- 1. Sia m la retta in \mathbb{R}^2 di equazione x + 2y = 3.
 - (a) Calcolare la proiezione ortogonale del punto P = (3,3) su m.
 - (b) Trovare la formula generale per la proiezione di un punto P = (x, y) sulla retta m.
- 2. Sia π il piano in \mathbf{R}^3 di equazione x+y-z=2.
 - (a) Calcolare la proiezione ortogonale del punto P=(3,3,0) su π .
 - (b) Trovare la formula generale per la proiezione di un punto P=(x,y,z) sul piano π .
- 3. Sia m la retta in \mathbf{R}^3 data dal sistema di equazioni $\begin{cases} x+y=2\\ x-2z=1 \end{cases}$
 - (a) Calcolare la proiezione ortogonale del punto P = (0, 3, 3) su m.
 - (b) Trovare la formula generale per la proiezione di un punto P=(x,y,z) sulla retta m.
- 4. Sia $\pi \subset \mathbf{R}^3$ il piano di equazione x + y + z = 3. Siano $Q = \begin{pmatrix} 2 \\ 0 \\ 4 \end{pmatrix}$ e $S = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ due punti in \mathbf{R}^3 .
 - (a) Calcolare le coordinate della proiezione Q' del punto Q sul piano π .
 - (b) Far vedere che S appartiene al piano π .
 - (c) Sia ϱ la rotazione nel piano π di un angolo di 60^o intorno ad S. Calcolare le coordinate di $Q'' = \varrho(Q')$.
- 5. Determinare una trasformazione ortogonale di \mathbb{R}^3 che diagonalizzi la forma quadratica;
 - (a) $2X^2 + 2XY + 2XZ + 2Y^2 + 2YZ + 2Z^2$;
 - (b) $X^2 + 4XZ Y^2 + Z^2$:
 - (c) $X^2 + Y^2 + Z^2 + 4(XY + XZ YZ)$;
 - (d) X(3Y + 4Z).
- 6. Dire di che tipo di quadrica in \mathbb{R}^3 si tratta
 - (a) $X^2 = 0$;
 - (b) $X^2 = 1$;
 - (c) $X^2 = -1$;
 - (d) $X^2 = Y$;
 - (e) XY + YZ = 0;
 - (f) XY + YZ = 1;
 - (g) XY + YZ = -1;
 - (h) XY + YZ = Y;
- 7. Dire di che tipo di quadrica in \mathbb{R}^3 si tratta:
 - (a) $X^2 + Y + Z = 0$;
 - (b) $X^2 + Y + Z = 1$;
 - (c) $X^2 + Y^2 + Z = 0$;
 - (d) $X^2 + Y^2 + Z^2 X Y Z = 0$:

- (i) $X^2 + 2YZ = 1$;
- (j) $X^2 + 2YZ = 0$;
- (k) $X^2 + 2YZ = -1$;
- (1) $X^2 + Y + Z = 1$;
- (m) $X^2 + Y^2 2YZ + Z^2 = 0$;
- (n) $Y^2 4YZ + 4Z^2 = 0$;
- (o) $X^2 + Y^2 2YZ + 2Z^2 = 0$;
- (p) $X^2 + XY + Y^2 Z = 1$.
- (e) $X^2 + XY Y^2 X 2Y = 0$;
- (f) XY + YZ + ZX = 1;
- (g) XY + YZ + ZX = 0;
- (h) XY + YZ + ZX = -1.