by d. We then choose
mvVd

(6.1) Bnin = —5— -

Then Zg = 2d/(m\/§) and Z¢ = (2\/3)/771 Averaging over all integers d € [0, (b—a)/2], we obtain

2V d
(6.2) Zs=Zc=——
m
and a total expected running time of Zg + Z¢ = (4\/(?)/771 operations on each processor until a

useful collision occurs. In particular, if the solution is uniformly distributed in the interval [a, b],
we have d = (b — a)/4, which gives Bnin = mvb — a /4 (just as in (5.1)) and
4d vb—a
Jg = ———— Zo = .
myvb—a m

Again, by taking averages over all d, we find Zs = Z¢ = vVb—a/m and Zs + Zc = 24/b— a /m.
Observe that with 8 asin (5.1) and for any z € [a, b] (independent of its distribution in [a, b]) the
expected running time Zg + Z¢ satisfies the inequalities

Vb —a 3vVbh—a
- .

< Zs+Zc <
m

To obtain the corresponding results for the total expected running time, we just have to add the
Zp = 1/0 iterations needed to detect a collision once it has occured.

For a corresponding analysis of Pollard’s variant of parallelization, we simply put m = 2 and replace
the interval length b — a by (b — a)/(uv) everywhere in the above analysis. This works because
we only have to consider the expected number of jumps of the two kangaroos that are destined to
collide, and they travel in a fixed residue class modulo uwv.

6.1. Distribution of the running time. For our further considerations, we need to know about
the distribution of the running time until a useful collision occurs. We here restrict ourselves to
the case that only one wild and one tame kangaroo are involved. Under the assumption that when
travelling in the common area, each jump of the following kangaroo hits the path of the leading
kangaroo with probability 1/5, the probability that no collision has occured after k3 iterations in
the common area is

(6.3) Prob(Zc > kB) = (1 —1/8)* ~e7* .
Now let 7 denote the number of iterations until a useful collision occurs, i.e., 7 = Zg + Zg. Then

Prob(r < kB) ~ 1 — e 1)

COMPUTING DISCRETE LOGARITHMS WITH THE PARALLELIZED KANGAROO METHOD 11

where t3 = Zg is the time spent in separate areas. If the discrete logarithm is uniformly distributed
over the interval [a, b], then ¢ is uniformly distributed in [0, 2]. In this case,

1 k
5/ (1—e =0y if k<2,

1 02 k 1 2
—/ [1 — (271 +/ e~ (@) dac] dt = —/ (1—e®=at ifk>2.
2 0 2 2 0

Integrating, we obtain

Prob(r < k) ~

E_li-eh if k<2,
(&

k=21 —e7?) ifk>2.

From this we see that since the expected running time is 23, the probability Py that it takes less
than K times as many iterations until a collision as expected satisfies

(6.4) Prob(r < kf) ~ { -

1] Ll T

1 -
P m K = (1~ ey (K<),
while for the probability ()i that it takes more than K times as many iterations until a collision
as expected we have

Qr~1— %e—2<K—1>(1 ey (K1)

For example, Py /5 & 0.18, Pyj10 &~ 0.94-107%, Py ~ 0.57,Qy = 1 — P; ~ 0.43, Q3 ~ 0.58-107", and
Q4 ~0.11-1072.

To obtain probability estimates that are independent of the distribution of the discrete logarithm
in [a,b] we use the fact that always t < 2, and thus

(6.5) Prob(r < k) > 1 — e~ *=2) |

6.2. Doing without knowledge of the group order. Now we show that (2.1) is indeed very
likely to hold over the integers. For this, assume first that only one tame and one wild kangaroo
are involved. Accordingly, let 8 = /b —a /2. Let n = ordg. The concern is that at the point
the collision is detected one kangaroo might have travelled a total distance that is by a multiple
of n larger than the other kangaroo’s travel distance. Let dg, d¢, dp denote the respective travel
distances covered by the kangaroos while they travel in separate regions, while they travel in a
common region but on different paths, and while they travel on the same path until a distinguished
point on that path is found (i.e., §s = SZs, etc). Then the total travel distance of the tame
kangaroo is

(66) 5tame — 5S,tame + 5C,tame + 5D,tame)

and correspondingly for the wild kangaroo. We have 65 tame — 03,wild = — (¢ + 0)/2 and 0p tame =
Op,wild. Plugging this into (2.1), we get

0C tame — O0C wild = ¢ - 1, for some ¢ € Z .

