- 1. Sia $f: \mathbf{Z}_{39}^* \longrightarrow \mathbf{Z}_{39}^*$ l'applicazione data da $f(x) = x^6$ per $x \in \mathbf{Z}_{39}^*$.
 - (a) Dimostrare che f è un omomorfismo di gruppi e che im $(f) \subset \ker(f)$.
 - (b) Quanti elementi ha il gruppo quoziente ker(f)/im(f)?
- 2. Per $F = \mathbf{Q}$, \mathbf{R} e \mathbf{C} scriviamo F^{*2} per l'insieme $\{x^2 : x \in F^*\}$ dei quadrati di F.
 - (a) Dimostrare che F^{*2} è un sottogruppo del gruppo moltiplicativo F^* .
 - (b) Dimostrare che il quoziente $\mathbf{R}^*/\mathbf{R}^{*2}$ è isomorfo a \mathbf{Z}_2 . Dimostrare che $\mathbf{C}^*/\mathbf{C}^{*2}$ è il gruppo banale. È dimostrare che $\mathbf{Q}^*/\mathbf{Q}^{*2}$ è un gruppo infinito.
- 3. Sia A_n il gruppo alternante.
 - (a) Determinare il centro e il sottogruppo dei commutatori di A_3 .
 - (b) Dimostrare che per $n \geq 4$ il centro di A_n è banale.
 - (c) Dimostrare che per $n \geq 5$ si ha che $[A_n, A_n] = A_n$.
 - (d) Determinare il sottogruppo dei commutatori di A_4 .
- 4. Dimostrare che i gruppi S_n e $A_n \times \mathbf{Z}_2$ non sono isomorfi per nessun $n \geq 3$.
- 5. Siano $n, m \ge 1$ a sia $f: S_n \longrightarrow S_m$ un omomorfismo. Dimostrare che $f(A_n) \subset A_m$.
- 6. Determinare tutti gli omomorfismi
 - (a) $\mathbf{Z}_6 \longrightarrow \mathbf{Z}_4$;
- (c) $\mathbf{Z}_6 \longrightarrow S_3$; (d) $D_4 \longrightarrow \mathbf{Z}_8$;
- (e) $\mathbf{Z}_8 \longrightarrow D_4$;

- (b) $S_3 \longrightarrow D_4$;
- (f) $V_4 \longrightarrow V_4$.

7. (a) Ecco il famoso puzzle di Sam Loyd (1841–1911). Ci sono 15 blocchetti, numerati da 1 a 15, in un telaio. Utilizzando l'unica posizione vuota, essi si possono spostare orizzontalmente o verticalmente. Lo scopo del gioco è di ordinare i blocchetti da 1 a 15 per righe. Far vedere che questo è impossibile a partire dalla configurazione rappresentata a destra.

1	2	3	4
5	6	7	8
9	10	11	12
13	15	14	

(b) Lo stesso gioco come in (a). Nonos-
tante le affermazioni della parte (a) di
questo esercizio, nella provincia di Tren-
tino sanno ordinare i blocchetti com-
inciando dalla configurazione rappresen-
tata a destra. Come mai?

(http://en.wikipedia.org/wiki/15_puzzle)

33	tren	tini	entra
rono	a	Trento	tutti
e	33	trot	te
rel	do	lan	

8. Sia n un numero naturale che soddisfa mcd(n, 10) = 1. Dimostrare che la lunghezza del periodo dell'espansione decimale della frazione 1/n è uguale all'ordine di $\overline{10}$ nel gruppo \mathbf{Z}_n^* .