Criteri di divisibilita' per 2,3,5,9,11

Un numero $n \in \mathbb{Z}_{>0}$ che ha r+1 cifre se scritto in base 10 si scrive come

$$n = a_r \dots a_0 = \sum_{i=0}^r a_i 10^i.$$

Il numero n e' divisibile per un intero m > 1 se e solo se n(mod m) = 0(mod m). Si ha che

$$n(\bmod m) = [\sum_{i=0}^{r} a_i 10^i](\bmod m) = \sum_{i=0}^{r} (a_i 10^i)(\bmod m) = \sum_{i=0}^{r} [a_i(\bmod m)] \cdot [10^i(\bmod m)].$$

Per m=2 oppure 5 si ha che $10^i \pmod{m} = 0 \pmod{m}$ per ogni $i \ge 0$.

Per m = 3 oppure 9 si ha che $10^i \pmod{m} = 1 \pmod{m}$ per ogni $i \ge 0$.

Per m = 11 si ha che $10^i \pmod{m} = -1 \pmod{m}$ per ogni $i \ge 0$ dispari e invece $10^i \pmod{m} = 1 \pmod{m}$ per ogni $i \ge 0$ pari.

Deduciamo che $n(\text{mod}2) = a_0(\text{mod}2)$ e analogamente $n(\text{mod}5) = a_0(\text{mod}5)$. Quindi n e' divisibile per 2 (risp. per 5) se e solo se $a_0 = 0, 2, 4, 6, 8$ (risp. $a_0 = 0, 5$).

Inoltre n e' divisibile per 3 (risp. per 9) se e solo se la somma delle cifre di n (i.e. $\sum_{i=0}^{r} a_i$) e' divisibile per 3 (risp. per 9).

Infine n e' divisibile per 11 se e solo se la somma alternata delle cifre di n (i.e. $\sum_{i=0}^{r} (-1)^{i} a_{i}$) e' divisibile per 11.

Se $n \in \mathbb{Z}_{<0}$ ed m e' un intero, m > 1 allora n(modm) = 0(modm) se e solo se -n(modm) = 0(modm) quindi ci possiamo ricondurre al caso $n \in \mathbb{Z} \ge 0$.

Crivello di Eratostene

Sia n un numero intero positivo. Ci sono diversi modi per determinare e scrivere una lista dei numeri primi minori o uguali ad n. Un algoritmo molto semplice e' il crivello di Eratostene. Per una descrizione del crivello di Eratostene si veda

 $http://en.wikipedia.org/wiki/Sieve_of_Eratosthenes$

Nota bene: in questo algoritmo e' sufficiente escludere i multipli dei numeri primi $p \leq \sqrt{n}$ (si noti che se n e' il quadrato di un numero primo occorre testare tutti i primi fino a \sqrt{n} compreso). Questo fatto e' una conseguenza della seguente osservazione.

Osservazione 1. Se un numero intero positivo n e' composto allora esiste un numero primo $p \le \sqrt{n}$ tale che p divide n.

Dimostrazione. Se n e' composto allora $n=a\cdot b$ dove a e b sono due interi positivi. Almeno uno tra a e b e' minore o uguale a \sqrt{n} . Supponiamo che si abbia $b \leq \sqrt{n}$. Allora possiamo prendere come primo p un qualunque divisore primo di b.

Da questo fatto segue anche:

Osservazione 2. Nota la tavola dei numeri primi fino a \sqrt{n} possiamo verificare se n e' primo nel seguente modo: basta verificare che n non e' un multiplo di p per ogni primo $p \leq \sqrt{n}$.

Polinomi a coefficienti interi

Sia n un numero intero positivo e sia f un polinomio a coefficienti interi tale che f(a) = n per un certo intero a. Supponiamo che il polinomio f si fattorizzi come prodotto di due polinomi a coefficienti interi g_1 e g_2 . Allora $n = f(a) = g_1(a) \cdot g_2(a)$. Dato che $g_1(a)$ e $g_2(a)$ sono due numeri interi la fattorizzazione del polinomio f puo' aiutarci a trovare la fattorizzazione del numero n. Diamo adesso la fattorizzazione di alcuni polinomi a coefficienti in \mathbb{Z} .

$$x^{d}-1=(x-1)(x^{d-1}+x^{d-2}+\ldots+1)\ per\ ogni\ d\geq 1;$$

$$x^{d}+1=(x+1)(x^{d-1}-x^{d-2}+x^{d-3}-x^{d-4}\ldots+1)\ per\ ogni\ d\geq 1\ dispari.$$

Invece ad esempio $x^2 + 1$ non si fattorizza come prodotto di polinomi a coefficenti in \mathbb{Z} .

