- 1. Sia $f: \mathbf{P}^1 \longrightarrow \mathbf{P}^1$ la proiettività data dalla matrice $A = \begin{pmatrix} 1 & 2 \\ -1 & 1 \end{pmatrix}$.
 - (a) Calcolare le coordinate di f(P) dove P = (1:1).
 - (b) Calcolare le coordinate di f(0:1) e di f(1:0).
 - (c) Determinare la formula per l'applicazione inversa f^{-1} e calcolare le coordinate di $f^{-1}(P)$. Calcolare $f^{-1}(0;1)$.
- 2. Sia l la retta in \mathbf{P}^2 di equazione $x_0 + x_1 x_2 = 0$ e sia m la retta di equazione $x_2 2x_2 = 0$. Sia S il punto (1:1:0) a sia P il punto (1:0:1).
 - (a) Far vedere che S non appartiene né a l, né a m. Far vedere che P appartiene a l ma non a m.
 - (b) Sia $\pi_S: l \longrightarrow m$ la prospettività di centro S. Calcolare $\pi_S(P)$.
 - (c) Sia Q il punto di intersezione $l \cap m$. Calcolare $\pi_S(Q)$.
- 3. Siano P = (0:1), Q = (1:0) e R = (1:1) e sia $f : \mathbf{P}^1 \longrightarrow \mathbf{P}^1$ la proiettività determinata da f(P) = (1:1), f(Q) = (1:0) e f(R) = (-1:1). Determinare una matrice $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ tale che $f(x_0:x_1) = (ax_0 + bx_1: cx_0 + dx_1)$ per ogni $(x_0:x_1) \in \mathbf{P}^1$.
- 4. (a) Sia $f: \mathbf{P}^1 \longrightarrow \mathbf{P}^1$ la proiettività data da $f(x_0: x_1) = (5x_0 + 2x_1: 2x_0 + 2x_1)$. Calcolare i punti fissi di f.
 - (b) Stessa domanda per $g: \mathbf{P}^1 \longrightarrow \mathbf{P}^1$ data da $g(x_0: x_1) = (5x_0 + 2x_1: -2x_0 + x_1)$.
 - (c) Stessa domanda per $h: \mathbf{P}^1 \longrightarrow \mathbf{P}^1$ data da $h(x_0: x_1) = (5x_0 + 2x_1: -2x_0 + 2x_1)$.
- 5. (a) Esibire una costruzione geometrica di una proiettività f da una retta proiettiva l in se stessa, che fissa due punti $A, B \in l$ dati, ma non è l'identità.
 - (b) Dimostrare che ci sono infinite proiettività che hanno questa proprietà.
 - (c) Dimostrare che esiste un unica involuzione f con questa proprietà. (Un'applicazione f si dice involuzione quando $f^2 = \mathrm{id}$).
- 6. Sia l una retta proiettiva e siano $A, B, C, D \in l$ quattro punti. Sia $f : l \longrightarrow l$ una proiettività per cui f(A) = B, f(B) = C e f(C) = D. Dati i punti A, B, C, D, costruire il punto f(D).
- 7. Sia l una retta proiettiva e siano P,Q due punti di l. Sia $g:l\longrightarrow l$ una proiettività che scambia P e Q: abbiamo che f(P)=Q e f(Q)=P. Dimostrare che f è una involuzione, cioè che $f^2=\mathrm{id}$.
- 8. Sia l una retta e sia $\varphi: l \longrightarrow l$ una proiettività. Siano dati: un punto fisso Pdi φ e punti A, A', B e B' tali che $\varphi(A) = A'$ e $\varphi(B) = B'$. Costruire Q, il secondo punto fisso di φ .
- 9. Sia M una matrice 2×2 invertibile e sia $\varphi : \mathbf{P}^1 \longrightarrow \mathbf{P}^1$ la mappa proiettiva indotta da M. Supponiamo che $\varphi^2 = \mathrm{id}$ mentre $\varphi \neq \mathrm{id}$. Far vedere che la traccia di M è zero.
- 10. Siano $l \in m$ due rette disegnate su un foglio di carta. Supponiamo che il punto di intersezione $P = l \cap m$ si trova fuori dal foglio. Usando il Teorema di Desargues, costruire la retta che passa per P e per un dato punto Q sul foglio.
- 11. Far vedere che i punti A = (1:0:1), B = (0:1:1), C = (2:1:3) e D = (3:-1:2) stanno su una retta l. Determinare i birapporti (ABCD) e (BACD). Determinare un punto E su l tale che il birapporto (ABCE) è uguale a 3.
- 10. Siano A, B, C, D quattro punti sulla retta proiettiva \mathbf{P}^1 . Sia $\lambda = (ABCD)$ il loro birapporto. Esprimere i birapporti (ABCD), (ABDC), (CDAB), (BCAD), (BCDA), (BADC) e (DCBA) in termini di λ .