- 1. Sia $T_{\mathbf{w}}$ la traslazione di passo \mathbf{w} . Sia $\mathbf{v}_0 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ e sia $\mathbf{v}_1 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$.
 - (a) Determinare $\mathbf{v}_2 = T_{\mathbf{v}_1}(\mathbf{v}_0)$.
 - (b) Determinare $\mathbf{v}_3 = T_{\mathbf{v}_2}(\mathbf{v}_1)$.
 - (c) Determinare $\mathbf{v}_4 = T_{\mathbf{v}_3}(\mathbf{v}_2)$.
 - (d) ... ecc. Determinare \mathbf{v}_{10} .
- 2. Sia $P = \begin{pmatrix} 1 \\ 4 \end{pmatrix} \in \mathbf{R}^2$ e sia R la rotazione intorno a P in senso antiorario di un angolo di 90^o .
 - (a) Trovare le formule che desrcivono la trasformazione R e calcolare R(Q) dove $Q = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$.
 - (b) Determinare l'immagine R(l) della retta l di equazione x = y.
- 3. Sia m la retta di equazione y = 3x 1 e sia S la riflessione rispetto ad m.
 - (a) Trovare le formule per la trasformazione S e calcolare S(Q) dove $Q = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$.
 - (b) Calcolare $S^2(Q) = S(S(Q))$. Calcolare $S^3(Q) = S(S(S(Q)))$. Calcolare $S^{(6)}(Q)$.
- 4. Sia S_1 la riflessione rispetto alla retta di equazione x = y e sia S_2 la riflessione rispetto alla retta di equazione x = 1.
 - (a) Trovare le formula per S_1 , per S_2 e per le composizioni $S_1 \circ S_2$ e $S_2 \circ S_1$.
 - (b) Geometricamente, cosa fanno le trasformazioni $S_1 \circ S_2$ e $S_2 \circ S_1$?
- 5. Sia S_1 la riflessione rispetto alla retta di equazione x=y e sia R la rotazione intorno all'origine in senso antiorario di angolo di 90^o
 - (a) Trovare le formule per R e per le composizioni $S_1 \circ R$ e $R \circ S_1$.
 - (b) Geometricamente, cosa fanno le trasformazioni $S_1 \circ R \in R \circ S_1$?
- 6. Sia R la rotazione intorno all'origine in senso antiorario di angolo di 90^o e sia R_1 la rotazione intorno al punto $Q = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ in senso antiorario di angolo di 90^o .
 - (a) Trovare le formule per le composizioni $R \circ R_1$ e $R_1 \circ R$.
 - (b) Geometricamente, cosa fanno le trasformazioni $R \circ R_1$ e $R_1 \circ R_2$?
- 7. "Diagonalizzare" le seguenti forme quadratiche. In altre parole, trovare una matrice ortogonale U tale che il cambiamento di variabili

$$\begin{pmatrix} X \\ Y \end{pmatrix} = U \begin{pmatrix} X' \\ Y' \end{pmatrix}$$

porti la forma quadratica nella forma $\lambda_1 {X'}^2 + \lambda_2 {Y'}^2$.

- (a) $X^2 + YX$;
- (b) X^2 ;
- (c) XY.
- 8. Disegnare le seguenti coniche:
 - (a) XY 2X = 0;
 - (b) $X^2 + XY + Y^2 + X + Y + 1 = 0$;
 - (c) $X^2 + 2XY + Y^2 2X + 2Y + 1 = 0$;
 - (d) $3X^2 8XY 3Y^2 + 10 = 0$;
 - (e) $2X^2 3XY 2Y^2 X + 2Y = 0$;
 - (f) $5X^2 + 4XY + 2Y^2 4X 4Y + 2 = 0$.