COGNOME *NOME*

Risolvere gli esercizi negli spazi predisposti. Accompagnare le risposte con spiegazioni *chiare ed essenziali*. Consegnare SOLO QUESTO FOGLIO. Ogni esercizio vale 7.5 punti.

1. Siano $A = \begin{pmatrix} -1 \\ -2 \end{pmatrix}$, $B = \begin{pmatrix} 10 \\ 11 \end{pmatrix}$ e $C = \begin{pmatrix} 8 \\ 9 \end{pmatrix}$ tre punti in \mathbf{R}^2 . Calcolare l'area del triangolo ABC.

Prima trasliamo il triangolo ABC di passo $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$. Questo non cambia la sua area. I vertici del triangolo traslato sono $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 11 \\ 13 \end{pmatrix}$ e $\begin{pmatrix} 9 \\ 11 \end{pmatrix}$. Per la formula delle dispense la sua area è uguale a $\frac{1}{2}|11\cdot 11-13\cdot 9|=\frac{1}{2}(121-117)=2$.

- 2. Siano dati i vettori $\mathbf{v}_1 = \begin{pmatrix} -1\\1\\1 \end{pmatrix}$, $\mathbf{v}_2 = \begin{pmatrix} 1\\1\\0 \end{pmatrix}$ e $\mathbf{v}_3 = \begin{pmatrix} 1\\3\\1 \end{pmatrix}$ in \mathbf{R}^3 .
 - (a) Determinare se $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ sono linearmente indipendenti.
 - (b) Calcolare la dimensione di Span $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ ed esibire una base di Span $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$.
 - (c) Completare la base trovata ad una base di \mathbb{R}^3 .
 - (a) Siano $\lambda_1, \lambda_2, \lambda_3 \in \mathbf{R}$ tali che $\lambda_1 \mathbf{v}_1 + \lambda_2 \mathbf{v}_2 + \lambda_3 \mathbf{v}_3 = \mathbf{0}$. Scrivendo questa equazione in coordinate, otteniamo il sistema lineare omogeneo di matrice associata

$$\begin{pmatrix} -1 & 1 & 1 & 0 \\ 1 & 1 & 3 & 0 \\ 1 & 0 & 1 & 0 \end{pmatrix}.$$

Risolvendo il sistema con il metodo di Gauss troviamo le soluzioni $\begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_3 \end{pmatrix} = t \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$ con

 $(t \in \mathbf{R})$. Esistono quindi relazioni lineari non nulle. Per esempio $\mathbf{v}_1 + 2\mathbf{v}_2 - \mathbf{v}_3 = \mathbf{0}$. I vettori $\mathbf{v}_1, \mathbf{v}_2 \in \mathbf{v}_3$ non sono linearmente indipendenti.

(b) Siccome $\mathbf{v}_3 = \mathbf{v}_1 + 2\mathbf{v}_2$, abbiamo che $W = \operatorname{Span}\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\} = \operatorname{Span}\{\mathbf{v}_1, \mathbf{v}_2\}$. I due vettori $\mathbf{v}_1, \mathbf{v}_2$ non essendo proporzionali, sono indipendenti. I vettori $\mathbf{v}_1, \mathbf{v}_2$ formano quindi una base di W e la dimensione di W è uguale a 2.

(c) Siccome dim(\mathbf{R}^3) è uguale a 3, basta aggiungere un solo vettore \mathbf{v} a $\{\mathbf{v}_1, \mathbf{v}_2\}$. Quasi ogni vettore \mathbf{v} andrà bene. Proviamo a caso $\mathbf{v} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$. Adesso vediamo se i tre vettori

 $\mathbf{v}_1, \mathbf{v}_2$ e \mathbf{v} sono linearmente indipendenti. Siano $\mu_1, \mu_2, \mu_3 \in \mathbf{R}$ tali che $\mu_1 \mathbf{v}_1 + \mu_2 \mathbf{v}_2 + \mu_3 \mathbf{v} = \mathbf{0}$. Scrivendo l'equazione in coordinate, otteniamo il sistema lineare omogeneo di matrice associata

$$\begin{pmatrix} -1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}.$$

Risolvendo il sistema con il metodo di Gauss troviamo che l'unica soluzione è data da $\mu_1 = \mu_2 = \mu_3 = 0$. Concludiamo che i vettori $\mathbf{v}_1, \mathbf{v}_2$ e \mathbf{v} formano una base di \mathbf{R}^3 .

3. Siano dati i sottospazi
$$U = \operatorname{Span}\left\{\begin{pmatrix} 0\\1\\0\\1 \end{pmatrix}, \begin{pmatrix} 1\\1\\0\\1 \end{pmatrix}\right\} \ \text{e} \ W = \left\{\begin{pmatrix} x_1\\x_2\\x_3\\x_4 \end{pmatrix} \in \mathbf{R}^4 \mid x_1 + x_4 = 0\right\} \text{ in } \mathbf{R}^4.$$

- (a) Determinare una base di $U \cap W$. Che dimensione ha $U \cap W$?
- (b) Calcolare la dimensione di U + W.
- (c) Dire se U è contenuto in W (spiegare la risposta).

