EXAMPLE OF THE ATKIN TEST (ECPP) To be tested: n = 10^60 + 7 = 1000000000000000000000000000000000000000000000000000000000007 Trial division < 100000 = 2 * 7 * 107 * composite Pollard < 1000000 steps = 2 * 7 * 107 * 1679641 * 8255453 * c_44 unable to factor c_44: primality proof FAILS. Indeed: http://www.alpertron.com.ar/ECM.HTM 48142740675164958124983839862825092751269939 = 152778774688461206737 * 315114064590027073770947 NOW TRY WITH ELLIPTIC CURVES: For d = -1, -2 and -3 there is no integer a in Q(sqrt(d)) with Norm(a) = p. Try an elliptic curve with d = - 7. Then a = 10^30 - sqrt(-7) Norm(a - 1) = (10^30 + 1)^2 + 7 = 1000000000000000000000000000002000000000000000000000000000008 Norm(-a - 1) = (10^30 - 1)^2 + 7 = 999999999999999999999999999998000000000000000000000000000008 Try the first one: (10^30 + 1)^2 + 7 = 2^3 * 11 * 29 * 6091 * 10343 * composite Pollard: composite = 233466671 * 26641539363749891267808119193147605196373 Let q = 26641539363749891267808119193147605196373 Rabin-Miller: q seems prime after 2 tests. So, we test a point P on an elliptic curve with CM by -7. An elliptic curve E with CM by -7 is given by Y^2 = X^3 - 35*X + 98 Consider E modulo p. point P = [1,8] (8 * 11 * 29 * 6091 * 10343 * 233466671) * P = Q = [134909388004237426741439770229014933404027427122877707339028, 104863395002033207811422392950141345076180678473979694340998] and 26641539363749891267808119193147605196373 * Q = \infinity By the "elliptic" Pocklington test we conclude: ============================================================================ IF q = 26641539363749891267808119193147605196373 IS PRIME, THEN n = 1000000000000000000000000000000000000000000000000000000000007 IS PRIME. ============================================================================ We now concentrate on q. q - 1 = 2^2 * 3 * 17 * 73 * 157 * 541 * 2053 * 6581 * composite Pollard: composite = 24835579 * 62770305230483869 Let q1 = 62770305230483869 Rabin-Miller test: q1 seems prime after 2 tests. So, we test a "point" in the multiplicative group Z_q^* namely "2". 2^(q-1) = 1 modulo q and 2^(4 * 3 * 17 * 73 * 157 * 541 * 2053 * 6581 * 24835579) = 19947534424390668500236388436205823483816 mod q 2^(4 * 3 * 17 * 73 * 157 * 541 * 2053 * 6581 * 62770305230483869) = 3432226949137161869203238427902961649420 mod q Since 24835579 * 62770305230483869 > sqrt(q) we conclude by the usual Pocklington test: ============================================================================ IF q1 = 62770305230483869 IS PRIME, THEN q = 26641539363749891267808119193147605196373 IS PRIME. ============================================================================ Now we only need to prove that q1 = 62770305230483869 is prime. This is easy since the numbers involved are so small. We leave this to the reader q1 - 1 = 4 * 9 * 1743619589735663 and q2 = 1743619589735663 seems prime after 2 tests. q2 - 1 = 2 * 871809794867831 and q3 = 871809794867831 seems prime after 2 tests. q3 - 1 = 2 * 5 * 7 * 13 * 859 * 26423 * 42209 +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ The other elliptic curve ...?? Trial division: 999999999999999999999999999998000000000000000000000000000008 = 2^3 * 7 * 17857142857142857142857142857107142857142857142857142857143 17857142857142857142857142857107142857142857142857142857143 is not prime. Pollard: 6963301 * 1023641119 * 416194781 * 6019389570987393171008033755972537 6019389570987393171008033755972537 seems prime after 2 tests. etc .... this should also work out fine.