We need to show that ¢ = 0. For this, it is sufficient to show that max{dc tame, dc,wid} < 7 .
Since the expected number of jumps of each kangaroo in the common area is given by /S and the
average travel distance for each jump is §, it is immediate that the expected value of é¢ equals
3% = (b — a)/4 (which is less than n for b — a < 4n).

From (6.3) we obtain that Prob(éc > k%) ~ e*. Now let ¢ be such that b — a < n/p. Then
B? < n/4p and Prob(éc > kn/(4¢)) < e *. Thus, if ¢ = 1, then Prob(dc < n) > 1 —e~* > 0.98.
If ¢ = 2, then Prob(dc < n) > 1 —4-1073. Since e=* < 1076 for k > 13.82, we finally have that if
©="T/2, that is b — a < (ord ¢)/(7/2), then d¢ < ord g with probability at least 1 — 107°.

12 EDLYN TESKE

If m > 2 and the herds of tame and wild kangaroos are viewed as clusters, each kangaroo’s travel
distance ¢ in the common area also has expected value (b — a)/4, if 3 = mv/b— a/4. The initial
travel distances ég = jv, j € {0,...,m/2 — 1} by which the members of the same herd are spaced
out do not cause any problem if v < 3/(m/2) as suggested in Section 5.2. Finally, on replacing 3
by B8/(m/2)? in (6.3) we find that

(6.7) e ~ Prob(Zo > kB/(m/2)?) = Prob(sc > k(b — a)/4) ,

and we can proceed exactly as in the case m = 2. This shows that (2.1) is most likely to hold over
the integers if b —a < (ord ¢)/(7/2), and if we only assume that b —a < ord ¢, then (2.1) holds over
the integers with probability at least 1 —e~* > 0.98.

Recall thatif b—a > nr/8 = n-0.392... i.e., ¢ < 2.54, the rho method is faster than the kangaroo
method and should be used if » = ord g is known. The above discussion for such small values of ¢
is interesting for the case that, for example, we are only given an approximate value for ord g. In
this case the rho method requires us to compute the order first, while the kangaroo method could
be applied to find = = log, & directly. Notice that even if (2.1) does not hold over the integers, the
kangaroo method still yields a value z such that g% = h.

6.3. Kangaroos running in cycles. During a kangaroo’s travel, there is a possibility that the
sequence of its spots becomes periodic. While cycles are the ultimate goals in the rho method, they
do not reveal any information about z in the kangaroo method. Kangaroos running in cycles do
not find new distinguished points, they slow down the algorithm and even might cause it to fail.
We show that if b — a < (ord g)/4, this is very unlikely to happen. As before, we first assume that
we have only one tame and one wild kangaroo and that we work with jump distances of mean value

B=vb—a/2

Let n = ord g. A necessary condition for a kangaroo to end up in a cycle is that it has to travel
at least a distance n in order to go around the cyclic group (g). That takes n/j iterations. From
(6.5), we have Prob(r > n/S3) = Prob(r > #%3) < e~ (4n/(b=a)=2) ‘which is an upper bound on the
probability P that a kangaroo ends up in a cycle before a useful collision has occured. Now let ¢ be
such that b—a < n/¢. Then P < e=4¢=2) If o = 1, then P < 0.14. If o = 2, then P < 2.5-1073,
and if ¢ = 4, then P < 107%. This shows that a kangaroo is very unlikely to end up in a cycle if
b—a < (ordyg)/4.

If we assume that the discrete logarithm is uniformly distributed in the interval [a, b], we can use
(6.4). Then we find Prob(r > n/g) = te=4/(=0)=2(1 =2} if b — a < 2n, which results in bounds
on P that are by a factor (1 — e7%)/2 ~ 2.3 smaller than above.

