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Abstract. These notes are an extension of lectures given at the National Mathematical Centre in Abuja, Nigeria
during the summer of 1990. They contain brief introductions to algebraic coding theory, the geometry of algebraic
curves and class field theory of algebraic curves. Goppa’s method to contruct codes by means of linear systems on
algebraic curves over finite fields is discussed. Bombieri’s proof of the Riemann hypothesis for curves is given. In
the last sections some recent results on the number of points on curves over finite fields are discussed. These include
work by Drinfeld, Ihara, Oesterlé, Serre and Vlădut. Finally we prove a new lower bound for the number of rational
points a curve of high genus over F2 can have.

Introduction.
Codes are used to correct errors when transmitting messages through noisy channels such as tele-
graph wires and telephone cables. They have been used transmitting photographs from the planet
Mars and they are present in compact discs. Their purpose is to detect and correct errors that oc-
curred during the transmission of information. The basic idea to do this, is to add, in a structured
way, redundant symbols to the messages. The receiver can then check whether the structure has
been preserved after transmission. If it hasn’t, he knows that an error has occurred. If the added
structure has been sufficiently rich, the receiver can, as we will see, even correct the errors.

In an appendix to these notes I’ve included an illustration of how codes can correct errors.
The reader will find there three versions of a text taken from pages 6 and 7 of [34]. The first is
the original (including some unintentional typing errors). The second is the text after a simulated
transmission of the text trough a very noisy channel: using a random number generator 4% of the
approximately 21 000 bits were flipped during transmission. We see that as a result of this the text
became more or less unreadable. The third text is the text after transmission through the same
noisy channel, this time using a code. We see that the text is readable again ! Only a few errors
were not corrected. The code used was the so-called binary Golay code . We will describe it in
more detail in section 2.

In this introduction we will only mention a few simple codes. A well-known example is the
so-called “parity-check-bit”: Suppose, by way of example, that one transmits characters using 7
bits to represent them in binary. In this way one can represent 27 = 128 different characters. One
now encodes the 7 bits ε1 . . . ε7 by adding an 8th bit ε8, the parity-check-bit, such that the sum
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∑8
i=1 εi is congruent to 0 (mod 2). Now one transmits messages using common 8-bit bytes. The

receiver checks whether the relation
∑8

i=1 εi ≡ 0 (mod 2) is satisfied. In this way he can detect
1-bit errors in a byte but there is not have enough information to correct them.

Another example is the so-called “repetition code”: instead of sending a bit once, just send it
many times, say, five times. The receiver assumes that only a few errors have been made during
transmission. He will now decode the received messages as follows: when he receives more ones
than zeroes he decides that a one has been sent and vice versa. Using this code, the receiver can
correct errors of at most two bits in one quintuple. There is a price to pay, however: the sender
has to transmit 5 times as many bits.

These two examples illustrate the basic conflict in coding theory: on the one hand one wishes
to be able to correct as many errors as possible, on the other hand, one wishes to transmit as few
extra symbols as necessary. Our first example is extreme in one sense. One adds only very little
redundancy, but one can merely detect certain errors. The second example is extreme in the other
sense. One can correct more errors, but one has to add very many redundant bits.

Example. The ISBN-code.
Many books have nowadays an International Standard Book Number. It is a 9 digit number
followed by either a digit or an X. The famous Theory of Error-Correcting Codes by MacWilliams
and Sloane [16] has the number 0-444-85193-3. The book Introduction to Coding Theory and
Algebraic Geometry by Van Lint and Van der Geer [33] has 3-7643-2230-6. The text Algebraic
Number Theory by Stewart and Tall [28] has 0-412-29690-X. The last symbol is a “parity-check”
symbol. It can be computed as follows: if the first 9 digits are a1a2 . . . a9 then the last symbol a10

is defined by
9∑

i=1

iai ≡ a10 (mod 11).

Here a10 is taken to be X whenever a10 ≡ 10 (mod 11).
C.E. Shannon showed in 1948 that good codes exist: no matter how noisy the channel is, for

every ε > 0 there exist codes, with reasonable redundancy rate, that will correct each error with
probability > 1− ε. These codes are very long i.e. the redundant bits will not be computed from 7
bits as in the parity-check-code above but will depend on many, many more bits. One of the goals
of coding theory is to contruct such good codes explicitly. In 1982 M.A. Tsfasman, S.G. Vlădut
and Th. Zink [29] contructed a sequence of very good codes. The codes, so-called Goppa codes,
violated the conjectural Gilbert-Varshamov bounds and their existence was a big surprise. They
were contructed by means of certain linear systems on algebraic curves over finite fields.

In this course we discuss codes in sections 1 and 2 and algebraic curves in section 3. Both these
sections are very brief and sketchy. They should not be considered as a serious introduction to the
respective topics. In particular, no attention will be paid to encoding and decoding algorithms and
we will use, but not prove the Riemann-Roch theorem for algebraic curves. We will discuss the
Goppa-codes that can be constructed by means of algebraic curves over finite fields in section 4.
It appears that curves over a finite field Fq that have many points over Fq with respect to their
genus, give rise to good codes. Unfortunately, an algebraic curve cannot have too many points with
respect to its genus. This issue is the subject matter of the remaining sections.

In section 5 we study ζ-functions of algebraic curves over finite fields. In section 6 we prove
André Weil’s famous theorem [35]: the Riemann hypothesis for curves over finite fields. It implies
certain bounds for the number of rational points on a curve. Weil’s proof appeared in 1948. We
present S.A. Stepanov’s proof given by E. Bombieri [3] in Séminaire Bourbaki in 1973. Stimulated by
the relations to coding theory, the estimates for the number of Fq-rational points implied by Weil’s
theorem were reconsidered by several people in the early 1980’s. It appeared, rather unexpectedly,
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that the estimates were not best possible. In section 7 we will prove the theorem of V.G. Drinfeld
and S.G. Vlădut [7] which, roughly speaking, says that the number of Fq-rational points on a curve
of genus g over Fq has to be rather small with respect to g when g is very large. This indicates
the limitations of the methods to construct codes with algebraic curves. Nevertheless, it is now
interesting to search for curves that have many Fq-rational points with respect to their genus.
Using class field theory, explained briefly and without proofs in section 8, we study this problem
in section 9. The discussion is based on J.-P. Serre’s Collège de France course in 1983–1984. See
[22,23,24,25]. Section 9 contains the only new result in these notes: the existence of algebraic
curves X of arbitrary high genus g over F2, for which the ratio #X(F2)/g is at least 2/9; see [19].

