- 1. Sia $\mathbf{x} = \begin{pmatrix} -1 \\ 3 \end{pmatrix}$
- a. Trovare altri due punti sulla retta ℓ che passa per ${\bf 0}$ e per ${\bf x}$
- b. Siano P e Q i due punti trovati su ℓ scrivere l'equazioni delle rette per P e per Q perpendicolari ad ℓ .
- c. Sia m la retta per P per perpendicolare ad ℓ ed r quella per Q (sempre perpendicolare ad ℓ). Determinare l'intersezione tra m ed r.
- d. Calcolare la distanza tra $R=\begin{pmatrix} -1\\0 \end{pmatrix}$ ed $P,\,Q$ e **0**. Calcolare la distanza tra R ed ℓ .
- 2. Siano $\ell_1,\,\ell_2$ ed ℓ_3 le tre rette di equazioni cartesiane:

$$\ell_1: x_1 - 2x_2 + 3 = 0; \quad \ell_2: 3x_1 + x_2 - 1 = 0; \quad \ell_3: -2x_1 + 5x_2 + 1 = 0;$$

- a. Trovare i punti d'intersezione $P_1=\ell_2\cap\ell_3,\,P_2=\ell_1\cap\ell_3,\,P_3=\ell_1\cap\ell_2.$
- b. Calcolare un equazione parametrica per la retta s_i perpendicolare a ℓ_i e passante per P_i , per i=1,2,3;
- c. Determinare $s_i \cap s_j$ per i, j = 1, 2, 3.
- 3. Sia C_1 la circonferenza di raggio $\sqrt{5}$ centratata in $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$ e C_2 la circonferenza di equazione:

$$x_1^2 + x_2^2 + 2x_1 - 4x_2 + 4 = 0$$

- a. Calcolare l'intersezione $C_1 \cap C_2$. Fare un disegno
- b. Se l'intersezione consiste di due punti P_1 e P_2 scrivere l'equazione cartesiana della retta ℓ congiungente P_1 e P_2 e l'equazione parametrica della retta m perpendicolare ad ℓ e passante per il centro di C_1 .
- c. Esiste una retta parallela a ℓ che sia tangente a C_1 ? in caso affemativo scriverne un equazione.
- d. Esiste una retta parallela a m che sia tangente a C_2 ? in caso affemativo scriverne un equazione.
- **4.** Sia C la circonferenza di raggio $\sqrt{2}$ centratata in $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$.
- a. Calcolare le tangenti a C uscenti dai punti $\begin{pmatrix} -1\\3 \end{pmatrix}$, $\begin{pmatrix} 0\\0 \end{pmatrix}\begin{pmatrix} 2\\-1 \end{pmatrix}$
- b. Sia $P = \begin{pmatrix} 3 \\ 0 \end{pmatrix}$, trovare il punto Q di C più vicino a P; trovare il punto R di C più lontano da P.
- c. Calcolare la distanza fra Q ed R.