If m > 2 kangaroos are involved, then the mean jump distance is larger and kangaroos go around the
cyclic group (g) faster, so that cycles might be more likely. More precisely, with 5 = mvb — a /4,
we only have P < Prob(r > n/B) = Prob(r > m;@’ia)ﬁ). With b — a < n/p, and using (6.5), we

obtain P < e¢~169/m*=2 This shows that if, for example, we want to use m = 1000 processors, we
need that b — a be about 10° times smaller than n = ord ¢ in order to exclude that kangaroos end
up in cycles. Notice that if a kangaroo ends up in a cycle, this can be easily detected from the
distinguished points it submits. However, to halt it requires a message from the central server to
the corresponding processor, which we want to avoid in an open parallelized computation.

6.4. Bounding the travel distances. It is now easy to show that if 5 is as in (5.1), the travel
distances of all kangaroos can be bounded in terms of b — a, as asserted in our discussion of
the storage requirements in Section 4. We write the total travel distance of a tame kangaroo

COMPUTING DISCRETE LOGARITHMS WITH THE PARALLELIZED KANGAROO METHOD 13

as in (6.6), and correspondingly for a wild kangaroo. Notice that dtame = maxren{dk tame} and
Swild = maxgen{ Ok wild}- Let § = maX;—y /210wt (Wi), Stame(T5) }-

For any kangaroo, ds < (b — a)/2, ép = mv/b—a/(40), and dc follows the rule Prob(éc >
k(b — a)/4) ~ 7% (from (6.7)) with expected value (b — a)/4. Also taking into account the
initial spacing v between members of the same herd, we find that each kangaroo’s expected travel

distance is bounded by 2(b—a) 4+ ™Y g_“ + (2 -1)v. With©® =277 and f, C asin (4.1), we have

myb — a /(40) < m(b— a)/2°F!. Thus, we expect that

3 m m
When v is chosen such that Ty < 8 (see Section 5.2), the last summand can be bounded by

B = O(mvb — a). Then, and with probability at least 1 — 107°, we have
§< (4+m/29 (b - a) + O(mVb - a) .

6.5. When the number of processors is not known. The optimal choice for 5 depends on
m, the number of processors involved. However, it is not always possible to exactly determine
the number of processors that are going to participate. In this case, we need to work with an
a-priori estimate of this number. Of course, we want that a slightly wrong such estimate does not
dramatically affect the running time. We show now that this is indeed the case.

Let m be the estimate for the number of processors in a parallelized kangaroo attack. Let 5 =

m\/t?/2 the correspondingly optimized value for the mean jump distance. Now assume that vm
machines, v > 0, join the computation. Let Z(3,~) denote the expected running time per processor

until a useful collision occurs, averaged over all d € [0, (b — a)/2]. Then Z(5,1) = 4\/3/771 (from
(6.2)). To deal with the case v # 1, let as before Zg and Z¢ denote the respective expected running

times per processor for the first and second stages of the kangaroos’ travels. Then Zg = d/f and
Zo = 4B3/(ym)? and

Z(8,7) =2Vd(1+1/5%)/m.
We now determine the running time for the case S had been chosen to optimize the ym-processor
setting. In this case, we would have worked with Sy, = 'ym\/(?/Q, and then

Z(Bmins7) = 4Vd [(ym) .

Taking the quotient Z(5,7v)/Z(Bmin,Y), We see that by being mistaken about the number of pro-
cessors by a factor v, we end up with a running time that is by a factor

o=y (143) 1o £

longer than what corresponds to linear speed-up. For example, if we err in our estimate by a factor
of 2, we experience a running time that is by a factor of 0(2) = o(1/2) = 5/4 longer than in the
optimal case. In other words, if we unexpectedly have twice as many processors for a computation,
this still gives a speed-up of a factor 1.6 compared to our originally estimated time. For smaller
errors, the loss in speed-up is even smaller. However, if we err considerably, for example, by a
factor of 10, then ¢(10) = (1/10) = 13/5, i.e. the running time is more than five times as long as
what we could achieve with an optimized choice of 5! In this case, one might want to consider a
restart of the computation (especially if v « 1), although such an action might result in a loss of
contributing processors. The best strategy here depends on the application.

