- 1. Per i seguenti insiemi G e "composizioni" *, indicare, se esiste, un elemento neutro. Dire quando si tratta di un gruppo:
 - (a) $G = \mathbf{Z}_{>0} \text{ con } a * b = a^b$.
- (d) $G = \{-1, 0, 1\}$ con a * b = a + b.
- (b) $G = \mathbf{R} \text{ con } a * b = a + b + 3,$
- (c) $G = \mathbf{R}_{>1} \text{ con } a * b = a^{\log(b)}$.
- (e) $G = \{1, 2, 3, 4, ...\}$ con $a * b = \max(a, b)$. (f) $G = \mathbf{R}^2$ con $\binom{a}{b} * \binom{c}{d} = \binom{c+ad}{bd}$.
- 2. (a) Sia G un gruppo e siano $a, b \in G$. Dimostrare che l'equazione

$$ax = b$$

ha una unica soluzione $x \in G$. Questa soluzione è $x = a^{-1}b$. Similmente, dimostare che esiste una unica soluzione $x \in G$ di xa = b, vale a dire $x = ba^{-1}$.

- (b) (Proprietà Sudoku) Provare che, nella tabella di composizione di un gruppo finito, ogni elemento compare esattamente una volta in ogni riga ed ogni colonna.
- 3. Sia X un insieme e sia P(X) l'insieme delle parti di X. La differenza simmetrica $A \triangle B$ di due sottoinsiemi A e B di X è definita da

$$A \triangle B = (A \cup B) - (A \cap B).$$

Dimostrare che P(X) con la composizione \triangle è un gruppo abeliano. Scrivere la tabella di composizione per un insieme X di due elementi.

- 4. Sia G un gruppo con elemento neutro e.
 - (a) Provare: se $x^2 = e$ per ogni $x \in G$, allora G è commutativo.
 - (b) Provare: se $a^{-1}b^{-1} = (ab)^{-1}$ per ogni $a, b \in G$, allora G è commutativo.
 - (c) Provare: se $a^2b^2=(ab)^2$ per ogni $a,b\in G$, allora G è commutativo.
- 5. Una trasformazione affine di \mathbf{R} è una applicazione $A: \mathbf{R} \longrightarrow \mathbf{R}$ data da

$$x \mapsto ax + b$$

con $a \in \mathbb{R}^*$ e $b \in \mathbb{R}$. Dimostrare che le trasformazioni affini di R formano un gruppo con la composizione. Si tratta di un gruppo commutativo?

6. Sia G un gruppo e sia X un insieme. Sia G^X l'insieme delle mappe $X \longrightarrow G$. Siano $f,g \in G^X$. Definiamo $f \circ g$ nel modo seguente:

$$(f \circ g)(x) = f(x)g(x)$$
 per $x \in X$

- (a) Dimostrare che G^X è un gruppo rispetto alla composizione \circ .
- (b) Dimostrare che G^X è commutativo se e soltanto se G è commutativo.
- 7. Dimostrare che l'insieme $\{+1, -1, +i, -i\} \subset \mathbb{C}^*$ è un gruppo moltiplicativo.
- 8. Scrivere la tabella di composizione per il gruppo diedrale D_3 .
- 9. (a) Determinare tutti gli interin>0 per cui il gruppo \mathbf{Z}_n^* ha cardinalità 1.
 - (b) Determinare tutti gli interi n > 0 per cui il gruppo \mathbf{Z}_n^* ha cardinalità 2.
 - (c) Determinare tutti gli interi n>0 per cui il gruppo \mathbf{Z}_n^* ha la proprietà che $\overline{x}\cdot\overline{x}=\overline{1}$ per ogni $\overline{x} = \mathbf{Z}_n^*$.