- 1. Sia **H** il corpo dei quaternioni. Siano $x, y \in \mathbf{H}$ dati da x = 1 + i + j k e y = -2 j + k. Calcolare x + y, xy, 1/x e \overline{y}^2 .
- 2. Un quaterniono "puro" è un quaternione della forma bi + cj + dk con $b, c, d \in \mathbf{R}$.
 - (a) Dimostrare che per un quaternione puro x si ha che $\overline{x} = -x$.
 - (b) Dimostrare che ogni quaternione puro x di norma $x\bar{x}=1$ soddisfa $x^2=-1$.
 - (c) Dimostrare che gli zeri del polinomio $X^2 + 1$ in **H** formano una 2-sfera. In particolare, sono infiniti.
- 3. Scrivere ogni n = 20, 21, ..., 30 come somma di quattro quadrati di numeri interi. Se possibile scrivere n come somma di tre quadrati. Se possibile scrivere n come somma di due quadrati.
- 4. Nell'anello degli interi di Gauss $\mathbf{Z}[i]$, determinare il resto della divisione di 5 + 14i per 3 + 5i. (Sarebbe meglio dire: "un" resto ...). Determinare mcd(5 + 14i, 3 + 5i).
- 5. Sia R il sottoanello di \mathbf{C} dato da $R = \mathbf{Z}[\sqrt{-2}] = \{a + b\sqrt{-2} : a, b \in \mathbf{Z}\}$. Sia $N : K \longrightarrow \mathbf{Q}$ l'applicazione $N : (R \{0\}) \longrightarrow \mathbf{Z}_{\geq 1}$ data da $N(x) = x\overline{x}$.
 - (a) Dimostrare che per ogni $x \in \mathbf{C}$ esiste $y \in R$ tale che $|N(x-y)| \leq \frac{3}{4}$.
 - (b) Dimostrare che $R = \mathbf{Z}[\sqrt{-2}]$ è un dominio Euclideo.
- 6. Dimostrare che il sottoanello di **C** dato da $R = \mathbf{Z}[\sqrt{-5}] = \{a + b\sqrt{-5} : a, b \in \mathbf{Z}\}$ non è un dominio Euclideo.
- 7. L'anello di Hurwitz \mathbf{H}_w è il sottoanello di \mathbf{H} dato da $\mathbf{H}_w = \mathbf{Z}[i, j, k, \frac{1+i+j+k}{2}]$.
 - (a) Verificare che $\mathbf{Z}[i, j, k, \frac{1+i+j+k}{2}]$ è un sottoanello di \mathbf{H} .
 - (b) Dimostrare che per ogni $x \in \mathbf{H}_w$ sia $x + \overline{x}$ che $x\overline{x}$ appartengono a \mathbf{Z} .
 - (c) Dimostrare che per ogni $z \in \mathbf{H}$ esiste $x \in \mathbf{H}_w$ tale che la norma di z x è minore di 1.
- 8. Siano R e K i sottoanelli del campo $\mathbf R$ dei numeri reali, dati rispettivamente da $R = \mathbf Z[\sqrt{2}] = \{a+b\sqrt{2}: a,b\in\mathbf Z\}$ e $K = \{a+b\sqrt{2}: a,b\in\mathbf Q\}$. Sia $N:K\longrightarrow\mathbf Q$ l'applicazione data da $N(a+b\sqrt{2}) = |(a+b\sqrt{2})(a-b\sqrt{2})| = |a^2-2b^2|$.
 - (a) Dimostrare che K è isomorfo al campo quoziente di R.
 - (b) Dimostrare che N(xy) = N(x)N(y) per ogni $x, y \in K$.
 - (c) Dimostrare che per ogni $x \in K$ esiste $y \in R$ tale che $N(x-y) \leq \frac{1}{2}$.
 - (d) Dimostrare che $R = \mathbf{Z}[\sqrt{2}]$ è un dominio Euclideo.
- 9. Sia $\zeta = \frac{-1+\sqrt{-3}}{2} \in \mathbf{C}$. Allora $\zeta^2 + \zeta + 1 = 0$. Sia R l'anello dato da $\mathbf{Z}[\zeta] = \{a + b\zeta : a, b \in \mathbf{Z}\}$.
 - (a) Dimostrare che R è un anello Euclideo rispetto alla funzione $N: (R \{0\}) \longrightarrow \mathbf{Z}_{\geq 1}$ data da $N(x) = x\overline{x}$.
 - (b) Sia p un numero primo diverso da 3. Dimostrare che $p = x^2 + xy + y^2$ per certi $x, y \in \mathbf{Z}$ se e solo se $p \equiv 1 \pmod{3}$.
- 10. Sia \mathbf{H}_1 il gruppo moltiplicativo dei quaternioni di norma 1. Sia S l'insieme dei quaternioni puri di norma 1.
 - (a) Dimostare che \mathbf{H}_1 è una 3-sfera, mentre S è una 2-sfera in \mathbf{H} .
 - (b) Dimostrare che se $x \in \mathbf{H}_1$ e $s \in S$, allora $xs\overline{x} \in S$.
 - (c) Sia $h: \mathbf{H}_1 \longrightarrow S$ la mappa data da $x \longrightarrow xi\overline{x}$. Dimostrare che h è ben definita e che per ogni $s \in S$ la fibra di h, ossia l'insieme $\{x \in \mathbf{H}_1 : h(x) = s\}$, è una circonferenza.
 - (d)*Dimostrare che la mappa h è suriettiva. (Si tratta della fibrazione di Hopf. Si veda http://it.wikipedia.org/wiki/Fibrazione_di_Hopf).