Algebra I. 13. Polinomi simmetrici, risultanti, discriminanti. Roma, 27 dicembre 2014.

- 1. Scrivere $X^2Y^2 + Y^2Z^2 + Z^2X^2$ come polinomio nei polinomi simmetrici elementari $s_1, s_2, s_3 \in \mathbf{Z}[X, Y, Z]$. Stessa domanda per $XY^3 + YX^3 + XZ^3 + ZX^3 + ZY^3 + YZ^3$.
- 2. Siano α, β, γ gli zeri complessi del polinomio $X^3 + X^2 + 1$. Determinare l'intero

$$\det \begin{pmatrix} \alpha & \beta & \gamma \\ \beta & \gamma & \alpha \\ \gamma & \alpha & \beta \end{pmatrix}.$$

- 3. Siano $\alpha_1, \alpha_2, \ldots, \alpha_7 \in \mathbf{C}$ tali che $X^7 + X + 2 = (X \alpha_1)(X \alpha_2) \cdots (X \alpha_7)$.
 - (a) Determinare $\alpha_1 + \alpha_2 + \cdots + \alpha_7$;
 - (b) Dimostrare che $\alpha_1^3 + \alpha_2^3 + \cdots + \alpha_7^3 = 0$;
 - (c) Determinare $\alpha_1^7 + \alpha_2^7 + \cdots + \alpha_7^7$.
- 4. Siano α e β gli zeri del polinomio $X^2 X 1$.
 - (a) Calcolare $F_k = (\alpha^k \beta^k)/(\alpha \beta)$ per $0 \le k \le 4$.
 - (b) Dimostrare che F_k sta in **Z** per ogni $k \geq 0$.
 - (c) Dimostare che $F_{k+1} = F_k + F_{k-1}$ per ogni $k \ge 1$.
- 5. Siano $a, b, c \in \mathbf{Z}$ e siano $\alpha_1, \alpha_2, \alpha_3$ gli zeri complessi del polinomio $f = X^3 + aX^2 + bX + c \in \mathbf{Z}[X]$.
 - (a) Determinare la funzione simmetrica $(\alpha_1 + \alpha_2)(\alpha_1 + \alpha_3)(\alpha_2 + \alpha_3)$ in termini dei coefficienti di f.
 - (b) Determinare la funzione simmetrica $(\alpha_1 + \alpha_2)(\alpha_1 + \alpha_3) + (\alpha_1 + \alpha_2)(\alpha_2 + \alpha_3) + (\alpha_1 + \alpha_3)(\alpha_2 + \alpha_3)$ in termini dei coefficienti di f.
 - (c) Determinare il polinomio monico cubico $g \in \mathbf{Z}[X]$ che ha $\alpha_1 + \alpha_2$, $\alpha_2 + \alpha_3$ e $\alpha_1 + \alpha_3$ come zeri. Esprimere i coefficienti in termini di a, b, c.
- 6. Calcolare il risultante di $X^4 1$ e $X^3 + 1$. Stessa domanda per $X^4 1$ e $X^3 1$.
- 7. Calcolare il discriminante del polinomio $X^5 + X + 1$.
- 8. Sia R un anello commutativo. Un elemento $e \in R$ si dice idempotente se $e^2 = e$.
 - (a) Determinare gli elementi idempotenti degli anelli \mathbf{Z}_6 e di \mathbf{Z}_9 .
 - (b) Sia k un campo e sia $n \ge 1$. Determinare gli elementi idempotenti dell'anello k^n .
 - (c) Dimostrare che se $e \in R$ è idempotente, anche 1 e è idempotente.
 - (d) Dimostrare che l'insieme E degli elementi idempotenti di R formano un gruppo con l'operazione $e*f=(e-f)^2$ per $e,f\in E$.
- 9. Un elemento x di un anello R si dice nilpotente se $x^n=0$ per un $n\in \mathbf{Z}_{\geq 1}$.
 - (a) Determinare gli elementi nilpotenti degli anelli \mathbb{Z}_6 e \mathbb{Z}_{24} .
 - (b) Dimostrare che gli elementi nilpotenti di un anello commutativo R formano un ideale.
- 10. Sia R un anello comutativo e siano $I, J \subset R$ due ideali coprimi (questo vuol dire che I + J = R). Dimostrare che per ogni $n \in \mathbb{Z}_{>0}$ gli ideali I^n e J^n sono anche coprimi.