14 EDLYN TESKE

6.6. Heuristic assumptions in the analysis. The above analysis holds under some heuristic
assumptions, which we summarize in this section.

Throughout the analysis, we always need to assume that the hash function (¢) — {1,...,r} that
picks the jumps from the set J behaves like a random function. This is reasonable given that
|{g)| > r. This is the only assumption underlying our analysis for the expected running time Zg.

In our analysis of the second stage when the kangaroos’ trails overlap, we work under the assumption
that in each iteration, a collision between two fixed kangaroos occurs with probability 1/5. This
holds, for example, under the assumption that each jump is with a jump distance randomly chosen
from [1,2p3]. Based on related work with the rho method [Tes00], it is reasonable to assume that
this can be simulated with 20 jump distances randomly chosen from [1,273].

Pollard [Pol00] gives a running time analysis that can do without this assumption: for the setting
with two kangaroos, one of each kind, he proves that the expected running time of this second stage
is 25 A(S) multiplications where A(S) is a constant that depends on the set S of jump distances.
He gives an explicit formula for A(S) that can be evaluated in special cases. For example, if the
jump distances are powers of 2 as in Section 5.1.1 and 6 < |S| < 20, then |A(S) — 1| < 0.12, and
Pollard conjectures that A(S) — 1 for |S| — oco. If A(S) is close to 1, then Z¢ is close to 283, just
as what we get from (6.1) and (6.2). Unfortunately, we are not able to determine A(S) if the jump
distances are 20 random integers as in 5.1.2.

The analysis of the running time of the parallelized version of van Qorschot and Wiener needs
that all kangaroos of each herd are mutually independent. Pollard’s variant of parallelization, on
the contrary, does not require any additional assumptions: Since only two processors contribute
anything to the solution, the parallelized case is analyzed just as the serial case but with the interval
length reduced by a factor 1/(uv).

7. UseLEss COLLISIONS

Recall that a useless collision is a collision between kangaroos of the same herd. They can only
occur in the parallelization variant by van Qorschot and Wiener.

The following simple argument shows that the expected number of useless collisions is bounded
by two. We assume that S = Spin as in (6.1) which gives the expected running times as in (6.2).
In particular, then the two herds are expected to spend as many iterations travelling in separate
regions as they are expected to spend travelling in a common region. That is, useless collisions
can occur during twice as many iterations as useful collisions can occur. Altogether, there are
2(%5 — 1) possible pairs for useless collisions among the m/2 tame kangaroos and among the m/2
wild kangaroos. On the other hand, there are (m/2)? possible pairs for useful collisions. Thus, for
each individual iteration during the travel in the common region, a useless collision is slightly less
likely to occur than a useful collision. While the herds travel in separate regions, a useless collision
is as likely to occur as it is while they travel in a common region. We have one useful collision
during the travel in the common region, and therefore we expect at most two useless collisions
throughout the whole computation.

We now estimate the impact of useless collisions on the running time. Let m > 4. The first useless

collision reduces the number of possible useful collisions to %+ (%5 — 1), and after the second useless

2
collision this number is (% — 1)® or (% — 2), depending on whether the collisions happened in
different herds or in the same herd. Thus, if only one or two useless collisions occur, this leads to
an increase in the running time by a factor of at most %+ /(%5 — 2). Hence, if m is large, two useless

collisions only marginally affect the running time.

COMPUTING DISCRETE LOGARITHMS WITH THE PARALLELIZED KANGAROO METHOD 15

We need to emphasize, however, that this reasoning relies on the randomness assumptions under
which the analysis of this parallelized version has been conducted. Our experimental results confirm
that on average we have less than two useless collisions. But there are unfortunate choices of the
sets of jumps and the spacings where we find considerably higher numbers of useless collisions. We
think, nevertheless, that these choices could be identified. See Section 8 for details.

