
Mersenne Fermat numbers René Schoof, Spring 2010
In this note we discuss the basic properties of Mersenne and Fermat numbers. We are
particularly interested in the primality of these numbers.

1. Fermat numbers.

In this section we discuss numbers of the form 2m + 1.

Lemma 1.1. Let m ≥ 1. If 2m + 1 is prime, then m is a power of 2.

Proof. Suppose m = ab with a odd. Let q = 2b + 1. Then 2b ≡ −1 (mod q) and hence
2m = 2ab ≡ (−1)a = −1 (mod q). This means that q divides the prime number 2m + 1.
Since q > 1, we must have q = 2m + 1 and hence b = m. It follows that a = 1. Therefore
the only odd divisor of m is a = 1. This means that m is a power of 2, as required.

Definition. For k ≥ 0, the k-th Fermat number is defined as Fk = 22k

+ 1.

Fermat already showed that Fk is prime for k ≤ 4. For these values of k the numbers are
3, 5, 17, 257 and 65537. Euler showed that F5 is divisible by 641 and is hence not prime.
It is now known that Fk is not prime for 5 ≤ k ≤ 32 and several other values of k. For
k ≤ 11 the numbers Fk have been completely factored.

Lemma 1.2. Let k ≥ 2 and let q be a prime divisor of Fk = 22k

+ 1. Then we have
q ≡ 1 (mod 2k+2).

Proof. Since q divides Fk, we have 22k ≡ −1 (mod q). It follows that the order of the
element 2 of the multiplicative group (Z/qZ)∗ is 2k+1. We observe that (1 + 22k−1

)2 ≡
22k−1+1 (mod Fk). Since k ≥ 2, the exponent 2k−1 + 1 is odd. It follows that 2 itself is
also a square modulo Fk and hence modulo q. Since the order of 2 ∈ (Z/qZ)∗ is 2k+1, the
order of any of its square roots is 2k+2. It divides the order of the group (Z/qZ)∗ which is
q − 1. This implies the lemma.

Proposition 1.3. (Pépin 1877) Let k ≥ 1. Then the Fermat number F = Fk = 22k

+ 1
is prime if and only if 3(F−1)/2 ≡ −1 (mod F ).

Proof. Since k ≥ 1, we have F ≡ 5 (mod 12) therefore 3 is not a square modulo 3. If F
is prime, this implies that 3(F−1)/2 ≡ −1 (mod F ). Conversely, let q be a prime divisor
of F . If 3(F−1)/2 ≡ −1 (mod F ), then we have the same congruence modulo q. The fact
that F − 1 is a power of 2 implies then that the order of 3 ∈ (Z/qZ)∗ is F − 1. It follows
that F − 1 divides q − 1, so that F = q and hence F is prime.

Since (Fk − 1)/2 = 22k−1, one Pépin test consists of 2k − 1 squarings modulo Fk =
22k

+ 1. The amount of work involved is proportional to 23k. This grows so rapidly with
k that already for k = 33, performing the test involves too much computing time. When
k is this large, proving that a Fermat number Fk is not prime is done by factoring it using
factoring algorithms that find small prime factors quickly. The elliptic curve method is
very suitable in this sense.
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2. Mersenne numbers.
In this section we discuss numbers of the form 2m − 1.

Lemma 2.1. Let m ≥ 1. If 2m − 1 is prime, then m is a prime number.

Proof. Suppose m = ab. Let q = 2b − 1. Then 2b ≡ 1 (mod q) and hence 2m = 2ab ≡
1a = 1 (mod q). This means that q divides the prime number 2m + 1. So either q = 1 in
which case b = 1 or q = 2m− 1, in which case b = m. It follows that m cannot be factored
in a non-trivial way, so that it is prime.

Definition. For a prime number p, the p-th Mersenne number is defined as Mp = 2p − 1.

Already Mersenne decided for several small primes p whether the number Mp is prime or
not. The number M127 was the largest prime number known for over a century. Only in
1951 a larger prime number was found. Also today, the largest prime number known is a
Mersenne prime. It is Mp with p = 43112609.

Lemma 2.2. Let p be a prime and let q be a prime divisor of Mp = 2p−1. Then we have
q ≡ 1 (mod p).

Proof. Since q divides Mp, we have 2p ≡ 1 (mod q). It follows that the order of the
element 2 of the multiplicative group (Z/qZ)∗ is p. Therefore p divides the order of the
group (Z/qZ)∗ which is q − 1. This implies the lemma.

Proposition 2.3. (Lucas 1878–Lehmer 1930’s). Let p > 3 be a prime and let M = 2p−1.
Let 2+

√
3 denote the image of X in the ring R = (Z/MZ)[X]/(X2−3). Then the Mersenne

number M is prime if and only if (2 +
√

3)(M+1)/2 = −1 in R.

Proof. Since p > 3 we have M ≡ 7 (mod 12). Therefore, if M is prime, 3 is a non-square
modulo M and R is a finite field of M2 elements. From the identity (1+

√
3)2 = 2(2+

√
3),

we deduce
(2 +

√
3)(M+1)/2 = (1 +

√
3)M+12−(M−1)/22−1.

Since M ≡ −1 (mod 8), the number 2 is a square modulo M and we have 2(M−1)/2 = 1
in R. In addition we have (1+

√
3)M+1 = (1+

√
3)(1−

√
3) = −2 in R. Substituting these

two identities gives
(2 +

√
3)(M+1)/2 = −2 · 1 · 2−1 = −1,

as required.
Conversely, let q be a prime divisor of M . Since M + 1 is a power of 2, the fact that

(2 +
√

3)(M+1)/2 = −1 implies that the element 2 +
√

3 has order M + 1 in R∗ and hence
in the group (Z/qZ)[X]/(X2 − 3)∗. It follows that M + 1 < q2 and hence M = q so that
M is prime.

Corollary 2.4. Let p be a prime and let sk be the sequence that is recursively defined
by s0 = 4 and sk+1 = s2

k − 2 for k ≥ 0. Then M = 2p − 1 is prime if and only if
sp−2 ≡ 0 (mod M)

Proof. Let R be the ring of Proposition 2.3. We define ak, bk ∈ Z/MZ by putting
ak + bk

√
3 = (2 +

√
3)2

k

for k ≥ 0. We have that ak+1 = a2
k − 3b2

k for k ≥ 0. Since
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a2
k−3b2

k = 1, this means that ak+1 = 2a2
k−1 for k ≥ 0. We claim that (2+

√
3)(M+1)/2 = −1

in R if and only if ap−2 ≡ 0 (mod M). Indeed, we have (2+
√

3)(M+1)/2 = −1 if and only if
ap−1 = −1 and bp−1 = 0. By the recurrence relation above this is equivalent to ap−2 = 0.

Proposition 3.3 implies then that M is prime if and only if ap−2 = in Z/MZ. Since
the sequences sk and 2ak satisfy the same recurrence relations, we have sk = 2ak for all
k ≥ 0. This implies the corollary.

Since (Mp + 1)/2 = 2p−1, one Lucas-Lehmer test consists of p − 1 squarings modulo
Mp = 2p − 1. The amount of work involved is proportional to p3. Nowadays, the test is
used in practice to search for large Mersenne prime numbers.
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