- 1. Quali V sono spazi vettoriali?
 - (a) $V = \mathbf{R}^2$ con la solita somma fra vettori e con prodotto definito da

$$\lambda \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} \lambda x_1 \\ 0 \end{pmatrix} \qquad \text{per ogni } \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \in \mathbf{R}^2 \text{ ed ogni } \lambda \in \mathbf{R}$$

(b) $V = \{x \in \mathbf{R} : x > 0\}$ con addizione " \oplus " e moltiplicazione " \otimes " definite da

$$x \oplus y = xy;$$
 per ogni $x, y \in V,$
 $\lambda \otimes x = x^{\lambda};$ per ogni $x \in V, \lambda \in \mathbf{R}.$

2. Disegnare i seguenti sottoinsiemi di ${f R}^2$ e controllare se sono sottospazi lineari:

(a)
$$\left\{ \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \in \mathbf{R}^2 : x_1 = 2x_2 \right\} \subset \mathbf{R}^2$$
, (c) $\left\{ \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \in \mathbf{R}^2 : x_1 = 2 \right\} \subset \mathbf{R}^2$, (b) $\left\{ \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \in \mathbf{R}^2 : x_1 > 0 \right\} \subset \mathbf{R}^2$, (d) $\left\{ \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \in \mathbf{R}^2 : x_1 = x_2 = 0 \right\} \subset \mathbf{R}^2$.

3. Decidere se sono sottospazi o meno i seguenti sottoinsiemi di \mathbb{R}^3 .

(a)
$$W = \left\{ \begin{pmatrix} t \\ t \\ t \end{pmatrix} \in \mathbf{R}^3 : 0 < t < 1 \right\},$$
 (c) $W = \left\{ \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \right\},$ (b) $W = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbf{R}^3 : |x - 2y + z| = 0 \right\},$ (d) $W = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbf{R}^3 : x^2 + y^2 + z^2 = 0 \right\}.$

4. Sia W il sottospazio di \mathbb{R}^4 dato da

$$W = \left\{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} \in \mathbf{R}^4 : \begin{cases} x_1 - x_2 + 2x_3 & = 0 \\ 2x_2 + x_3 + x_4 & = 0 \\ 3x_1 - x_2 + x_4 & = 0 \\ 4x_1 + 3x_3 + 2x_4 & = 0 \end{cases} \right\}.$$

Decidere se $W = \{0\}$ o meno.

5. Scrivere i seguenti sottospazi W come $\mathrm{Span}(\mathbf{v}_1,\mathbf{v}_2,\ldots,\mathbf{v}_r)$ per dei vettori $\mathbf{v}_1,\mathbf{v}_2,\ldots,\mathbf{v}_r$.

(a)
$$W = \left\{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} \in \mathbf{R}^5 : \left\{ \begin{array}{cccc} x_1 & + & x_2 & - & x_3 & = & 0 \\ & & 2x_2 & + & x_3 & = & 0 \end{array} \right\} \subset \mathbf{R}^5;$$

(b)
$$W = \left\{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} \in \mathbf{R}^4 : x_1 + 2x_3 = 0 \right\} \subset \mathbf{R}^4.$$

- 6. Sia V uno spazio vettoriale e sia $\mathbf{0} \in V$ il vettore zero.
 - (a) Dimostrare che $\lambda \cdot \mathbf{0} = \mathbf{0}$ per ogni $\lambda \in \mathbf{R}$.
 - (b) Siano $\mathbf{v} \in V$ e $\lambda \in \mathbf{R}$. Dimostrare che se $\lambda \cdot \mathbf{v} = \mathbf{0}$, allora $\mathbf{v} = \mathbf{0}$ oppure $\lambda = 0$.