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In this note we prove the following well known fact.

Theorem. Let n ≥ 1. Then we have gcd(n, ϕ(n)) = 1 if and only if any group of order n
is cyclic.

Proof. We first take care of the easy direction: suppose that gcd(n, ϕ(n)) 6= 1. Let p be a
prime dividing n and ϕ(n). Then there are two possibilities. Either p2 divides n or there
is a prime divisor q ≡ 1 (mod p) of n. In the first case we observe that the product of a
cyclic group of order p and one of order n/p has order n, but is not cyclic. In the second
case we note that the matrix group

M = {
(

1 x
0 y

)
: x, y ∈ Fq and yp = 1}

has order pq and is not commutative. Therefore, the product of M and a cyclic group of
order n/pq is a non-cyclic group of order n.

Next we deal with the other direction. Suppose gcd(n, ϕ(n)) = 1. Then n is square-
free and for every divisor d of n we have gcd(d, ϕ(d)) = 1. Therefore we may proceed
inductively. Let G be a non-cyclic group of order n

Step 1. We may assume that G contains no proper normal subgroups.

Indeed, let N ⊂ G be a proper normal subgroup. By induction N is cyclic of order d say.
Since #Aut(N) = ϕ(d) is prime to n = #G, the homomorphism G −→ Aut(N) given
by conjugation, is trivial. It follows that N ⊂ Z(G). By induction G/Z(G) is cyclic. It
follows that G is abelian. Since #G is squarefree, G is cyclic and we are done.

We consider the centralizers C of non-identity elements x ∈ G.

Step 2. We have C 6= G for every centralizer C. The normalizer N(C) of C is equal to C.
For any two distinct centralizers C and C ′, we have C ∩ C ′ = {1}.

Since G admits no proper normal subgroups, we have C 6= G when x 6= 1. By step 1 we
have N(C) 6= G. Therefore N(C) is cyclic by induction. But then it centralizes C, so that
C = N(C). This takes care of the second statement. To prove the third, let 1 6= x ∈ C∩C ′.
Then C is contained in the centralizer C ′′ of x. Since C ′′ 6= G, it is by induction a cyclic
group. Therefore C ′′ centralizes C and we have C = C ′′. By the same argument we have
C ′ = C ′′ and it follows that C = C ′.

Step 3. Pick x ∈ G, x 6= 1 and let C be its centralizer. Let U denote the union of the
conjugates of C. By Step 2 the set U has [G : C](#C − 1) + 1 elements. Since C 6= G,
there is a prime number p dividing [G : C]. Let C ′ be the centralizer of an element of
order p. The union V of the conjugates of C ′ has [G : C ′](#C ′ − 1) + 1 elements. Since p
divides #C ′ but does not divide #C, each conjugate of C has by Step 2 trivial intersection
with each conjugate of C ′. Therefore U ∩ V = {1}. Since [G : C] and [G : C ′] are at most
1
2#G, this gives

#(U ∪V ) = [G : C](#C−1)+ [G : C ′](#C ′−1)+1 = 2#G− [G : C]− [G : C ′]+1 > #G,

a contradiction.

1