Sulla ϕ di Eulero

Proposizione 3. Sia n un numero naturale, allora $\sum_{d|n} \phi(d) = n$ dove d varia tra i divisori di n (sono quindi inclusi 1 ed n).

Dimostrazione. Se n=1 allora $n=\phi(1)=1$ e l'affermazione e' vera. Dimostriamo ora l'affermazione per $n=p^a$ dove p e' un qualsiasi numero primo ed a e' intero, $a\geq 0$. Useremo l'induzione su a. Il caso iniziale a=0 e' gia' stato verificato. Calcoliamo

$$\sum_{d|n} \phi(d) = \phi(1) + \phi(p) + \ldots + \phi(p^a) =$$

$$= 1 + (p-1) + (p-1) \cdot p + \ldots + (p-1)p^{a-1} = p + (p-1) \cdot p + \ldots + (p-1)p^{a-1} =$$

$$= p \cdot (1 + (p-1) + (p-1) \cdot p + \ldots + (p-1)p^{a-2}) = p \cdot (\phi(1) + \phi(p) + \ldots + \phi(p^{a-1}))$$

che per ipotesi induttiva si scrive come

$$p \cdot p^{a-1} = p^a.$$

Adesso mostriamo l'affermazione se n e' composto per induzione su n. Come caso iniziale prendiamo come prima n=1. Scriviamo $n=p^a\cdot n_0$ dove p e' un primo e p non divide n_0 . Scriviamo l'insieme dei divisori di n come unione dei seguenti insiemi:

$$\{d_0|n_0\} \cup \{p \cdot d_0 \ con \ d_0|n_0\} \cup \ldots \cup \{p^a \cdot d_0 \ con \ d_0|n_0\}$$

Allora scriviamo

$$\sum_{d|n} \phi(d) = \sum_{d_0|n_0} [\phi(d_0) + \phi(p \cdot d_0) + \dots + \phi(p^a \cdot d_0)] =$$

$$= \sum_{d_0|n_0} [\phi(d_0) + \phi(p) \cdot \phi(d_0) + \dots + \phi(p^a) \cdot \phi(d_0)] =$$

$$= \sum_{d_0|n_0} \phi(d_0) \cdot [1 + \phi(p) \cdot + \dots + \phi(p^a)] =$$

$$= [\sum_{d_0|n_0} \phi(d_0)] \cdot [\phi(1) + \phi(p) \cdot + \dots + \phi(p^a)].$$

Per ipotesi induttiva questa espressione e'

$$n_0 \cdot p^a = n.$$

Questo dimostra il passo induttivo e conclude la dimostrazione.

1 Sul teorema di Wilson

Teorema di Wilson e ne diamo adesso una dimostrazione.

Vogliamo calcolare la classe di resto di (n-1)! modulo n dove n e' un intero maggiore di 1.

Se n non e' potenza di un primo possiamo scrivere $n = a \cdot b$ con $a \in b$ interi coprimi diversi da 1. Allora $a \leq n-1$, $b \leq n-1$ dunque $a \mid (n-1)!$ e $b \mid (n-1)!$. Dato che $a \in b$ sono coprimi allora $a \cdot b$ divide (n-1)!. Allora n divide (n-1)! quindi la classe di resto di (n-1)! modulo n e' la classe di resto dello 0 cioe' $0 \pmod{n}$.

Sia $n = p^a$ con $a \ge 3$. Allora p^{a-1} e p sono fattori di (n-1)! quindi p^a divide (n-1)! e allora la classe di resto di (n-1)! modulo n e' $0 \pmod{n}$.