If m = 4, we do expect an increase of the running time due to useless collisions. This is because
after the first useless collision, the number of possible useful collisions decreases by a factor of two,
from 4 to 2. If a useless collision happens before the kangaroos’ regions overlap, we hence expect
that in the region of overlap the expected running time is doubled. Indeed, our experimental results
show average running times that are noticeably larger. We remark that also the Pollard variant of
parallelization does not give fully linear speed-up if m = 4. There, we work with v = 1 tame and
v = 3 wild kangaroos, which results in an expected running time that is by a factor 2/v/3 = 1.15. ..
larger than what we would get from linear speed-up. Thus, if one has only 4 processors and wants
to optimize the performance, one should work with more than one kangaroo on each processor. For
example, simulating 16 processors by having four kangaroos jumping alternately on each machine
should do it, as our experimental results suggest.

8. EXPERIMENTAL RESULTS

We work with the elliptic curve E over F,, p = 10'5 4 37 given by the equation
(8.1) y? = 2% + 5z + 19 (mod 10%° + 37) .

We conduct several series of experiments, where we solve elliptic curve DLPs in the cyclic group
Ey, with the kangaroo method. We use the Computer Algebra System LiDIA [LiD] on a SunUltra
Enterprise 450 under Solaris 2.6. If not indicated otherwise, we work with distinguished points of
degree zero. Then Zp = 0. When measuring the running times, we also ignore the time for the
precomputation of the sets of jumps, which is O(log(b — a)). We work with the two sets of jumps
we introduced in Section 5.1.

Our first experiment deals with the serial case, i.e. m = 1, m’ = 2. We randomly choose a generator
P of the curve group and let Q = 2P with 2 chosen uniformly at random from the interval [0, 108].
We use the kangaroo method with one tame and one wild kangaroo jumping alternately on the
same processor to compute z. We do this 10000 times, for both sets of jumps; here the set of jumps
with powers of two as jump distances has 17 elements. We find that on average, it takes

2.07-10* operations when using powers of two as jump distances ,
2.08-10* operations when using random jump distances

to find the discrete log. This closely matches the theoretically predicted times.

In our next series of experiments, we assume that the discrete logarithm lies in the interval [0, b],
b = 10%,10'9,10'2, and we work with m = 20, m = 100 and m = 1000. For each combination
of b and m we repeatedly do the following: We randomly choose a generator P and let Q = z P
with 2 chosen uniformly at random from [0,b]. Then we use the kangaroo method with m = 20,
m = 100 and m = 1000 kangaroos to compute x. Instead of using m processors, we simulate
the parallelization on a serial processor, by successively computing jumps for all kangaroos. We
apply both the variant of van Oorschot and Wiener and the variant of Pollard, with both sets of
jumps. For each combination, this is done 1000 times for the two smaller values of b, and 100
times for the largest value of b. The spacings in the van Oorschot-Wiener variant are v = 5003,
v = 50021 and v = 500009 for b = 10%,10'°, 10'2, respectively, so that v is always the next prime
after 26min/m = v/b— a /2. The numbers of tame kangaroos in the Pollard variant are u = 9,

16 EDLYN TESKE

z €p [0, 10%] z €r (0,101 z €p [0,1017]

vOo/Wi | Pollard || vOo/Wi | Pollard || vOo/Wi | Pollard

20 kang. powers of 2 2.23 2.21 2.12 1.97 2.18 1.97
random 2.26 2.12 2.13 1.93 2.17 2.01

100 kang. | powers of 2 2.17 2.14 1.97 1.91 2.01 1.81
random 2.07 2.09 2.01 2.00 2.06 2.12

1000 kang. | powers of 2 2.18 2.06 1.94 2.01 2.09 2.17
random 2.06 1.94 1.94 1.96 2.18 2.12

steps # kangaroos (b= 10%, 1010, 1012).

TABLE 1. Average performance:

kangaroo Vb
z €p [0, 10%]
spacing: v=13|v=203| v =503|r=2503| v =5003 | » = 10007
100 kang. | powers of 2 4.26 2.08 2.02 1.82 1.75 1.66
random 1.81 1.91 1.91 1.87 1.86 1.88
1000 kang. | powers of 2 51.44 7.64 5.95 2.75 2.26 1.62
random 1.79 1.71 1.84 1.76 1.87 1.89

TABLE 2. Useless collisions for various choices of spacings.

u = 49 and u = 499 for m = 20, m = 100 and m = 1000, respectively. For b = 10'? we work
with distinguished points of degree 3, such that it takes an expected number of 8 steps to detect a
collision in this case. We count the number of steps for each kangaroo, and determine their average
values taken over the 1000 resp. 100 runs of the algorithm. The theory predicts that these average
values, multiplied by m and divided by v/b are about 2. We give the corresponding experimental
results in Table 1, where in each pair of rows the upper values give the performance with power-of-2
jump distances, and the lower values show the performance with random jump distances. Note
that the performance for individual runs of the computation is pretty variable so that even after
taking averages over 1000 runs, we can reproduce the corresponding values given in Table 1 only
within a margin of 0.05.

