- 1. Sia G un gruppo finito.
 - (a) Dimostrare che se G ha solo due classi di coniugio, allora $G \cong \mathbf{Z}_2$.
 - (b) Dimostrare che se G ha tre classi di coniugio, allora $G \cong \mathbb{Z}_3$ oppure $G \cong S_3$.
- 2. Un gruppo G si dice semplice se gli unici sottogruppi normali di G sono G ed $\{e\}$. Dimostrare: se un gruppo semplice G ammette un sottogruppo di indice n, allora si ha che $\#G \leq n!$ (Sugg. considerare l'azione di G sull'insieme G/H delle classi laterali sinistre del sottogruppo H.)
- 3. Dimostrare che nei seguenti casi nessun gruppo di cardinalità n è semplice:
 - (a) n = 200;
- (b) n = 8p con p primo;
- (c) n = 36;
- (d) n = 72
- 4. In questo esercizio dimostriamo che gruppi G di cardinalità 120 non possono essere semplici. Supponiamo quindi per assurdo che #G=120 e che gli unici sottogruppi normali di G siano $\{e\}$ e G stesso.
 - (a) Dimostrare che G possiede sei 5-sottogruppi di Sylow.
 - (b) Il gruppo G agisce tramite coniugio sull'insieme dei 5-sottogruppi di Sylow. Dimostrare che l'omomorfismo $G \longrightarrow S_6$ associato è iniettivo e che l'immagine è contenuta in A_6 .
 - (c) Dimostrare che A_6 non ha sottogruppi di indice 3 (sfruttare la semplicità di A_6).
 - (d) Dedurre una contraddizione e concludere che G non può esistere.
- 5. Sia G un gruppo finito di ordine 2n, con n dispari. In questo esercizio dimostreremo che G ammette un sottogruppo di indice 2.
 - (a) Per ogni $g \in G$, sia $t_g : G \longrightarrow G$ la traslazione per g, ossia $t_g(x) = gx$, per $x \in G$. Dimostrare che t_g è una permutazione di G.
 - (b) Sia S_G il gruppo delle permutazioni degli elementi di G. Dimostrare che l'applicazione $G \longrightarrow S_G$, data da $g \mapsto t_g$, è un omomorfismo di gruppi.
 - (c) Dimostrare che G ha un elemento x di ordine 2 e calcolare il segno della permutazione t_x .
 - (d) Dimostrare che $H = \{g \in G : \text{il segno di } t_q \text{ è pari}\}$ è un sottogruppo di indice 2.
- 6. Sia G un gruppo finito. Dimostrare che le seguenti affermazioni sono equivalenti.
 - (i) Esiste una filtrazione $\{e\} = G_m \subset \ldots \subset G_2 \subset G_1 \subset G_0 = G$ con sottogruppi G_i di G con la proprietà che G_{i+1} è normale in G_i e G_i/G_{i+1} è abeliano.
 - (ii) Esiste una filtrazione $\{e\} = G_m \subset \ldots \subset G_2 \subset G_1 \subset G_0 = G$ con sottogruppi G_i di G con la proprietà che G_{i+1} è normale in G_i e G_i/G_{i+1} è isomorfo a \mathbb{Z}_p per qualche primo p.
 - (iii) Esiste una filtrazione $\{e\} = G_m \subset \ldots \subset G_2 \subset G_1 \subset G_0 = G$ con sottogruppi G_i con la proprietà che $G_{i+1} = [G_i : G_i]$.
 - Il gruppo G si dice *risolubile* se ha la proprietà (i) (oppure (ii) o (iii)).
- 7.*Dimostrare che non esistono gruppi *semplici* non abeliani di ordine < 60. (Sugg. procedere caso per caso; usare i teoremi di Sylow).