Scriviamo prima il sottospazio U come spazio di soluzioni di un sistema lineare omogeneo. Sia $a_1x_1 + a_2x_2 + a_3x_3 + a_4x_4 = 0$ un'equazione che si annulla sui vettori di U. Sostituendo i due vettori che generano U, troviamo che

$$\begin{cases} a_2 + a_4 & = 0, \\ a_1 + a_2 + a_4 & = 0. \end{cases}$$

Risolvendo questo sistema lineare con il metodo di Gauss troviamo le soluzioni

$$\begin{pmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \end{pmatrix} = t \begin{pmatrix} 0 \\ 1 \\ 0 \\ -1 \end{pmatrix} + s \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \qquad (s, t \in \mathbf{R}).$$

Il sottospazio U è quindi lo spazio delle soluzioni delle due equazioni $x_2-x_4=0$ e $x_3=0$ ed ha dimensione 2. I vettori in $U\cap W$ soddisfano anche l'equazione $x_1+x_4=0$ che caratterizza W. In altre parole, i vettori di $U\cap W$ sono le soluzioni del sistema lineare omogeneo di matrice

$$\begin{pmatrix} 0 & 1 & 0 & -1 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \end{pmatrix}.$$

Risolvendo il sistema con il metodo di Gauss, troviamo le soluzioni

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = t \begin{pmatrix} -1 \\ 1 \\ 0 \\ 1 \end{pmatrix}, \qquad (t \in \mathbf{R}).$$

Adesso rispondiamo alle domande (a), (b) e (c). Il vettore $\begin{pmatrix} -1\\1\\0\\1 \end{pmatrix}$ è una base di $U\cap W.$

La dimensione di $U \cap W$ è quindi uguale a 1. Siccome W è lo spazio delle soluzioni di un'unica equazione, la sua dimension è uguale a 3. Per la formula di Grassmann abbiamo che $\dim(U+W)=\dim(W)+\dim(U)-\dim(U\cap W)=3+2-1=4$. Si controlla facilmente

che il vettore $\begin{pmatrix} 0\\1\\0\\1 \end{pmatrix} \in U$ non soddisfa l'equazione $x_2-x_4=0$ che caratterizza W. Non vale quindi l'inclusione $U\subset W$.

- 4. Sia $P = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ in \mathbb{R}^2 .

 - (a) Trovare le formule per la rotazione R di centro P ed angolo $-\frac{\pi}{2}$. (b) Sia l la retta di equazione parametrica $\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -2 \\ 3 \end{pmatrix} + t \begin{pmatrix} 1 \\ 2 \end{pmatrix}$, $(t \in \mathbf{R})$.

Questo esercizio è una parte dell'esercizio 3 del 4º foglio che è stato messo in rete durante il

(a) Siccome $\cos(-\frac{\pi}{2}) = 0$ e $\sin(-\frac{\pi}{2}) = -1$ la formula per la rotazione R_0 di centro $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$ ed angolo $-\frac{\pi}{2}$ è data da

$$R_0 \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \cdot x + 1 \cdot y \\ -1 \cdot x + 0 \cdot y \end{pmatrix} = \begin{pmatrix} y \\ -x \end{pmatrix}.$$

Per trovare la formula per la rotazione R di centro P ed angolo $-\frac{\pi}{2}$, facciamo prima una traslazione T di passo $\begin{pmatrix} -1\\1 \end{pmatrix}$, poi facciamo la rotazione R_0 e alla fine ritrasliamo, cioè facciamo una traslazione T' di passo $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$. Insomma, abbiamo che

$$\begin{pmatrix} x \\ y \end{pmatrix} \overset{T}{\mapsto} \begin{pmatrix} x-1 \\ y+1 \end{pmatrix} \overset{R_0}{\mapsto} \begin{pmatrix} y+1 \\ -x+1 \end{pmatrix} \overset{T'}{\mapsto} \begin{pmatrix} y+2 \\ -x \end{pmatrix}.$$

La formula cercata è quindi data da $R\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} y+2 \\ -x \end{pmatrix}$.

(b). Applicando la rotazione R al punto generico $\begin{pmatrix} -2+t\\ 3+2t \end{pmatrix}$ della retta l, troviamo il punto generico della retta ruotata: $\binom{5+2t}{2-t}$. Un'equazione parametrica della retta ruotata è quindi data da $\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 5 \\ 2 \end{pmatrix} + t \begin{pmatrix} 2 \\ -1 \end{pmatrix}$, $(t \in \mathbf{R})$.