Accompagnare le risposte con spiegazioni chiare ed essenziali. Ogni esercizio vale 6 punti.

- 1. Scrivere 2011 in base 8.
- 2. Sia G un gruppo. Dimostrare che il centro Z(G) e il sottogruppo dei commutatori [G,G] sono sottogruppi caratteristici di G.
- 3. Stabilire se il gruppo alternante A_4 è isomorfo o meno al gruppo diedrale D_6 . Spiegare la risposta.
- 4. Sia $f: \mathbb{Z}_{39}^* \longrightarrow \mathbb{Z}_{39}^*$ l'applicazione data da $f(x) = x^6$ per $x \in \mathbb{Z}_{39}^*$.
 - (a) Dimostrare che f è un omomorfismo di gruppi e che $\operatorname{im}(f) \subset \ker(f)$.
 - (b) Quanti elementi ha il gruppo quoziente ker(f)/im(f)?
- 5. Sia **R** il campo dei numeri reali e sia A l'anello $\mathbf{R}[X]/(X^2)$. Sia $\phi: \mathbf{R}[X] \longrightarrow \mathbf{R} \times A$ l'applicazione data da $\phi(g) = (g(1), \overline{g})$ dove $\overline{g} \in A$ indica la classe modulo X^2 di $g \in \mathbf{R}[X]$.
 - (a) Dimostrare che ϕ è un omomorfismo suriettivo di anelli.
 - (b) Esibire un generatore del nucleo di ϕ .

Soluzioni.

- 1. La risposta è 3733. Infatti, si ha che $3 \cdot 8^3 + 7 \cdot 8^2 + 3 \cdot 8 + 3 = 2011$.
- 2. Questo è l'esercizio 9 del foglio 10.
- 3. Anche se hanno la stessa cardinalità, i gruppi A_4 e D_6 non sono isomorfi. Per esempio, perché D_6 contiene esattamente due elementi di ordine 3 (le rotazioni di ± 120 gradi), mentre A_4 ne contiene otto (i 3-cicli). Oppure perché $Z(A_4)$ è banale, mentre $Z(D_6)$ ha ordine 2. Oppure perché $\#[A_4,A_4]=4$, mentre $\#[D_6,D_6]=3\ldots$
- 4. La parte (a) segue dal fatto che f è un omomorfismo che ha la proprietà che f(f(y)) = 1 per ogni $y \in \mathbf{Z}_{39}^*$. Infatti, si ha che $f(f(y)) = y^{36}$ per ogni $y \in \mathbf{Z}_{39}^*$. Il Teorema di Lagrange implica che per ogni $x \in \mathbf{Z}$ con $\operatorname{mcd}(x,39) = 1$, si ha che $x^{36} \equiv 1 \pmod{13}$ e $x^{36} \equiv 1 \pmod{3}$ e quindi $x^{36} \equiv 1 \pmod{39}$. Per la parte (b) si osserva che per ogni $x \in \mathbf{Z}$ con $\operatorname{mcd}(x,39) = 1$, si ha che $x^6 \equiv 1 \pmod{3}$ mentre $x^6 \equiv \pm 1 \pmod{13}$. Per il Teorema Cinese del resto abbiamo quindi che $\operatorname{im}(f)$ è contenuta nel sottogruppo $\{\overline{1},\overline{25}\}$ di \mathbf{Z}_{39}^* . Visto che $2^6 \equiv 25 \pmod{39}$, abbiamo persino uguaglianza. Per il teorema di isomorfismo, il nucleo di f ha $\#\mathbf{Z}_{39}^*/\#\operatorname{im}(f) = \varphi(39)/2 = 12$ elementi. Il quoziente $\operatorname{ker}(f)/\operatorname{im}(f)$ ha quindi sei elementi.
- 5. La mappa ϕ è un omomorfismo di anelli. Per vedere che è suriettivo, sia $\xi = (a\overline{X} + b, \lambda)$ un elemento arbitrario di $A \times \mathbf{R}$. Il polinomio $g = (\lambda a b)X^2 + aX + b$ ha la proprietà che $\phi(g) = \xi$. (b) Il polinomio $X^2(X-1)$ è un generatore del nucleo di ϕ . Infatti, si ha che $X^2(X-1) \in \ker(f)$. Viceversa, se $g \in \ker(f)$, allora g è divisibile per X^2 e g(1) = 0. Abbiamo quindi che $g = X^2 \cdot h$ per un polinomio $h \in \mathbf{R}[X]$. Il fatto che g(1) = 0 implica che h(1) = 0 e quindi h è divisibile per K = 1. Questo implica che K = 10 e quindi K = 11. Questo implica che K = 12 e quindi K = 13 e quindi K = 14 e quindi K = 15 e quindi K = 15 e quindi K = 15 e quindi K = 16 e quindi K = 16 e quindi K = 17 e quindi K = 18 e quindi K = 19 e quindi K