- 1. Sia H il sottogruppo del gruppo simmetrico S_4 generato da (123). Determinare gli elementi del normalizzante di H in S_4 .
- 2. Sia $n \geq 2$ e sia $X = \{1, 2, ..., n\}$. Il gruppo S_n agisce sull'insieme $X \times X$ via $\sigma(x, y) = (\sigma(x), \sigma(y))$ per $\sigma \in S_n$ e $x, y \in X$. Quanto orbite ci sono?
- 3. Sia $\mathcal{H} = \{z \in \mathbf{C} : \text{Im } z > 0\}$ il semipiano superiore. Definiamo

$$\sigma(z) = \frac{az+b}{cz+d}, \quad \text{per } \sigma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}_2(\mathbf{R}).$$

- (a) Dimostrare che si tratta di un'azione di $SL_2(\mathbf{R})$ su \mathcal{H} .
- (b) Dimostrare che l'azione è transitiva.
- (c) Determinare lo stabilizzatore di $i \in \mathcal{H}$.
- 4. Sia G il gruppo moltiplicativo dato da

$$G = \left\{ \begin{pmatrix} y & x \\ 0 & 1 \end{pmatrix} : x \in \mathbf{Z}_5 \text{ e } y \in \mathbf{Z}_5^* \right\}.$$

- (a) Verificare che #G = 20.
- (b) Esibire un 5-sottogruppo di Sylow. Quanti 5-sottogruppi di Sylow ci sono?
- (c) Esibire un 2-sottogruppo di Sylow. Quanti 2-sottogruppi di Sylow ci sono?
- 5. Sia G il gruppo alternante A_6 .
 - (a) Quanti 5-sottogruppi di Sylow ci sono?
 - (b) Dimostrare che ogni 3-Sottogruppo di Sylow è isomorfo a $\mathbf{Z}_3 \times \mathbf{Z}_3$. Quanti ne sono?
 - (c) Esibire esplicitamente un 2-sottogruppo di Sylow. (ce ne sono 45)
- 6. Sia p un primo e sia P un p-sottogruppo di Sylow di un gruppo finito G. Dimostrare che ci sono esattamente $[G:N_G(P)]$ p-sottogruppi di Sylow in G. Qua $N_G(P)$ indica il normalizzante di P in G.
- 7. Sia G un gruppo abeliano finito.
 - (a) Sia p un primo. Dimostrare che $H = \{x \in G : 1$ 'ordine di x è una potenza di $p\}$ e $H' = \{x \in G : 1$ 'ordine di x non è divisible per $p\}$ sono sottogruppi di G.
 - (b) Dimostrare che la mappa naturale $H \times H' \to G$ è un isomorfismo.
 - (c) Dimostrare che #H è una potenza di p, mentre #H' non è divisibile per p.
 - (d) Dimostrare che G è prodotto diretto dei suoi p-sottogruppi di Sylow.
- 8. Sia p un numero primo. Esibire un p-sottogruppo di Sylow di $GL_2(\mathbf{Z}_p)$. Quanti p-sottogruppi di Sylow ci sono?
- 9. (terzo teorema di isomorfismo) Sia G un gruppo e siano H e N sottogruppi di G. Supponiamo che N normalizzi H: per ogni $g \in N$ abbiamo che $gHg^{-1} \subset H$.
 - (a) Dimostrare che $HN = \{xg : x \in H \text{ e } g \in N\}$ è un sottogruppo di G.
 - (b) Dimostrare che H è sottogruppo normale di HN.
 - (c) Dimostrare che l'omomorfismo composto $N \hookrightarrow HN \to HN/H$ è suriettivo e che il suo nucleo è $H \cap N$.
 - (d) Dedurre che la mappa indotta $N/(H \cap N) \to HN/N$ è un'isomorfismo.