- 1. Fattorizzare il polinomio $X^9 X \in \mathbf{F}_3[X]$ in fattori irriducibili.
- 2. Sia $k = \mathbf{F}_{16}$.
 - (a) Per quanti elementi $\alpha \in k$ si ha che $k = \mathbf{F}_2(\alpha)$?
 - (b) Quanti elementi $\alpha \in k^*$ hanno ordine 15?
- 3. (a) Dimostrare che $X^2 2$ è un polinomio irriducibile in $\mathbf{F}_5[X]$.
 - (b) Dimostrare che $\mathbf{F}_5(\sqrt{2}) = \mathbf{F}_5[X]/(X^2 2)$ è un campo di 25 elementi. (c) Calcolare gli ordini degli elementi $1 \sqrt{2}$ e $2 \sqrt{2}$ di $\mathbf{F}_5(\sqrt{2})^*$.
- 4. (a) Dimostrare che $X^2 3$ è un polinomio irriducibile in $\mathbf{F}_5[X]$.
 - (b) Esibire un isomorfismo fra i campi $\mathbf{F}_5(\sqrt{2})$ e $\mathbf{F}_5(\sqrt{3})$.
- 5. Il polinomio $X^3 + 2$ è irriducibile in $\mathbf{F}_7[X]$? Stessa domanda per $X^3 + 2$ in $\mathbf{F}_{343}[X]$.
- 6. (a) Dimostare che per ogni $x \in \mathbf{F}_{32} \mathbf{F}_2$ si ha che $\mathbf{F}_{32}^* = \langle x \rangle$.
 - (b) Per quanti polinomi $f \in \mathbf{F}_2[X]$ si ha che $\mathbf{F}_2[X]/(f) \cong \mathbf{F}_{32}$?
- 7. Sia p > 2 un primo.
 - (a) Dimostrare che il campo \mathbf{F}_{p^2} contiene una radice ottava dell'unità.
 - (b) Dimostrare che 2 è un quadrato in \mathbb{Z}_p se e solo se $p \equiv \pm 1 \pmod{8}$.
- 8. La funzione di Möbius $\mu: \mathbf{Z}_{\geq 1} \longrightarrow \{-1, 0, +1\}$ è data da

$$\mu(n) = \begin{cases} 0; & \text{se esiste un primo } p \text{ tale che } p^2 \text{ divide } n, \\ (-1)^t; & \text{se } n \text{ è prodotto di } t \text{ primi distinti.} \end{cases}$$

- (a) Dimostrare che $\mu(nm) = \mu(n)\mu(m)$ se mcd(n, m) = 1.
- (b) Dimostrare che per ogni $n \ge 1$ si ha che

$$\sum_{d|n} \mu(d) = \begin{cases} 1; & \text{se } n = 1, \\ 0; & \text{se } n > 1. \end{cases}$$

(c) (Inversione di Möbius) Siano f,g due funzioni $\mathbf{Z}_{\geq 1} \longrightarrow \mathbf{C}$ con la proprietà che $\sum_{d|n} f(d) =$ g(n) per ogni $n \in \mathbf{Z}_{\geq 1}$. Dimostrare che

$$f(n) \ = \ \sum_{d|n} \mu(\frac{n}{d})g(d), \qquad \text{per ogni } n \in \mathbf{Z}_{\geq 1}.$$

- 9. Sia p un primo. Per ogni intero $n \ge 1$ sia b_n il numero di polinomi irriducibili monici nell'anello $\mathbf{Z}_p[X]$ di grado n.
 - (a) Dimostrare che $\sum_{d|n} db_d = p^n$ per ogni $n \geq 1.$
 - (b) Dimostrare che $b_n = \sum_{d|n} \mu(\frac{n}{d}) p^d$ per ogni $n \ge 1$.
 - (c) Dimostrare l'identità

$$\prod_{n=1}^{\infty} \left(\frac{1}{1 - T^n} \right)^{b_n} = \frac{1}{1 - pT}$$

nell'anello $\mathbf{F}_p[[T]]$ (Sugg. valutare la sommatoria $\sum_{f \in \mathbf{F}_p[X], \, \text{monico}} T^{\deg f}$ in due modi diversi.)

- 10. (a) Per ogni $n \le 10$ diverso da 5 esibire un anello R con $\#R^* = n$.
 - (b)*Dimostrare che non esiste un anello R con $\#R^* = 5$.