1. Coding Theory: The Hamming code.
In this section and the next we will briefly outline the basic principles of coding theory. This should
not be considered as a thorough introduction to the subject. We will only mention a few codes
as examples or because of their relations to certain Goppa codes that will be studied in section 4.
The reader who wishes to obtain a more complete knowledge of coding theory should consult more
extensive texts like the book by MacWilliams and Sloane [16], the one by Van Lint [32] or the book
by Tsfasman and Vlădut [30], which will be translated into English soon. For an informal historical
introduction to coding theory see [6].

We will discuss one special code in detail: the [7,4,3]-Hamming code. We will explain in detail
how to use this code: how to encode and how to decode. We begin by introducing some basic
notions in coding theory.

The messages will be transmitted using an alphabet. In practice, this alphabet will often consist
of the two bits 0 and 1. We will, more generally, consider alphabets that are finite fields. We write
Fq for a field with q elements. The alphabet {0, 1} corresponds to the field F2. Codes over this
field are called binary codes . When transmitting, the entire message will be split into blocks of
fixed length and each block will be encoded i.e. each block will be provided with certain redundant
letters of the alphabet. In other words, encoding is an injective map E

Fk
q

E−→Fn
q

where k is the length of the blocks and n ≥ k is the length of an encoded block. We will call the
image of E the code C. Its elements are called code words or simply words . The integer n is called
the length of the code. The code words are the ones being transmitted.

When no errors occur during transmission, the receiver will receive a code word and, knowing
the map E, he can recover the k bits of the original block. If however, the receiver encounters a
word v 6∈ C, then an error has occurred and he will assume that the error made is small i.e. he
will look for a word ṽ ∈ C which resembles v in the sense that ṽ and v are different in only a few
coordinates. The whole process is very similar to the way we ourselves detect and correct printing
errors in a text: the word immediaxely is not an English word, but it is very close to the English
word immediately. It differs in one place only. When we encounter the word immediaxely in a text,
we “correct” the error by assuming that a small error has been made and that immediately was
meant.

This leads to the notion of distance in Fn
q : For v ∈ Fn

q we define the weight |v| of a word v by

|v| = the number of non-zero coordinates of v.

The Hamming distance between two vectors v and w in Fn
q is simply |v − w|. A very important

invariant of a code is the minimal distance d: it is the minimal Hamming distance between distinct
words in the code C. Since the Hamming distance satisfies the triangle inequality, every “ball” of
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radius less than d/2 contains at most one code word. Therefore one can, in principle, correct upto
[(d− 1)/2] errors in each word.

Clearly, the map E should be injective. We will only consider codes where the map E is also
linear. This gives rise to the class of so-called linear codes. The linearity of C implies that

d = min
v 6=0

{|v|: v ∈ C}.

Recapitulating we have

Definition (1.1). A linear code C over an alphabet Fq is an Fq-linear subspace of Fn
q . The

dimension k of C is the dimension of C as an Fq-vector space and the minimal distance d of C is
d = minv 6=0{|v|: v ∈ C}.

A code C with the parameters n, k and d, is called a [n, k, d]-code. There are certain restrictions
on the possible values of k and d. We mention a very easy one.

Proposition (1.2). (The Singleton bound) For every linear [n, k, d]-code one has the inequality
k + d ≤ n + 1.

Proof. Since the code has dimension k, there exists a codeword with at least k − 1 coordinates
equal to 0. This word has weight at most n− (k − 1). Therefore d ≤ n + 1− k as required.

Example (1.3). The parity-check code is just {v = (v1, . . . , vn):
∑

i vi = 0} ⊂ Fn
q . It is a

[n, n−1, 2]-code. The repetition code is the subspace of Fq-multiples of the vector (1, 1, . . . , 1) ∈ Fn
q .

It is a [n, 1, n]-code.

Example (1.4). The code that we used to encode and decode the text in the appendix was the
binary Golay code. We will describe this code in more detail in section 2. It is a [23, 12, 7]-code.
We encoded two letters at the time by taking the 2×6 = 12 bits of their ASCII-codes as the k = 12
information symbols. Using the Golay code, one can correct upto 3 errors in each 23-bit word.

One could view the ISBN-code from the introduction as a subset of F10
11. It is not a linear

code, however, since the first 9 coordinates of the code words are only in {0, 1, . . . , 9} which is not
a full set of representatives for F11 in Z. One could say that it is a [10, 9, 2]-code over F11 not all
of which code words are used.

The rest of this section will be devoted to the [7, 4, 3]-Hamming code H. It is the binary code
in F7

2 generated by the four vectors



1
0
0
0
0
1
1




,




0
1
0
0
1
0
1




,




0
0
1
0
1
1
0




,




0
0
0
1
1
1
1




.

Equivalently, it is the 4-dimensional subspace of F7
2 given by the linear equations




0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1







x1

x2

x3

x4

x5

x6

x7




= 0.
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Here is a complete list of all 16 code words:

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 1 1 1 1 0 0 1 1 0 0 0 0 1 1
0 1 0 1 1 0 1 0 1 0 1 0 0 1 0 1
0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1

When using this code, we let the first 4 coordinates contain the information bits. We’ll transmit
the unique vector v ∈ H which has its first 4 coordinates x1, . . . , x4 equal to the 4 information bits.
It is easy to find v by means of a matrix multiplication:

v =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 1 1 1
1 0 1 1
1 1 0 1







x1

x2

x3

x4


 =




x1

x2

x3

x4

x2 + x3 + x4

x1 + x3 + x4

x1 + x2 + x4




.

Now v will be transmitted and a, possibly erronous, vector ṽ is received. We must decode ṽ by
looking for a vector w ∈ C nearest to ṽ and “hope” that w is indeed the message sent. In general
this is a very difficult problam, but here it can be done as follows: the vector ṽ is in some coset C ′

of the code H. We look for a vector v′ ∈ C ′ of minimal weight. The vector w = ṽ − v′ is now in C
and as close as possible to ṽ. We will assume that w is the original message.

How to find vectors of small weight in the cosets of C? For our small Hamming-code H this
is very easy. By inspecting the 16 vectors in C given above one sees that the minimal distance d is
equal to 3. This implies at once that the 7 basis vectors e1, . . . e7 are each in a different non-trivial
coset of C. It so happens that there are precisely 23 − 1 = 7 non-trivial cosets of H. So each basis
vector ei is contained in precisely one coset Ci of H. To decode an erronous ṽ we must decide in
which coset Ci it is. This can be done by means of the following elegant trick: Consider the matrix

A =




0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1


 ;

it is the matrix of equations for the code H given above. So C = ker(A) and A is constant on
cosets of C. Observe now that the column vectors of A can be viewed as the numbers “1” upto “7”
written in binary: we see that Aei =“i”. Now the decoding recipee is clear: apply A to ṽ. You will
find a vector “i” where 0 ≤ i ≤ 7. If i = 0 the vector ṽ is in C and probably no error has been
made. If i 6= 0 then ṽ is in the same coset as ei and you should take, in the above notation, v′ = ei.
In other words: an error has been detected in the i-th coordinate. Change the bit there.

