- 1. Sia $n \in \mathbf{Z}$ un numero pari.

 - (a) Fattorizzare n² + 1 per n = 8 e per n = 12.
 (b) Sia m = n² + 1. Dimostrare che π ∈ Z_m* ha ordine 4.
 - (c) Dimostrare che ogni divisore primo q di $n^2 + 1$ soddisfa $q \equiv 1 \pmod{4}$.
- 2. Sia p un numero primo e sia $M_p = 2^p 1$ il p-esimo numero di Mersenne. Sia q un divisore primo di M_p .
 - (a) Dimostrare che $\overline{2} \in \mathbf{Z}_q^*$ ha ordine p.
 - (b) Dimostrare che $q \equiv 1 \pmod{p}$.
 - (c) Dimostrare che M_p è primo per ogni primo p < 11, ma che $M_{11} = 2047$ non è primo.
- 3. Sia $k \in \mathbb{Z}_{\geq 0}$ e sia $F_k = 2^{2^k} + 1$ il k-esimo numero di Fermat. Sia q un divisore primo di F_k .
 - (a) Dimostrare che $\overline{2} \in \mathbf{Z}_q^*$ ha ordine 2^{k+1} .
 - (b) Dimostrare che $q \equiv 1 \pmod{2^{k+1}}$.
 - (c) Dimostrare che F_k è primo per ogni k < 5, ma che $F_5 = 4294967297$ non è primo.
- 4. Sia G un gruppo. Sia $e \in G$ l'elemento neutro.
 - (a) Sia H = G. Dimostrare che G/H è il gruppo banale.
 - (b) Sia $H = \{e\}$. Dimostrare che G/H è isomorfo a G.
- 5. Dimostrare che per ogni sottogruppo H di \mathbf{Z} esiste $n \in \mathbf{Z}$ tale che $H = \{kn : k \in \mathbf{Z}\}.$ Dimostrare che per $n \neq 0$ si ha che $\mathbf{Z}/H = \mathbf{Z}_n$. Determinare la struttura di \mathbf{Z}/H quando n = 0.
- 6. Sia $m \in \mathbb{Z}_{>0}$. Dimostrare che per ogni sottogruppo H di \mathbb{Z}_m esiste un divisore d di m tale che $H = {\overline{a} \in \mathbf{Z}_m : d \text{ divide } a}$. Enumerare i sottogruppi di \mathbf{Z}_{12} .
- 7. Dimostrare che un sottogruppo di un gruppo ciclico è ciclico. Dimostrare che un quoziente di un gruppo ciclico è ciclico.
- 8. Sia $G = \mathbf{Z}_{20}^*$.
 - (a) Sia H il sottogruppo generato da $\overline{9}$. Stabilire se il gruppo quoziente G/H è ciclico o meno.
 - (b) Sia H il sottogruppo generato da $\overline{19}$. Stabilire se il gruppo quoziente G/H è ciclico o meno.
- 9. Sia $G = \mathbf{Z}_{32}^*$.
 - (a) Sia H il sottogruppo generato da $\overline{25}$ e $\overline{31}$. Stabilire se il gruppo quoziente G/H è ciclico
 - (b) Sia H il sottogruppo generato da $\overline{5}$ e $\overline{9}$. Stabilire se il gruppo quoziente G/H è ciclico o
- 10. Sia G il gruppo $\mathbb{Z}_2 \times \mathbb{Z}_8$ e sia H il sottogruppo generato dall'elemento v. Nei seguenti casi determinare l'ordine di v e determinare la struttura del gruppo quoziente G/H.
 - (a) $v = (\overline{0}, \overline{2});$ (b) $v = (\overline{1}, \overline{0});$ (c) $v = (\overline{1}, \overline{2}).$