COGNOME

NOME

Accompagnare le risposte con spiegazioni chiare ed essenziali. Ogni esercizio vale 5 punti.

- 1. Dimostrare che un gruppo G di cardinalità 72 non può essere semplice.
- 2. Sia R un anello commutativo. Un elemento $x \in R$ si dice nilpotente se

$$x^N = \underbrace{x \cdot x \cdot \dots \cdot x}_{N \text{ volte}} = 0$$
 per un certo $N > 0$.

Dimostrare che gli elementi nilpotenti formano un ideale di R.

- 3. Sia H il sottogruppo di S_4 generato dalla permutazione (1 2 3 4). Determinare le orbite della azione tramite coniugio di H sul sottogruppo normale A_4 di S_4 .
- 4. Sia N il sottogruppo di \mathbb{C}^* generato da i. Dimostrare che il gruppo quoziente \mathbb{C}^*/N è isomorfo a \mathbb{C}^* .
- 5. Determinare la cardinalità del gruppo degli elementi invertibili dell'anello $\mathbf{Z}[X]/(3, X^4 1)$.
- 6. Sia k un campo di spezzamento di $X^2 2$ su \mathbb{Z}_5 .
 - (a) Quanti elementi ha il gruppo quoziente k^*/\mathbf{Z}_5^* ?
 - (b) Sia $z \in k$ uno zero di $X^2 2$. Dimostrare che $z + 1 \in k^*$.
 - (c) Determinare l'ordine della classe laterale di z+1 nel gruppo k^*/\mathbb{Z}_5^* .

Soluzioni.

- 1. Questo è l'esercizio 7 (d) del foglio 4.
- 2. Questo è l'esercizio 12 (c) del foglio 7.
- 3. Le orbite dell'azione di H sono $\{(1)\}$, $\{(1\,3)(2\,4)\}$, $\{(1\,2)(3\,4), (1\,4)(2\,3)\}$, $\{(1\,2\,3), (2\,3\,4), (3\,4\,1), (4\,1\,2)\}$ e $\{(1\,3\,2), (2\,4\,3), (3\,1\,4), (4\,2\,1)\}$.
- 4. Si tratta di una variazione dell'esercizio 3 del 3° appello. Questa volta va applicato il Teorema dell'isomorfismo all'omomorfismo suriettivo $\mathbf{C}^* \longrightarrow \mathbf{C}^*$ dato da $z \mapsto z^4$.
- 5. L'anello $\mathbf{Z}[X]/(3,X^4-1)$ è isomorfo a $\mathbf{Z}_3[X]/(X^4-1)$. La fattorizazzione del polinomio X^4-1 in $\mathbf{Z}_3[X]$ in fattori irriducibili è data da $(X-1)(X+1)(X^2+1)$. Per il Teorema cinese del resto l'anello $\mathbf{Z}_3[X]/(X^4-1)$ è isomorfo a $\mathbf{Z}_3[X]/(X-1)\times\mathbf{Z}_3[X]/(X+1)\times\mathbf{Z}_3[X]/(X^2+1)$. I tre fattori sono campi finiti di rispettivamente 3, 3 e 9 elementi. Il numero di elementi invertibili è quindi dato da $(3-1)\cdot(3-1)\cdot(9-1)=32$.
- 6. Poichè $X^2 2$ è irriducibile in $\mathbf{Z}_5[X]$, il suo campo di spezzamente ha $5^2 = 25$ elementi. Il gruppo k^*/\mathbf{Z}_5^* ha quindi (25-1)/(5-1) = 6 elementi. Il fatto che -1 non è uno zero di $X^2 2$ implica che z + 1 non è zero ad appartiene quindi a k^* .

L'ordine della classe laterale di z+1 è un divisore di 6. Abbiamo che $(z+1)^2=z^2+2z+1=3+2z$ e $(z+1)^3=(z+1)(3+2z)=3+2z^2=2$ in k^* . Dal fatto che $(z+1)^3$ sta in \mathbb{Z}_5^* , ma gli elementi z+1 e $(z+1)^2$ no, segue che l'ordine della classe laterale di z+1 nel gruppo quoziente k^*/\mathbb{Z}_5^* è 3.