Exercises.
(1.A) Find the parameters n, k, and d of the code {(0, 0, 0, 0), (0, 0, 1, 1), (1, 1, 0, 0), (1, 1, 1, 1)} ⊂ F4

2.
(1.B) Let < v, w > denote the usual scalar product on the vector space Fn

q : For v = (vi)i and w = (wi)i

one has < v, w >=
∑n

i=1
viwi. By V ⊥ we denote the dual of a linear subspace V of Fn

q : that is

V ⊥ = {v ∈ Fn
q : < v, w >= 0 for all w in V }. Show that (V ⊥)⊥ = V . Show that the dual of a code
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is again a code. What can you say about its parameters ? Show that the parity-check code and the
repetition codes are dual to one another.

(1.C) Suppose that Fq is a subfield of Fr and suppose that C ⊂ Fn
r is a code over Fr. Show that C′ = Fn

q ∩C
is a code over Fq. The code C′ is called the restriction of C to Fq. What can you say about its
parameters?

(1.D) Show that the weights of the code words of a self-dual binary code C are even. Suppose that this code
C is generated by v1, . . . , vm. Show that if |vi| ≡ 0 (mod 4) for 1 ≤ i ≤ m then |x| ≡ 0 (mod 4) for
every code word x.

1.E) Use the Hamming code and encode the the vectors (0, 1, 1, 0) and (1, 1, 1, 0). Decode the following
words: (0, 0, 1, 1, 1, 1, 1) and (1, 0, 1, 0, 0, 0, 0). Which are the weights that occur in the Hamming
code H? Which weights and with which frequencies occur in the cosets of H? What are the parameters
of the even-weight subcode of H?

(1.F) Construct an extended Hamming code H ′ by adding a parity-check bit to the words of H. What are
the parameters of the new code ? Show that it is self-dual. Determine the weight distribution of H ′.

(1.G) The Hamming ball B(v, r) with center v and radius r is the collection of vectors w ∈ Fn
q with |w−v| ≤ r.

What is the cardinality of B(v, r)? A code C ⊂ Fn
q is called perfect if there is an integer r such that

Fn
q is the disjoint union of the Hamming balls B(c, r) with c ∈ C. Show that the Hamming code is

perfect. Are the parity-check codes or the repetition codes perfect?

(1.H) Let V = F23
2 . Calculate the cardinalities of the Hamming balls B(0, k) for 1 ≤ k ≤ 23. Show that the

binary [23, 12, 7]-Golay code is perfect.

2. Coding Theory: Cyclic Codes.

In this section we will discuss the important class of cyclic codes. We will study generalized
Hamming codes, BCH-codes and quadratic resisue codes.

Definition (2.1). A cyclic code is an ideal in Fq[X]/(Xn−1). The Fq-basis for this ring is formed
by the monomials 1, X, . . . , Xn−1.

Examples. The ideal generated by X−1 consists of the poynomials f with f(1) = 0. We see that
this is the parity-check code. The other extreme, the ideal generated by (Xn− 1)/(X − 1) consists
of the scalar multiples of the polynomial 1 + X + X2 + . . . + Xn−1. This is clearly the repetition
code.

Cyclic codes are called cyclic because whenever f(X) is in the code, so is Xf(X). Looking at
the coefficients of f , we see that this means that whenever a vector is in a cyclic code, so are all
its cyclic shifts. Next we introduce binary Hamming codes. For non-binary Hamming codes see
Exercise 2.A.

For f ≥ 1 let α denote a generator of the cyclic group F∗2f and let φ(X) ∈ F2[X] denote
its minimal polynomial. The ideal generated by φ(X) in the ring F2[X]/(X2f−1 − 1) is called a
(binary) Hamming code .

Let H be a Hamming code. Since α has order 2f − 1 in the multiplicative group, there are no
non-zero words of weight 2 or less in a Hamming code. We conclude that the minimal distance d
is at least 3. On the other hand, the Hamming balls (see Ex.1.F) of radius 1 and center in H are
disjoint, they each contain 2f vectors and there are 22f−f of them. By counting we see that these
balls cover the vector space F2[X]/(X2f−1− 1). We conclude that the minimal distance is actually
equal to 3. The Hamming codes are [2f − 1, 2f − f − 1, 3]-codes. They are perfect (see Ex.1.F).
One recovers the Hamming code of section 1 as the ideal generated by the polynomial X3 + X + 1
in F2[X]/(X7 − 1). It is the case with f = 3. To see that the codes coincide it suffices to permute
the first, second and fourth coordinates of the code of section 1. A vector (a1, a2, . . . , a7) then
corresponds to the polynomial a1X

6 + a2X
5 + . . . + a7.
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Next we study BCH-codes over arbitrary base fields Fq. BCH-codes were invented by Bose, Ray-
Chaudhuri and Hocquenghem in 1959. These codes come with a designed distance t: Let n be
a positive integer and let α ∈ Fq have order n. The ideal I ⊂ Fq[X]/(Xn − 1) consisting of the
polynomials f(X) for which f(αb) = f(αb+1) = . . . = f(αb+t−2) = 0 for some b is a called a
BCH-code of designed distance t.

The ideal I is, of course, generated by the lowest common multiple of the minimum polynomials
of αb, αb+1, . . . , αb+t−2.

Proposition (2.2). A BCH-code with designed distance t has minimal distance d ≥ t.

Proof. Suppose f(X) is a code word of weight less than t. Suppose ai1 , ai2 , . . . ait−1 are its only
possibly non-zero-coefficients. Substituting αb, αb+1, . . . , αb+t−2 into f we find a system of linear
equations: 



αi1b . . . αit−1b

αi1(b+1) . . . αit−1(b+1)

. .

. .

. .
αi1(b+t−1) . . . αit−1(b+t−1)







ai1

ai2

.

.

.
ait−1




= 0.

It is easily seen that this matrix is equal to α(i1+i2+...+it−1)b times an invertible Vandermonde
matrix. This implies that the matrix is non-singular and we conclude that ai1 = ai2 = . . . =
ait−1 = 0 and hence that f = 0 as required.

Since every f(X) ∈ F2[X] for which f(α) = 0 also satisfies f(α2) = 0 we see that binary
BCH-codes automatically have minimum distance at least 3. Binary Hamming codes are precisely
the binary BCH-codes with designed distance 3.

