- 1. Sia $f: G \longrightarrow H$ un omomorfismo di gruppi. Dimostrare che ker f è un sottogruppo normale di G. È sempre vero che l'immagine di f è un sottogruppo normale di H?
- 2. Siano H_1 e H_2 due sottogruppi normali di un gruppo G. Dimostrare che $H_1 \cap H_2$ è anche un sottogruppo normale di G
- 3. Sia G un gruppo e siano H, H' due sottogruppi normali di G con la proprietà che $G/H \in G/H'$ sono abeliani. Dimostrare che $G/(H \cap H')$ è abeliano.
- 4. Siano G_1 e G_2 due gruppi con elementi neutri e_1 respettivamente e_2 . Dimostrare che $G_1 \times \{e_2\}$ e $\{e_1\} \times G_2$ sono sottogruppi normali di $G_1 \times G_2$.
- 5. Sia G un gruppo e siano $H \subset G$ un sottogruppo di G. Sia $H' \subset H$ un sottogruppo
 - (a) Dimostrare che H' è anche un sottogruppo di G.
 - (b) Esibire un esempio dove H' è un sottogruppo normale di H e H è un sottogruppo normale di G, ma H' non è un sottogruppo normale di G. (Sugg. esibire sottogruppi opportuni di $G = D_4$.)
- 6. Sia $f: G \longrightarrow H$ un omomorfismo suriettivo di gruppi e sia $N \subset H$ un sottogruppo normale di H. Dimostrare che $f^{-1}(N)$ è un sottogruppo normale di G e che la mappa $G/f^{-1}(N) \longrightarrow H/N$ definita da $f(\overline{g}) = f(g) \pmod{N}$ è un isomorfismo ben definito.
- 7. Per $F = \mathbf{Q}$, \mathbf{R} e \mathbf{C} scriviamo F^{*2} per l'insieme $\{x^2 : x \in F^*\}$ dei quadrati di F.

 - (a) Dimostrare che F^{*2} è un sottogruppo del gruppo moltiplicativo F^* . (b) Dimostrare che il quoziente $\mathbf{R}^*/\mathbf{R}^{*2}$ è isomorfo a \mathbf{Z}_2 . Dimostrare che $\mathbf{C}^*/\mathbf{C}^{*2}$ è il gruppo banale.
 - (c) Dimostrare che $\mathbf{Q}^*/\mathbf{Q}^{*2}$ è un gruppo infinito.
- 8. Sia p un numero primo. Consideriamo il gruppo additivo finito $A={\bf Z}_{p^3}\times {\bf Z}_p$. Sia $f: A \longrightarrow A$ l'applicazione data da

$$f(a) = p^2 a = \underbrace{a + a + \ldots + a}_{p^2 \text{ volte}}, \quad \text{per } a \in A.$$

- (a) Dimostrare che f è un omomorfismo.
- (b) Dimostrare che im $f \subset \ker f$.
- (c) Quanti elementi ha il gruppo quoziente $\ker f/\operatorname{im} f$?
- 9. Sia G il gruppo additivo \mathbf{Z}_{12} e sia H il gruppo moltiplicativo \mathbf{Z}_{12}^* . Quanti omomorfismi $G \longrightarrow H$ ci sono? Quanti omomorfismi $H \longrightarrow G$ ci sono?
- 10. Dimostrare che S_5 contiene un elemento di ordine 6. Esibire n > 1 tale che il gruppo simmetrico S_n contiene un elemento di ordine almeno n^2 .
- 11. Sia n un numero naturale che soddisfa mcd(n, 10) = 1. Dimostrare che la lunghezza del periodo dell'espansione decimale della frazione 1/n è uguale all'ordine di $\overline{10}$ nel gruppo \mathbf{Z}_{n}^{*} .