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§1. Introduction. Let X^S(N) denote the modular curve associated with
the normalizer of a non-split Cartan group of level N, where N is an arbitrary
integer. The curve X£s(iV) is denned over Q and the corresponding scheme
over Z[l/iV] is smooth [1]. If N is a prime, the genus formula for X?,S(N)
is given in [5,6]. The curve XZS(N) has genus 0 if Af< 11 and A^s(ll) has
genus 1. Ligozat [5] has shown that the group of Q-rational points on X^( l l )
has rank 1. If the genus g(N) is greater than 1, very little is known about the
Q-rational points of X"S(N). Since under simple conditions imaginary quad-
ratic fields with class number 1 give an integral point on these curves, Serre
and others have asked whether all integral points are obtained in this way [8].

In this note we determine the ./-invariants of elliptic curves corresponding
to points of X = Xn

ns{1) which are integral over Z[l/7]. These are points which
are rational over Q and do not give cusps modulo p for p ^ 7. We prove that
each such point corresponds to an exceptional unit of the first kind of the
field X = Q(COS2TT/7). Nagell [7] has shown that there are 24 such units.
Half of these (those arising from the choice of the generator of Gal (K/Q);
the other half relate to the other generator) correspond to the integral points
of X. They are the values taken by a uniformizing parameter / of X at the
integral points. By explicitly constructing / we are able to find a relationship
between / and the modular invariant j , Eight of the 12 Z[l/7]-integral points
correspond to elliptic curves with complex multiplication (7 of them predict-
ably so; the exception being the point corresponding to the j invariant having
the value 0). The j invariants for all the Z[l/7]-integral points and the
corresponding units are given in a table at the end of the paper.

A similar investigation may be made of level 9 instead of level 7. The
exceptional units of that field have also been determined by Nagell [7], but
all of these correspond to elliptic curves with complex multiplication.

We note that both JV = 7 and JV = 9 give yet another proof that a 10th
imaginary quadratic field with h = 1 does not exist, since such a field would
give an integral point on X, distinct from those already found, since 7 and 3
would respectively have to be inert in the field.

The author thanks J.-P. Serre who found the connection between the integral
points and Nagell's units and suggested the determination of the invariants.

§2. Units and integral points on X. Let F be an algebraic number field,
a unit E of F is called an exceptional unit if there exists another unit Et such
that

£ + £, = 1.
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It is well known [2] that there are at most finitely many exceptional units in
any given number field F. For F a cyclic cubic field Nagell [7] has called an
exceptional unit of F which satisfies an equation of the form

= 0 , (1)

where p is a rational integer, an exceptional unit of the first kind. The -i
discriminant of the cubic equation is

(p2-3p + 9)2. }

If E satisfies equation (1) then £, satisfies the equation

X3 + (p-3)X2~pX + \=0, '

so that, if E is an exceptional unit of the first kind, so is Eu and E, corresponds \
to 3-p. For the field F=K, Nagell proved that there are 24 such units ;
corresponding to values of p from (1,2), (8, -5), (15, -12) and (1262, -1259). \

The modular curve X has 3 conjugate cusps which are defined over the ;
field K. Let Pi be the projective line and a the automorphism Z-*\ — \/Z of
Pi which is of order 3 and permutes 1, 0, oo cyclically. Using a and K/Q we !
can obtain a "twist" C of Pi. The curve C therefore has genus 0 and is denned "
over Q. It has 3 "marked" points (corresponding to the cusps on C) rational
over K which are permuted by the non-trivial automorphisms of K. It is thus
a model of X over Q. Let s be the non-trivial automorphism of K/Q which ;
corresponds to a by its action on the marked points. We therefore have a ;
.K-isomorphisni

taking the cusps of X to 0,1, oo and such that f = 1 -f1.
The isomorphism between C and X extends to that of their corresponding

schemes over Z[l/7] since the scheme corresponding to X is smooth over
Z[l/7]. We prove

LEMMA 1. Let xeX be integral over Z[l/7] (equivalently xeX(Q) and
the j-invariant is in Z[l/7]). Put e =f(x), where f:X-*Pl is the function above,
then B is a unit of K and s(s) - 1 - e~\