Example (2.3). Let α ∈ F∗16 be a generator of the multiplicative group. It has order 15. Let I
be the ideal in F2[X]/(X15 − 1) generated by the product h(X) of the minimal polynomials of α
and α3. This is a (binary) BCH-code. Clearly h(α) = h(α2) = h(α3) = h(α4) = 0 and we see that
its designed distance is 5. The dimension of the code I is 7 = 15− 2× 4. This is a [15, 7,≥ 5]-code.
Using it, one can correct upto 2 errors in each code word.

Example (2.4). Consider the polynomial X23 − 1 ∈ F2[X]. Since 2 has order 11 modulo 23, this
polynomial factors as a product of X − 1 and two irreducible polynomials of degree 11. The binary
Golay code is defined to be the ideal generated by one of these 11-th degree polynomials.

Example (2.5). Quadratic residue codes. Let p be a prime and let ` be a prime which is a square
modulo p. Let α be a primitive root mod p and let Q denote the subgroups of squares in F∗p

q(X) =
∏

x∈Q

(X − αx) and n(X) =
∏

x 6∈Q

(X − αx).

We have that and that Xp − 1 = (X − 1)q(X)n(X) in F`. The ideals in Fl[X]/(Xp − 1) generated
by q(X), (X − 1)q(X), n(X) or (X − 1)n(X) are the quadratic residue codes over Fl of length p.
The binary Hamming code and the binary Golay code are examples of quadratic residue codes.
Quadratic residue codes have minimum distance at least

√
p (see Exercise 2.E).

As an illustration we show that the binary Golay code, that was used in the example mentioned
in the introduction, is perfect.

Proposition (2.6). The binary Golay code is a perfect [23, 11, 7]-code.
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Proof. Let G denote the binary Golay code. In the notation of Example 2.4 it is the ideal generated
by q(X) in F2[X]/(X23 − 1). There are two possibilities for q(X) depending on the choice of a
primitive 23-th root of unity in F2. Since the sum of all non-trivial 23-th roots of unity is equal
to 1, we see that one factor of (X23− 1)/(X − 1) has a X10-term, while the other has not. We will
take q(X) to be the factor without this term.

Let G denote the code obtained from G by adding a parity check bit. This code has length 24
and dimension 12. It follows easily from Exercise 2.D below that G is self-dual. One can verify
that the words (

∑
i∈(F∗23)

2 Xi, 1) and (X22 + . . . + X + 1, 1) form a basis for G. Since there are
precisely 11 non-zero squares modulo 23, these words all have weights divisible by 4. By Exercise 1.D
we conclude that every word in G has its weight divisible by 4. Therefore it follows from Exercise 2.E
that the minimum distance of G is at least 8 and we see that G itself has minimum distance at
least 7. The result now follows from Exercise 1.H.

Finally we mention the so-called Reed-Solomon codes. These are BCH-codes of length q − 1
over Fq. So, they are ideals generated by a polynomial of the form

∏d
i=1(X − αi) where α ∈ F∗q is

some primitive root. They have length n− d + 1 and designed distance d. By the Singleton-bound
(Prop.1.2), the minimal distance is actually equal to d. Therefore the Reed-Solomon codes are
[n, n− d + 1, d]-codes. Of course one should have q > 2 in order to obtain a somewhat interesting
code. Reed-Solomon codes are used in compact discs.

Exercises.
(2.A) Show that the BCH-codes of length (qf − 1)/(q− 1) over Fq and designed distance 2 do, in fact, have

minimum distance 3 and are perfect. These codes are the so-called q-ary Hamming codes.

(2.B) Show that in Example 2.3 one can take h(X) = (X4 + X + 1)(X4 + X3 + X2 + X + 1).

(2.C) Let α be a zero of the polynomial that generates the binary Golay code. Express the other zeroes in
terms of α. Show that Proposition 2.2 implies that the minimum distance is at least 5.

(2.D) Let C be a cyclic code with generator polynomial g i.e. C = (g) ⊂ Fq[X]/(Xn − 1). Let h(X) =
(Xn − 1)/g(X). Show that C⊥ has generator polynomial Xdeg h(X)h(X−1).

(2.E) Prove that the minimum distance d of a quadratic residue code of length p over Fl is at least
√

p

(Consider “both” codes at once). Prove that, if p ≡ 3 (mod 4), then one even has that d2−d+1 ≥ p.

Show that the binary Golay code (Example 2.4) has minimum distance at least 6.

3. Algebraic Curves.

In this section we will briefly review some of the fundamental results in the theory of algebraic
curves over a field. In the next section we will apply these results to curves over finite fields and
construct the Goppa codes. It is therefore important to consider curves over fields that are not
necessarily algebraically closed. Although in the literature many of the basic theorems on curves
are formulated over an algebraically closed field, they usually hold over perfect fields as well, see
[27,Lemma II.5.8.1]. We do not pretend to give a self-contained introduction to the theory of curves.
This would take us too far. Very often proofs will not be given. If the reader wishes to study the
theory more thoroughly, she should study other, more extensive texts, like Hartshorne’s book [12],
or older books like [5,8,20,26]. There is also a proof of the Riemann-Roch theorem in [31].

A curve X over a field k is a smooth irreducible projective algebraic variety of dimension 1.
Every curve can be embedded into some projective space Pn over k as a closed subvariety. This
means that we can describe a curve as the common zero locus of a finite collection of homogeneous
polynomials. By the irreducibility of X, the ideal generated by these polynomials is a prime ideal.
The function field i.e. the field of rational functions on X over k will be denoted by k(X). Note
that these “functions” need not be defined everywhere. They may have poles. When k = C they
are precisely the meromorphic functions on X.

8



We will henceforth assume that k is perfect and we fix an algebraic closure k̄ of k. For any
field F with k ⊂ F ⊂ k̄ we let X(F ) denote the set of points on X that are defined over F i.e. they
have their coordinates in F . We have, of course that X(F ) ⊂ X(k̄), the set of “all” points on X.

The degree deg(P ) of a point P is the degree over k of the field of definition of P . A divisor D
on X is a formal sum D =

∑
P nP P where the sum runs over the points P ∈ X(k̄) and the

np ∈ Z are almost all 0. The divisors form a free abelian group Div(X). Examples of divisors are
provided by the divisors of rational functions on X: for f ∈ k̄(X) we let div(f) denote the divisor∑

P zero of f P −∑
P pole of f P where one should count with multiplicities.