Now we turn to the impact of the spacing between kangaroos of the same herd in the van Oorschot-
Wiener parallelization on the number of useless collisions. Using the same set-up as before, we
work with b = 10% and various spacings: v = 13,203,503, 2503, 5003, 10007. We use both choices
for the sets of jumps, and m = 100 and m = 1000 kangaroos. The average numbers of useless
collisions (averages taken over 1000 runs) are shown in Table 2. For random jump distances, the
number of useless collisions seems to be independent of the spacing, while if the jump distances
are powers of two, the larger the spacings, the fewer useless collisions we observe. In both cases
v~ 3/(m/2) seems to work well. As for the average running times when powers of 2 are used:
only for (m,v) = (1000, 13) we find a slightly larger running time than what we expect from Table
1; here the corresponding ratio is 2.30.

We now closer investigate the case m = 4 kangaroos. We expect fewer useless collisions, but that
they have some impact on the running time. This is indeed the case, as our results in Table 3 show.
There we work with interval length & = 10® and spacing v = 5003; the data for other spacings
v = 13,203, ... do not show remarkable variation. We also give the corresponding performance

COMPUTING DISCRETE LOGARITHMS WITH THE PARALLELIZED KANGAROO METHOD 17

z €pr [0, 10%]
vOorschot/Wiener Pollard
useless coll. | perform. || perform.
4 kang. | powers of 2 0.75 2.89 2.40
random 0.77 2.85 2.43
8 kang. | powers of 2 1.22 2.56 2.15
random 1.35 2.73 2.14
16 kang. | powers of 2 1.59 2.29 2.17
random 1.57 2.23 2.05

TABLE 3. Useless collisions and average performances for m = 4, m = 8 and m = 16 kangaroos.

ratio for Pollard’s variant of parallelization, which corresponds roughly to what the theory predicts
(see Section 7). We also give results for m = 8 and m = 16 kangaroos for both versions of
parallelization. The better performance in these cases suggests that it is preferable to work with
16 simulated processors if one wants to apply the parallelized kangaroo method on 4 processors.

8.1. Conclusion. Our experimental results suggest that both versions of parallelization — van
Oorschot and Wiener versus Pollard — and both choices of jumps distances — powers of two versus
random distances — perform equally well. Pollard’s variant of parallelization is easier to analyze
because it reduces to the serial case, and easier to handle because we do not have to deal with useless
collisions and a proper choice of spacing. The method is not suitable, however, in a distributed
application where we cannot foresee how many processors will be contributing or where we cannot
rely on that all processors are stable until the end. Then the method by van Qorschot and Wiener
can be used, and works well in practice.

9. OTHER APPLICATIONS

9.1. Computing logarithms in arithmetic progressions. Here we consider the following prob-
lem: we want to compute the discrete logarithm = = log, /i, where we are also given an integer ¢
and a residue class @ mod ¢ such that

(9.1) r=a modgq.
Without loss of generality, we may assume that ¢ < ord g. A typical application is that ¢ is a power
of two, in which case (9.1) means that a certain number of the lowest bits are known. Pollard

[Pol00] has given a method for the case that is known modulo a number of small primes that can
be composed to two coprime products v and v of approximately the same size.

Let n = ord g, and let [> 0 such that © = a4 Ilq. Then [< [(n —a)/q], and (g9)! = h * g~¢. With
N=|(n—-a)/q], g = g7 and b’ = hx g~ the DLP ¢* = h is equivalent to the problem of finding
[in the equation

(9.2) (=1,
where [is known to lie in the interval [0, N]. This problem can now be solved by the parallelized

kangaroo method just as described earlier in this work.

