- 1. Sia $f: G \longrightarrow H$ un omomorfismo di gruppi. Dimostrare che se H è abeliano, allora il sottogruppo [G,G] dei commutatori è contenuto in $\ker(f)$.
- 2. Sia G un gruppo e sia $H \subset G$ un sottogruppo che contiene il sottogruppo [G,G] dei commutatori. Dimostrare che H è un sottogruppo normale e che G/H è un gruppo abeliano.
- 3. Sia G un gruppo e siano H, H' due sottogruppi normali di G con la proprietà che $G/H \in G/H'$ sono abeliani. Dimostrare che $G/(H \cap H')$ è abeliano.
- 4. Sia $f: \mathbb{Z}_{39}^* \longrightarrow \mathbb{Z}_{39}^*$ l'applicazione data da $f(x) = x^6$ per $x \in \mathbb{Z}_{39}^*$.
 - (a) Dimostrare che f è un omomorfismo di gruppi e che im $(f) \subset \ker(f)$.
 - (b) Quanti elementi ha il gruppo quoziente ker(f)/im(f)?
- 5. Sia $G={f Z}_{33}^*$ e sia H il sottogruppo generato da $\overline{4}$. Stabilire se il gruppo quoziente G/H è ciclico o meno.
- 6. Sia G un gruppo e sia $N \subset G$ un sottogruppo normale di cardinalità 2. Dimostrare che N è contenuto nel centro Z(G) di G.
- 7. Sia G un gruppo con la proprietà che G/Z(G) è ciclico. Dimostrare che G è abeliano.
- 8. Dimostrare che per nessun $n \geq 3$ i gruppi S_n e $A_n \times \mathbf{Z}_2$ sono isomorfi.
- 9. Determinare tutti gli omomorfismi

(a) $\mathbf{Z}_6 \longrightarrow \mathbf{Z}_4$;

(c) $\mathbf{Z}_6 \longrightarrow S_3$;

(e) $\mathbf{Z}_8 \longrightarrow D_4$; (f) $V_4 \longrightarrow V_4$.

(b) $S_3 \longrightarrow D_4$;

(d) $D_4 \longrightarrow \mathbf{Z}_8$;

- 10. Siano $n, m \ge 1$ a sia $f: S_n \longrightarrow S_m$ un omomorfismo. Dimostrare che $f(A_n) \subset A_m$.
- 11. (a) Ecco il famoso puzzle di Sam Loyd (statunitense noto per i suoi rompicapo, 1841–1911). Ci sono 15 blocchetti, numerati da 1 a 15, in un telaio. Utilizzando l'unica posizione vuota, essi si possono spostare orizzontalmente o verticalmente. Lo scopo del gioco è di ordinare i blocchetti da 1 a 15 per righe. Far vedere che questo è impossibile a partire dalla configurazione rappresentata a destra.

(b) Lo stesso gioco come in (a). È incred-
ibile, ma nonostante le affermazioni della
parte (a) di questo esercizio, in Trentino
sanno ordinare i blocchetti cominciando
dalla configurazione rappresentata a de-
stra. Come mai?

(http://en.wikipedia.org/wiki/15_puzzle)

1	2	3	4
5	6	7	8
9	10	11	12
13	15	14	

33	tren	tini	an
da	va	no	per
Trento	tut	ti	33
trot	do	tan	