A divisor D is said to be defined over F ⊂ k̄ if it is left fixed by the Galois group Gal(k̄/F ).
The divisors that are defined over a subfield F of k̄ form a subgroup DivF (X) of the divisor group
Div(X). It is immediate that div(f) is defined over F whenever f ∈ F (X) ⊂ k̄(X). Clearly the
divisors of functions form a subgroup of Div(X): the principal divisors. The quotient group is
called the Picard group of X:

Pic(X) = Div(X)/{(f): f ∈ k̄(X)}

When k is a finite field, then, for a finite extension F of k inside k̄, one has that PicF (X) =
DivF (X)/{(f): f ∈ F (X)} is equal to the subgroup of Gal(k̄/F )-invariants of Pic(X).

The degree of a divisor D =
∑

P nP P is given by
∑

P nP . The degree is a homomorphism
Div(X) −→ Z. Its kernel is denoted by Div0(X). We’ll say that D ≤ D′ for two divisors D =∑

P nP P and D′ =
∑

P mP P if and only if nP ≤ mP for all points P . Divisors D that satisfy D ≥ 0
are called effective . To distinguish a point P from the divisor determined by it, we will sometimes
write (P ) for this divisor.

When k is not algebraically closed, it is sometimes convenient to modify the notion of a point
somewhat: a place v of a curve X is a Galois conjugacy class of points in X(k̄). The degree deg(v)
of a place v is its cardinality. The divisor (v) associated to a place v is the sum of its points. It
is automatically defined over k. Every divisor D that is defined over k can be written as a sum of
places. One has for D =

∑
v nvv that deg(D) =

∑
v nvdeg(v). A place is the analog of a prime

ideal in number theory. They will prove convenient in our study of ζ-functions in section 5 and in
section 9.

A morphism from a curve X to another curve Y is an algebraic map f which is defined
everywhere. The degree deg(f) of f is defined to be the degree of the corresponding extension
k(X) ←↩ k(Y ). Since X is non-singular, one can extend every rational map X −→ Pn to a
morphism. We will use the following Theorem from Hartshorne’s book:

Theorem (3.1). Let f : X −→ Y be a non-constant map of curves. Let P be a point of Y . Then
f−1(P ) is a divisor on X and its degree satisfies deg(f−1(P )) = deg(f).

Proof. This is Hartshorne’s Proposition 6.9 in Chapter II of [12].

Corollary (3.2). The degree deg(div(f)) of the divisor of a function f is 0.

Proof. We can view f as a rational function X −→ A1. Since X is smooth, it can be extended to
a morphism X −→ P1. Now we apply Theorem 3.1 to the point P = 0 and the point P = ∞. We
find that the degree of the zero-divisor of f is equal to the degree of its pole-divisor. This proves
the Corollary.

In other words, the subgroup of principal divisors is contained in Div0(X).We will denote the
quotient by Pic0(X). For finite ground fields k one can show, that for every finite extension F of
k inside k̄, the group Pic0

F (X) = Div0
F (X)/{(f): f ∈ F (X)} is equal to the Gal(k̄/F )-invariants of

Pic0(X).
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For every divisor D of a curve X we put

L(D) = {f ∈ k(X)∗: (f) ≥ −D} ∪ {0}.

These k-vectorspaces L(D) are very important. In order to discuss their properties, it is convenient
to use the adèle ring AK associated to K see [20].

For every place v we let Ov denote the completion of any of the local rings OP where P is a
point “of ” v. This is a discrete valuation ring. By Kv we denote its quotient field. The ring of
adèles AK is the restricted product of the fields Kv with respect to the Ov:

AK = {(xv)v : xv ∈ Kv and xv ∈ Ov for almost all v}.

We let Ô denote the subring of integral adèles
∏

v Ov. One can show that the k-vector space
AK/(Ô+K) is finite dimensional. Its dimension g is called the genus of the curve. For any k-rational
divisor D of X we let Ô(D) denote {x = (xv)v ∈ AK : v(xv) ≥ −v(D) for every valuation v}.
When D is the trivial divisor, then Ô(D) is just the ring Ô. The Euler characteristic χ(D) of a
divisor D is defined by

χ(D) = dimk L(D) + dimk AK/(Ô(D) + K).

Proposition (3.3). Let D be a k-rational divisor of X and let v be a k-rational place with residue
class field kv.

(i) There is a natural exact sequence

0 −→ L(D) −→ L(D + v) −→ kv −→ AK/(Ô(D) + K) −→ AK/(Ô(D + v) + K) −→ 0.

(ii) χ(D + v) = χ(D) + deg v.
(iii) χ(D) = deg D + 1− g.
(iv) deg D + 1− g ≤ dimk L(D) ≤ deg D + 1.

Proof. To prove (i), we observe that L(D) is contained in L(D + v). Suppose that v occurs with
multiplicity m in D. Let t be a uniformizing parameter at P . We define a map L(D + v) −→ kv as
follows: Let f ∈ L(D + v). In the local ring at P we have that f = a−m−1t

−m−1 + a−mt−m + . . ..
Now map f to its coefficient a−m−1 ∈ kv. The next arrow is defined by sending α ∈ kv to the
adèle that has αt−m−1 at v and zero at all other places. The last arrow is the canonical one. It is
straightforward to check that the sequence is exact.

Part (ii) follows immediately from (i). From (ii) we conclude that χ(D) = deg D +χ(0). Since
L(0) = k and, by definition, dimk AK/(Ô + K) = g, it follows that χ(0) = 1− g and (iii) follows.
Since 0 ≤ dimk AK/(Ô(D) + K) ≤ g, part (iv) follows from (iii).

The problem of determining the dimensions of the spaces L(D) is called the Riemann-Roch
problem. Note that the dimension of L(D) only depends on the divisor class of D ∈ Pic(X). We will
formulate the theorem of Riemann-Roch which is an important statement about these dimensions.

For a curve X over k we define the module of rational or Kähler differentials ΩX as follows: it
is generated over k(X) by symbols df where f ∈ k(X) subject to the usual rules for derivations:
(i) d(f + g) = df + dg for all f, g ∈ k(X);
(ii) d(fg) = fdg + gdf for all f, g ∈ k(X);
(iii) da = 0 for all a ∈ k.

The module ΩX is a vector space of dimension 1 over the function field k(X); see for instance
[26,III.4.Thm.3]. Fix a non-zero Kähler differential ω. We are going to associate a divisor div(ω)
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to ω. Since the space ΩX is one dimensional, for every point P of X and uniformizing parameter t
at P there is a unique function g ∈ k(X) such that ω = gdt. The order of g at P depends only on ω
and P and does not depend on the choice of t. Therefore we will write ordP ω for it. For almost all
points P it is zero. This justifies the following definition:

Definition (3.4). Let ω ∈ ΩX be a Kähler differential. The divisor div(ω) associated to ω is

div(ω) =
∑

P

ordP (ω)(P ).

