- 1. Siano $\sigma, \tau \in S_n$.
 - (a) Sia $a \in \{1, 2, ..., n\}$ e sia $b = \tau(a)$. Far vedere che la permutazione $\sigma \tau \sigma^{-1}$ manda $\sigma(a)$ in $\sigma(b)$.
 - (b) Se $\tau = (a_1 \, a_2 \, \dots \, a_k)$ è un k-ciclo, allora $\sigma \tau \sigma^{-1}$ è il ciclo $(\sigma(a_1) \, \sigma(a_2) \, \dots \, \sigma(a_k))$.
 - (c) Dimostrare che se τ è un prodotto di t cicli disgiunti di lunghezze k_1, k_2, \ldots, k_t allora questo è vero anche per $\sigma \tau \sigma^{-1}$.
 - (d) Provare che se la permutazione $\sigma\tau$ è un prodotto di t cicli disgiunti di lunghezze k_1, k_2, \ldots, k_t , allora questo è vero anche per $\tau \sigma$.
- 2. Dimostrare che le seguenti applicazioni sono sono omomorfismi ben definiti:
 - (a) $\mathbf{R}^* \longrightarrow \mathbf{R}^*$ $x\mapsto |x|,$
 - (b) $\mathbf{Z}_{10} \longrightarrow \mathbf{Z}_5$ $x \pmod{10} \mapsto x \pmod{5}$,
 - (c) $\mathbf{Z}_{10}^* \longrightarrow \mathbf{Z}_5^*$ $x \pmod{10} \mapsto x \pmod{5}$,
 - (d) $\mathbf{R} \longrightarrow \mathbf{C}^*$ $x \mapsto \cos(x) + \sin(x)i$,
 - (e) $\mathbf{Z}_4 \longrightarrow \mathbf{Z}_5^*$ (f) $\mathbf{C}^* \longrightarrow \mathbf{R}^*$ $x\mapsto 2^x$.
 - $a + bi \mapsto a^2 + b^2$,

Quali sono iniettive e quali suriettive? Determinare i nuclei e le immagini.

- 3. Sia G un gruppo e sia $g \in G$.
 - (a) Dimostrare che l'applicazione data da $x \mapsto gxg^{-1}$ è un automorfismo di G.
 - (b) Sia $H \subset G$ un sottogruppo. Dimostrare che $qHq^{-1} = \{qxq^{-1} : x \in H\}$ è un sottogruppo di G.
- 4. Sia G un gruppo. Dimostrare che l'applicazione $F: G \longrightarrow G$ data da $F(x) = x^2$ è un omomorfismo se e soltanto se G è abeliano. Dimostrare che l'applicazione $x \mapsto x^{-1}$ è un omomorfismo se e soltanto se G è abeliano.
- 5. Provare che ci sono isomorfismi

$$\mathbf{Z}_{12}^* \cong D_2 \cong P(X)$$

dove P(X) è l'insieme delle parti di $X = \{0,1\}$ con composizione la differenza simmetrica.

- 6. Sia G un gruppo e siano H e H' due sottogruppi con le seguenti proprietà:
 - -hh'=h'h per ogni $h \in H, h' \in H'$
 - $H \cap H' = \{e\},\$
 - Per ogni $g \in G$ ci sono $h \in H$ e $h' \in H'$ tali che g = hh'.

Dimostrare che l'applicazione

$$f: H \times H' \longrightarrow G$$

data da f(h, h') = hh' è un isomorfismo.

7. Sia S il sottogruppo moltiplicativo $\{z \in \mathbb{C} : |z| = 1\}$ di \mathbb{C}^* . Dimostrare che

$$\mathbf{C}^* \cong \mathbf{R}_{>0} \times S$$
.

(Sugg. utilizzare l'esercizio precedente.)