Sia $n = p^2$ e p diverso da 2. Allora p e 2p sono fattori di (n-1)! quindi p^2 divide (n-1)! e allora la classe di resto di (n-1)! modulo n e' $0 \pmod{n}$. Se $n=2^2=4$ allora $3!=2 \pmod{4}$. Se n=p primo la classe di resto di (p-1)! modulo p e' -1. Questo risultato e' noto come

Dimostrazione. Abbiamo

$$(p-1)! = (p-1) \cdot (p-2) \cdot \ldots \cdot 2 \cdot 1$$

quindi

$$(p-1)!(\bmod p) = (p-1)(\bmod p) \cdot (p-2)(\bmod p) \cdot \ldots \cdot 2(\bmod p) \cdot 1(\bmod p)$$

Stiamo moltiplicando tra loro tutti gli elementi del gruppo \mathbb{Z}_p^* . Dato che p e' primo questo gruppo e' il sottoinsieme di \mathbb{Z}_p che si ottiene rimuovendo l'elemento $0 \pmod{p}$. L'operazione definita nel gruppo \mathbb{Z}_p^* e' la moltiplicazione. Dalla definizione di gruppo ricaviamo che ogni elemento di \mathbb{Z}_p^* ha un unico inverso moltiplicativo. Possiamo scrivere \mathbb{Z}_p^* come unione disgiunta di sottoinsiemi $\{x, x^{-1}\}$ dove x e' un elemento di \mathbb{Z}_p^* e x^{-1} e' l' inverso di x.

Se $x=1 \pmod{p}$ oppure $x=-1 \pmod{p}$ l'insieme $\{x,x^{-1}\}$ e' in realta' costituito da un solo elemento o equivalentemente $x^{-1}=x$. Dimostreremo nell' Osservazione ?? che si ha $x^{-1}=x$ solo se $x=1 \pmod{p}$ oppure $x=-1 \pmod{p}$.

Gli elementi di \mathbb{Z}_p^* si dividono in due sottoinsiemi: gli elementi che coincidono con il proprio inverso e gli elementi che non coincidono con il proprio inverso. Facciamo il prodotto di tutti gli elementi di \mathbb{Z}_p^* che non coincidono con il proprio inverso. Stiamo allora facendo il prodotto di tutti gli elementi di tutti i sottoinsiemi $\{x,x^{-1}\}$ dove x e' un elemento di \mathbb{Z}_p^* tale che x e x^{-1} sono distinti. Ma il prodotto degli elementi del sottoinsieme $\{x,x^{-1}\}$ e' $x\cdot x^{-1}=1(\bmod p)$ quindi il prodotto degli elementi che non coincidono con il loro inverso e' il prodotto di tanti fattori $x(\bmod p)\cdot x^{-1}(\bmod p)=1(\bmod p)$ ed e' quindi in totale $1(\bmod p)$. Invece il prodotto degli elementi che non coincidono con il loro inverso e' il prodotto di $1(\bmod p)$ e di $-1(\bmod p)$ ed e' quindi $-1(\bmod p)$. Deduciamo che

$$(p-1)!(\bmod p) = (p-1)(\bmod p) \cdot (p-2)(\bmod p) \cdot \ldots \cdot 2(\bmod p) \cdot 1(\bmod p) = -1(\bmod p)$$

Osservazione 4. Sia p un numero primo. In \mathbb{Z}_p^* l'equazione $x = x^{-1}$ ha come soluzioni $1 \pmod{p}$ e $-1 \pmod{p}$ (queste soluzioni chiaramente coincidono se e solo se p = 2).

Dimostrazione. Si ha $x = x^{-1}$ se e solo se $x^2 = x \cdot x^{-1} = 1 \pmod{p}$. Questo vuol dire che $x^2 - 1$ e' divisibile per p. Per definizione $x = a \pmod{p}$ dove a e' un intero con 0 < a < p. Allora dobbiamo studiare per quali a (con a intero e 0 < a < p) il numero $a^2 - 1$ e' divisibile per p. Abbiamo $a^2 - 1 = (a+1)(a-1)$ e p divide un prodotto se e solo se divide uno dei fattori. Allora se p divide a-1 deve essere a=1. Se p divide a+1 deve essere a=p-1.