Since ΩX has dimension 1 over k(X), the divisor class κ ∈ Pic(X) does not depend on the
choice of ω. This class, the canonical class , is a completely intrinsically defined invariant of the
curve. The divisors it contains are called canonical divisors. The degree of any canonical divisor
does not depend on the divisor either. It is another invariant of the curve.
Examples. Consider X = P1. If t is a coordinate on P1, then, because d( 1

t ) = −t−2dt, we have
that div(dt) = −2(∞) and that deg(κ) = −2.

Next consider a smooth cubic curve X given by the equation y2 = (x−e1)(x−e2)(x−e3). This
curve has genus 1. Writing Pi for the point (ei, 0), one finds that div(dx) = (P1)+(P2)+(P3)−3(∞).
This happens to be the divisor of the function y and we conclude that div(dx/y) = 0 and that
deg(κ) = 0.

Theorem (3.5). (Serre duality) Let D be a divisor of the curve X and let ω be a non-trivial
k-rational Kähler differential. The natural pairing

L(κ−D)×AK/(Ô(D) + K) −→ k

given by
(f, x) 7→

∑
v

ResP (f · xv · ω)

is non-degenerate. Here the residue ResP (ω′) of a differentail ω′ at a point P of a place v is the
coefficient a−1 of an expansion ω′ =

∑
i ait

idt in a uniformizing parameter t at P .
Proof. For a proof see [20,Ch.II]. Note that it is not even clear that the residues do not depend
on the choice of the local parameters!

As a consequence we obtain that

g = dimk AK/(Ô + K) = dimk L(κ)

and we recover the usual definition of the genus g: the number of independent “holomorphic”
differentials.

Theorem (3.6). (Theorem of Riemann-Roch.) Let X be a curve of genus g over k and let D be
a divisor of X defined over k. We have that

dimkL(D)− dimkL(κ−D) = deg(D) + 1− g.

Proof. This follows from Prop. 3.3(iii) and Theorem 3.5.

Corollary (3.7).
(i) The degree of κ is 2g − 2.
(ii) If deg(D) > 2g − 2 then dimkL(D) = deg(D) + 1− g.
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Proof. (i) take D ∈ κ. (ii) If deg(D) > 2g−2 = deg(κ), then L(κ−D) = 0 by Proposition 3.3(iv).
This implies the result at once.

Next we’ll see how certain divisors give rise to morphisms from X to projective spaces. Let D
be a divisor on X. By |D| we denote the complete linear system associated to D, i.e. the set of
effective divisors in the same divisor class as D. The projective space P(L(D)) associated to the
vectorspace L(D) is in one-to-one correspondence with the set |D| via f 7→ (f) + D. A subspace of
this projective space is called a linear system. A point P is called a base point of a linear system if
it is in the support of all divisors in it. If a complete linear system |D| has no base points then the
morphism X −→ Pd−1 given by P 7→ (f1(P ) : . . . : fn(P )) is well defined. Here the fi are a basis
for L(D) over k. The choice of the basis does not affect the isomorphism class of the morphism.
Moreover, if D is a divisor defined over a finite extension F of k inside k̄ then so is the induced
map to projective space.

Proposition (3.8). Let D be a K-rational divisor on a curve X. Then :

(i) The linear system |D| has no base points if and only if dimkL(D − P ) = dimkL(D) − 1 for
every point P .

(ii) Suppose that D has no base points. The map from X to projective space induced by D is a
closed immersion if and only if dimkL(D − P −Q) = dimkL(D)− 2 for all points P and Q.

Proof. (i) Clearly the inclusion L(D − P ) ↪→ L(D) is an equality if and only if P is a base
point of D. This proves (i). To prove (ii) we must show that the morphism from X to projective
space separates points and tangents. Well, it separates points if and only if for every two distinct
points P and Q of X, the point Q is not a base point of |D − P |. By (i) this is equivalent to
dimkL(D − P − Q) = dimkL(D) − 2. The morphism separates tangents if and only if for each
point P there is a divisor D′ ∈ |D| in which P occurs with multiplicity one. This just says that P
is not a base point of |D− P | which by (i) is equivalent to dimkL(D− 2P ) = dimkL(D)− 2. This
proves the proposition.

Proposition (3.9). Let D be a k-rational divisor on a curve X of genus g. We have
(i) If deg(D) ≥ 2g then |D| has no base points.
(ii) If deg(D) ≥ 2g + 1 then D induces a closed immersion X ↪→ Pn.

Proof. Using Corollary 3.7 to the Theorem of Riemann-Roch one computes the dimensions of the
spaces L(D), L(D − P ) and L(D − P −Q). The result then follows at once from Proposition 3.8.

We will now investigate the linear system |κ|. Recall that a curve is called hyperelliptic if it
admits a morphism of degree 2 to P1.

Proposition (3.10). Let X be a curve over k of genus g > 0. Then the canonical system |κ| has
no base points. It induces a closed immersion X ↪→ Pg−1 if and only if X is not hyperelliptic.

Proof. Since g 6= 0, one has for every point P that L(P ) = k (Ex.3.A). By Riemann-Roch we then
have that dimkL(κ− P ) = g − 1. The first statement now follows from Proposition 3.8. To prove
the second statement we consider two points P and Q on X. By Riemann-Roch we have that

dimkL(P + Q)− dimkL(κ− P −Q) = 3− g.

Therefore, by Proposition 3.8, we see that the canonical system |κ| induces a closed immersion
if and only if L(P + Q) = k for all points P and Q. If X is hyperelliptic and f :X −→ P1 is a
morphism of degree 2, we have L(P + Q) > k whenever P and Q make up some fiber of f . On the
other hand, if L(P + Q) > k we obtain a morphism of degree 2 to P1. This proves the proposition.

Exercises.
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(3.A) Show that a curve X has genus 0 if and only if there is a point P on X with dimkL((P )) = 2. Show
that a curve over a field k of genus 0 is isomorphic to P1 over k if and only if it has a k-rational point.
Give an example of a curve of genus 0 over R which is not isomorphic to P1 over R.

(3.B) Show that a curve of genus 1 can be embedded in P2 as a smooth cubic. Fix a point P0 on X. Show
that every divisor class of degree 0 contains a divisor of the form P − P0. Use this fact to define a
group structure on the set of points X(k̄) of X.

(3.C) Show that a curve of genus 2 is hyperelliptic.

(3.D) Show that a curve of genus 3 is either hyperelliptic or a smooth quartic in P2. Show that a curve of

genus 4 is either hyperelliptic or is a smooth curve of degree 6 in P3. (In the latter case the curve is

the intersection of an irreducible smooth quadric and an irreducible cubic surface. This last statement

is proved in [12,IV.Ex.5.2.2].).