Observe that in terms of the original elements ¢ and &, the kangaroos jumping to solve (9.2) do
their jumps in the same arithmetic progression modulo ¢g. Hence, we can view this situation as
a very special case of Pollard’s variant of parallelization [Pol00], namely the case that we already

18 EDLYN TESKE

know from the very beginning which two kangaroos meet, so that we only let these two kangaroos
do their jumps.

With the rho method, the knowledge of mod ¢ can only be used to decrease the running time by
a factor of \/gcd(n, ¢). Thus, given a and ¢ such that 2 = ¢ mod ¢, the kangaroo method applied
to ¢’ and R’ is preferable to the rho method if N < n/8-n/ged(n,q). This is certainly the case if
g > 2.6gcd(n,q).

9.2. Low Hamming weight DLP. (This is an open problem.) If p = [log,(ordg)]|, then the
binary representation of v = log h requires at most p bits, and we can write z = E?:_ol 2;2" , where
x; €{0,1} for 0 < i < p—1. The number of 1’s in this representation is called the Hamming weight
of z, and is denoted by wt(z). For t < u, the Hamming weight ¢t DLP is to find = log, h given the
fact that wt(z) = ¢. There exist algorithms to solve the Hamming weight ¢ DLP using baby-step
giant-step techniques [Sti], but they have large storage requirements. A space efficient algorithm is
desirable, and the kangaroo method might be an approach for that. However, the open problem is
how to define the paths of the kangaroos such that (1) the Hamming weight is invariant on both
paths (in order to exploit the fact that wt(z) is known and low) and (2) a useful collision gives
enough information to compute z.

9.3. Real quadratic function fields. The parallelized kangaroo method can also be applied to
compute invariants such as the regulator and the divisor class number of real quadratic function
fields [ST00]. This is remarkable because in such fields, the objects with which we deal are principal
reduced ideals, which do not constitute a group. Instead of a group structure we find a structure
known as infrastructure, which provides a notion of a distance associated with each reduced prin-
cipal ideal, and a binary operation on the set of reduced principal ideals. These features give an
arithmetic that suffices to define kangaroos and a rule for their jumping. Using the parallelized
kangaroo method (together with an estimate for the divisor class number obtained from certain
truncated Euler products), we were able to compute a 29-digit regulator of a random real quadratic
function field, a computation that would not have been possible with baby-step giant-step methods
because of memory restrictions.

REFERENCES

[LiD] LiDIA Group, Technische Universitat Darmstadt, Germany. LiDIA - A library for computational number
theory, Version 2.0.

[MvOV96] A. Menezes, P. van Oorschot, and S. A. Vanstone. Handbook of Applied Cryptography. CRC Press, 1996.

[Pol78] J. M. Pollard. Monte Carlo methods for index computation (mod p). Mathematics of Computation,
32(143):918-924, 1978.

[Pol00] J. M. Pollard. Kangaroos, Monopoly and discrete logarithms. Journal of Cryptology, 13:437-447, 2000.

[SGO0] E. Schulte-Geers. Collision search in a random mapping: some asymptotic results. Talk at ECC 2000,
The Fourth Workshop on Elliptic Curve Cryptography, Essen, Germany, 2000. Slides available from

http://www.cacr.math.uwaterloo.ca/conferences/2000/ecc2000/slides. . html.

[ST00] A. Stein and E. Teske. The parallelized Pollard kangaroo method in real quadratic function fields. To
appear in Mathematics of Computation.

[Sti] D. Stinson. Some baby-step giant-step algorithms for the low Hamming weight discrete logarithm problem.
To appear in Mathematics of Computation.

[Tes00] E. Teske. On random walks for Pollard’s rho method. Mathematics of Computation, 70:809-825, 2001.

[vOW99] P. C. van Oorschot and M. J. Wiener. Parallel collision search with cryptanalytic applications. Journal of
Cryptology, 12:1-28, 1999.

DEPT. OF COMBINATORICS AND OPTIMIZATION, UNIVERSITY OF WATERLOO, WATERLOO, ON N2L 3G1, CANADA

FE-mail address: eteske@cacr.math.uwaterloo.ca