Proof. Let xeX be a point of X which is integral over Z[l/7]. Then
e =f(x) is a unit overZ[l/7]. Also since the Q-rational points of X are defined
as those corresponding under / t o points y in PI(JK) satisfying

s(y) = l~l/y

it suffices to prove that e is a genuine unit of K.
Let p be a generator of the prime ideal above 7 in K A priori we have

e = pmu, where m € Z and u is a unit. Hence it suffices to show that m = 0.
If m > 0 we obtain a contradiction from the equation

since s(e) is a conjugate of e and so is a unit if e is a unit. Similarly if m <0
we obtain a contradiction. Hence we have m = 0 and e = u. So that e is a



INTEGRAL POINTS OF A MODULAR CURVE OF LEVEL 7 47

unit. It is an exceptional unit since

e — e . s(e) = 1.

From the equation s(e) = l — e~1we can also deduce that it is of the first kind
(see Nagell [7]).

Since / is a K-isomorphism, the proof of the lemma shows also that any
exceptional unit of the first kind e of K which satisfies s(e) = 1 — e"1 corre-
sponds to a Z[l/7]-integral point of X.

§3. The function f and the modular invariant j . To relate the function / to
the modular invariant j we consider X as a covering of X(l), the y'-line.

The covering

X >X(1)

is of degree 21 and is defined over Q. If we extend scalars to Q(\/-7), this
can be factored through a curve Y

where Y is the modular curve attached to the symmetric group 54<= PSL2(F7),
and d3, d7 are covering maps of degrees 3 and 7 respectively. We may identify
7 with the projective line over Q(V-7) by a uniformizing parameter y such
that the map

is given by

j = y(y
2 + 7xy + 7A~21)3 where A = \{ 1 + V-7)

(see [3, p. 89] and [4, p. 752]). It should be noted that the parameters in
Fricke-Klein [4] and here are related by J=j/(2633) and \r = y.

Since the point y = oo on Y corresponds to / = 0,1 and ooonX and y = 0
on Y has a cubic ramification in the covering X -» Y, y must be given by an
equation

_a{f-bf
y / ( / - I ) '

for some coefficients a and b in the field Q(^l). So to determine the values
of j corresponding to the exceptional units it suffices to determine a and b
explicitly. We do this by writing / explicitly in terms of Klein forms fc(rj)

where r, s are integers not both congruent to 0 mod 7. Following the method
described in [5, Ch. II] we obtain a function

f_ fc(l,0)fc(0,l)fc(3

where M = r 2 ( l - £ 2 ) ( 1 - £ ) / ( ! - £ 3 ) 2 and £ = exp (2m/7). The function /



48 INTEGRAL POINTS OF A MODULAR CURVE OF LEVEL 7

takes 0, 1 and oo respectively at the cusps of X and is normalized so that
expansion of y at the cusp, where / has a pole of order 1, is

H"q~xn -3A + (terms with positive powers of q).

The constant a satisfies 0 =£ a =£ 6 and reflects the ambiguity of y. Expressing
y as a function of/gives values a and b depending on a. The only value of
a which gives y lying in Q(\/-7) for the exceptional units is 4. It yields the
values a = tfu'1 and b = 1 + f + £4. From these we obtain the following table.

y

- (A)6

i

-(A)3

(3 -A) 3

"(A)3

( -3 + 2A)3

1-2A
- ( 1 + 5A)
-(13 + 9A)
( -1 + 5A)3

(5 +A)3

(-13 + 4A)3

P

1
1
1

15
15
15
- 5
- 5
- 5

-1259
-1259
-1259

j

2 6 3 3

2 6 5 3

_ 2 1 5

- 2 1 8 3 3 5 3

2 3 3 3 11 3

2 1 5 3 3 5 3 11 3

0
225375

7525
-2183353233293

291761932931493

2611323314932693

Discriminant d
and conductor /

of the order
corresponding to
j for CM cases

d = -4, 1 = 1
d = -&, 1 = 1
d = -U, 1 = 1
d = -43, 1 = 1
d = -4, 1 = 2
d = -67 , 1=1
d = -3, 1=1
Non-CM case
Non-CM case
d = -163, / = 1
Non-CM case
Non-CM case

-a+f)
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