4. Goppa Codes.
In this section we will explain how to construct codes using linear systems on curves. The basic
ideas are due to the Soviet mathematician V.D. Goppa, who explained them in two papers [9,10]
in 1981. See [11,30] or Lachaud’s Bourbaki talk [15] for an exposition of this work.

Let X be a curve over a finite field Fq. Let D be a divisor on X defined over Fq and
let P1, . . . , Pn be a collection of points in X(Fq) which do not occur in the divisor D. We will
contruct linear codes over Fq. We define a map θ from the Fq-vectorspace L(D) to ⊕n

i=1 Fq by
f 7→ (f(P1), . . . , f(Pn)). The Goppa code Γ(D,

∑
i(Pi)) associated to the curve X and the divisors

D and
∑

i(Pi) will be the image of θ.
We now want to estimate the parameters of this Goppa code. Its length is clearly n. Suppose

the image of f ∈ L(D) has weight d. This means that f vanishes in n−d points. So by Prop.3.3(iv)
we must have that deg(D)− (n− d) ≥ 0. hence d ≥ n− deg(D). This gives a lower bound for the
minimum distance of the code. We will assume that the bound is positive i.e we will assume that
deg(D) < n. Prop.3.3(iv) implies then at once that the kernel of θ, which is equal to L(D−∑

i(Pi))
is trivial. Therefore the dimension k of the code is just dimL(D) which is at least deg(D)− g + 1
by Prop.3.3(iv). We conclude that we have the following estimates for the parameters of the code
Γ(D,

∑
i(Pi)):

d ≥ n− deg(D),
k ≥ deg(D) + 1− g.

Let’s work out an easy example. Consider the cubic curve given by y2 + y = x3 + x over F2. It
is a smooth curve of genus 1. It has 5 points over F2: (0, 0), (0, 1), (1, 0), (1, 1) and the point
(∞) at infinity. Since L(∞) contains only constant functions, we take D = 2(∞); then we have
L(D) = {0, 1, x, x+1} and evaluating these functions in L(D) on the remaining four rational points
we obtain the following Goppa code:

(0, 0) :
(0, 1) :
(1, 0) :
(1, 1) :




0
0
0
0







1
1
1
1







0
0
1
1







1
1
0
0




a hardly impressing [4, 2, 2]-code. Using D = 3(∞) we have that L(D) is generated over by 1, x
and y. It is easily seen that with this D one obtains the parity-check code.

One finds back the binary Hamming codes as follows: Let q be a power of 2. Take X = P1

over Fq and let t be a parameter on X. With D=(∞)− (0) we have that L(D) is one dimensional,
generated by t. For the rational points divisor we take the formal sum of all the other points
on P1(Fq). This gives a one-dimensional code in Fq−1

q . Its elements are Fq-linear multiples of
(1, α, α2, . . . , αq−2) where α is a generator of the multiplicative group F∗q . The dual of this code
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can easily be identified with the ideal generated by X − α in the ring Fq[X]/(Xq−1 − 1). The
restriction of this code (Ex.1.C) is precisely the Hamming code.

Taking X = P1 over Fq and D = r(∞) − s(0) and the sum of all other Fq-rational points as
the rational points divisor one finds, in a similar way, the BCH-codes of length q − 1 and designed
distance r − s + 2 as the restrictions of the duals of the Goppa codes.

Many of the classical codes can be viewed as Goppa codes constructed by means of certain
divisors on P1. One can obtain good codes by considering curves of higher genus. We present one
example due to A.M. Barg, S.L. Katsman and M.A. Tsfasman [2].

Example (4.1). The Klein curve X is a smooth curve of genus 3 given by the equation x3y +
y3z + z3x = 0. It has the three points (0 : 0 : 1), (0 : 1 : 0) and (1 : 0 : 0) over F2. These are the
only points with xyz = 0. We will consider X over F8. Let α ∈ F8 be a primitive element satisfying
α3 +α+1 = 0. Suppose (x : y : z) ∈ F8 with xyz 6= 0. We put z = 1, y = αi and x = α3iξ. We find
that ξ3 + ξ + 1 = 0. So ξ = α, α2 or α4 and we find 21 points. Altogether there are 24 points in
X(F8). Let P = (0 : 0 : 1) and take D = 10(P ). We take the sum of the remaining 23 points over
F8 as the rational points divisor. Now we estimate the parameters of this F8-code: it has length
23, dimension 10− g + 1 = 8 and minimum distance at least 23− deg(D) = 13.

Now we apply some tricks from coding theory to get a nice code over F2. Since F8 has
dimension 3 over F2, we can view the vectors in the code as 3 × 23-matrices over F2. We now
extend the code by adding a fourth “parity-check”-row and obtain 4 × 23-matrices. Clearly the
minimum distance of this binary code is at least 2 × 13 = 26. We have constructed a binary
[92, 24,≥ 26]-code. By leaving out one bit we find a binary [91, 24,≥ 25]-code. This beats the best
known code with n = 91 and d ≥ 25 (See [16,appendix A]).

From the inequalities above and the Singleton bound it is easily seen that the parameters of a
[n, k, d]-Goppa code satisfy

1 +
1− g

n
≤ k

n
+

d

n
≤ 1 +

1
n

.

It follows that we can make good codes i.e. codes with both k/n and d/n large, when we have
a curve with small g and a large number n of rational points. For this reason (and others) it is
interesting to try and search for curves over finite fields that have many rational points with respect
to their genus. Therefore we will in the next sections, discuss the ζ-function of a curve. We will
obtain a bound on the number of rational points in terms of the genus. In the last section we will
exhibit some examples of curves that have many rational points.

Exercises.
(4.A) Realize the repitition codes and parity check codes as Goppa codes on P1.
(4.B) Show that the curve y2 + y = x3 + x over F2 has genus 1 and has 25 points over F16 (use Prop.5.2).

Let P be one of these 25 points and let D = 13(P ). We take 21 of the remaining points as the rational
points divisor. Show that the corresponding Goppa code has the parameters [21,≥ 8,≥ 13]. Next pick
an F2-basis of F16 and add a parity-check bit to each F16-coordinate. Show that the resulting binary
code is a [105,≥ 32,≥ 26]-code. Deleting one bit gives a [104,≥ 32,≥ 25]-code which beats the code
in [16, Appendix A].

