NOME

Accompagnare le risposte con spiegazioni chiare ed essenziali. Ogni esercizio vale 5 punti.

- 1. Se esiste, costruire una biezione fra \mathbf{R} e $\mathbf{R} \{0\}$.
- 2. Sia H il sottogruppo del gruppo simmetrico S_4 generato dalle permutazioni $(1\,2\,3\,4)$ e $(1\,4)(2\,3)$. Determinare la cardinalità di H.
- 3. Sia R un anello e siano $I, J \subset R$ due ideali di R. Dimostrare che $I \cup J$ è un ideale se e soltanto se $I \subset J$ oppure $J \subset I$.
- 4. Sia R l'anello $\mathbf{Z}[i]/(8-i)$.
 - (a) Determinare #R.
 - (b) Determinare $\#R^*$.
- 5. Sia H il sottogruppo di \mathbf{Z}_{32}^* generato da $\overline{7}$ e sia $G = \mathbf{Z}_{32}^*/H$.
 - (a) Determinare la cardinalità di G.
 - (b) Determinare l'ordine dell'elemento $\overline{-7}H$ di G.
- 6. Sia $C(\mathbf{R})$ l'anello delle funzioni continue $\mathbf{R} \longrightarrow \mathbf{R}$. La somma f + g di $f, g \in C(\mathbf{R})$ è quindi definita da (f + g)(x) = f(x) + g(x) per ogni $x \in \mathbf{R}$ e il prodotto da $(f \cdot g)(x) = f(x)g(x)$ per ogni $x \in \mathbf{R}$.
 - (a) Dimostrare che $I = \{ f \in C(\mathbf{R}) : f(0) = 0 \}$ è un ideale di $C(\mathbf{R})$.
 - (b) Dimostrare che l'anello quoziente $C(\mathbf{R})/I$ è isomorfo a \mathbf{R} .
 - (c) Dimostrare che $I^2 = I$.

Soluzioni.

- 1. Questo è il primo esercizio del primo esonero.
- 2. Il sottogruppo generato dalla permutazione $\sigma=(1\,2\,3\,4)$ ha ordine 4. La permutazione $\tau=(1\,4)(2\,3)$ ha ordine 2 e soddisfa $\tau\sigma\tau^{-1}=\sigma^{-1}$ e quindi $\tau\sigma=\sigma^3\tau$. Questo dimostra che ogni elemento di H ha la forma $\sigma^i\tau^j$ per qualche $0\leq i\leq 3$ e $0\leq j\leq 1$. Poiché tutti questi elementi sono distinti, il sottogruppo H ha $4\cdot 2=8$ elementi.

Più concettualmente, si osserva che la solita azione del gruppo diedrale D_4 sul quadrato, induce una permutazione dei quattro vertici $\{1, 2, 3, 4\}$. L'omomorfismo $D_4 \longrightarrow S_4$ è iniettivo e il suo immagine è il sottogruppo di S_4 generato da σ e τ , il quale ha quindi $8 = \#D_4$ elementi.

- 3. Questo è il terzo esercizio del compito del 2⁰ appello.
- 4. Si ha che

$$\mathbf{Z}[i]/(8-i) \cong \mathbf{Z}[X]/(X^2+1, X-8) \cong \mathbf{Z}/(8^2+1) = \mathbf{Z}_{65}.$$

L'anello ha quindi 65 elementi e contiene $\phi(65)=48$ elementi invertibili

- 5. Si verifica che l'ordine dell'elemento $\overline{7} \in \mathbf{Z}_{32}^*$ è 4. Il gruppo G ha quindi $\phi(32)/4 = 4$ elementi. Poiché $\overline{-7}$ non appartiene ad $H = \{\overline{1}, \overline{7}, \overline{17}, \overline{23}\}$, l'ordine di $\overline{-7}H$ in G non è certamente 1. Infatti, dal fatto che $(\overline{-7})^2 = \overline{17} \in H$ segue che l'ordine è 2.
- 6. L'applicazione $\phi: C(\mathbf{R}) \longrightarrow \mathbf{R}$ data da $\phi(f) = f(0)$ è un omomorfismo suriettivo di anelli. La parte (b) segue dal primo teorema di isomorfismo e dal fatto che ker $\phi = I$. Per dimostrare (c) sia $f \in I$. Allora $f = f_+ f_-$ dove $f_+ = \max(f, 0)$ e $f_- = \max(-f, 0)$. Sia f_+ che f_- sono continue e appartengono a I. Sia g_+ la funzione data da $g_+(x) = \sqrt{f_+(x)}$ e sia g_- la funzione data da $g_-(x) = \sqrt{f_-(x)}$. Allora anche g_+ e g_- sono continue e appartengono ad I. Dalla formula $f = g_+^2 g_-^2$ segue adesso che f sta in I^2 , come richiesto.