(4.C) Let ω ∈ F∗4 be a primitive third root of unity. Consider the curve x2y + ωy2z + ω̄z2x = 0. Show that
its genus is 1 and that it has precisely 9 rational points over F∗4 . Let Q1 = (ω : 1 : 1), Q2 = (1 : ω : 1)
and Q3 = (1 : 1 : ω) and let D be the divisor 2(Q1) + (Q2). Find a basis for L(D). (use the function
x + y + ω̄z; its zero-divisor is D). For the rational points divisor we take the sum of the remaining six
rational points P1, . . . , P6. Compute the F4-Goppa code Γ(D,

∑6

i=1
(Pi)). What are its parameters?
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5. Curves over finite fields.
In this section we will study the ζ-function ζX(s) associated to an algebraic curve X over a finite
field Fq. We will prove that it satisfies a functional equation, similar to the one satisfied by the
ordinary Riemann ζ-function. We also show that the most interesting part of the ζ-function is a
polynomial in q−s. The analogue of the Riemann hypothesis will be proved in the next section.

Let X be a curve over a finite field k = Fq. We are going to associate a meromorphic complex
function to X: its ζ-function ζX(s). It will be similar to the well-known Riemann ζ-function

ζ(s) =
∞∑

n=1

1
ns

=
∏

p prime

(1− 1
ps

)−1.

The sum and the product converge for s ∈ C, Re s ≥ 1. It is well-known and easy to prove that
ζ(s) admits a meromorphic extension to all of C. It has only one pole. It is of order 1 at s = 1.
The analogue of a prime number, or rather of the prime ideal in Z generated by it, is a place i.e. a
Galois conjugacy class of points on X. Every k-rational divisor can be written as a sum of places
in a unique way. The analogue of an ideal nZ ⊂ Z is an effective divisor of X which is defined
over k. Therefore we put for s ∈ C, Re s ≥ 1:

ζX(s) =
∑

D≥0

1
NDs

=
∏
v

(1− 1
Nvs

)−1.

Here the product runs over the places v of X. The norm Nv of a place v is defined to be the
cardinality of the field of definition of a point P in v, in other words Nv = qdeg(v). Similarly we
put ND = qdeg(D).

We will prove certain properties of the function ζX(s). They are similar to properties enjoyed
by the Riemann ζ-function. Before stating the main result, we will first, as an example, calculate
the ζ-function associated to P1 over Fq. Let ad denote the number of places on P1 of degree d. So,
a1 = q + 1 and for d > 1 one simply has that ad is equal to the number of irreducible polynomials
of degree d over Fq. Obviously we have that

∑
d|m dad = #P1(Fqm) = qm + 1.

The ζ-function of P1 is given by

ζP1(s) =
∏

d≥1

(1− q−sd)−ad .

Therefore we consider the power series
∏

d≥1(1− T d)−ad . It is straightforward to verify that

log(
∏

d≥1

(1− T d)−ad) =
∑

m≥1

1
m

∑

d|m
dadT

m =
∑

m≥1

qm + 1
m

Tm

and this easily implies that

ζP1(s) =
1

(1− q−s)(1− q1−s)
.

We see that this ζ-function is periodic modulo 2πi/log q. Modulo the period it has only poles at
s = 0 and s = 1. It satisfies ζ(1− s) = q1−sζ(s).

For arbitrary curves X we have the expansion

ζX(s) =
∞∑

n=0

#{D ∈ Div(X): D is effective and deg(D) = n} · q−ns

and therefore we put

ZX(T ) =
∞∑

n=0

#{D ∈ Div(X): D is effective and deg(D) = n} · Tn ∈ Z[[T ]].

We have the following general result:
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Theorem (5.1). Let X be a curve of genus g over Fq. Then

(i) ZX(T ) satisfies the functional equation:

ZX(
1

qT
) = q1−gT 2−2gZX(T ).

(ii) On has that

ZX(T ) =
PX(T )

(1− T )(1− qT )
.

where PX(T ) ∈ Z[T ] is a polynomial of degree 2g.

Proof. Let δ denote the gcd of the degrees of all divisors in Divk(X) or, equivalently, of all effective
divisors of X. We have that δ divides 2g − 2 = deg(κ). We write Picn(X) for the set of divisor
classes of degree n and we let

ZX(T ) =
∞∑

n=0

#{D ∈ Div(X): D is effective and deg(D) = n} · Tn =
∞∑

n=0

bnTn.

Clearly

bn =
∑

D∈Picn(X)

qdimL(D) − 1
q − 1

.

Now either Picn(X) is empty or it is in one-to-one correspondence to Pic0(X) via D 7→ D−D0 for
some fixed D0 ∈ Picn(X). Since there are effective divisors D with L(D) > 0 it follows from the
above formula for bn that every Picn(X) is finite. We put

h = #Pic0(X).

By Cor. 3.7 to the Riemann-Roch theorem we have for divisors D with deg(D) = n > 2g − 2 that
dimFqL(D) = n + 1− g. It follows that for n a multiple of δ we have that

bn = h
qn+1−g − 1

q − 1
.

So

ZX(T ) =
2g−2∑
n=0

bnTn +
∑

n>(2g−2)/δ

h
qnδ+1−g − 1

q − 1
T δn.

It is easy to sum the geometric series. One finds

ZX(T ) =
2g−2∑
n=0

bnTn + (
qg−1+δT 2g−2+δ

1− (qT )δ
− T 2g−2+δ

1− T δ
)

h

q − 1
.

So, ZX(T ) is a rational function. It has poles of order 1 at T δ = 1 and at T δ = q−δ. Using the
product expansion of the ζ-function it is very easy to show that for every positive integer m one
has the relation

ZX/Fqm (Tm) =
∏

ζm=1

ZX/Fq
(ζT )

16



where the product runs over all m-th roots of unity ζ. We apply this with m = δ. Since ZX(T ) =∑
n bnδT

nδ we have that ZX(T ) = ZX(ζT ) and hence ZX/F
qδ

(T δ) = ZX/Fq
(T )δ. Since ZX/F

qδ
has

only poles of order 1, we conclude that δ = 1. We now have

ZX(T ) =
∑

D∈Pic(X)
0≤deg(D)≤2g−2

qdimL(D) − 1
q − 1

T deg(D) − h

q − 1
(T 2g−1

1− T
− qgT 2g−1

1− qT

)

=
1

q − 1
(2g−2∑

n=0

Tn
∑

deg(D)=n

qdimL(D) + h(q1−g (qT )2g−1

1− qT
− 1

1− T
)
)
.

The functional equation in (i) now follows at once from the theorem of Riemann-Roch. Part (ii) is
obvious from the explicit expression for ZX(T ) above. This proves the theorem.

To a curve of genus g over Fq we now associate 2g complex numbers φi: the reciprocal zeroes
of the polynomial PX(T ): we have that PX(T ) =

∏2g
i=1(1− φiT ). It follows easily from the above

theorem that we can order the φi in such a way that φg+i = q/φi for 1 ≤ i ≤ g.

Proposition (5.2). Let X be a curve of genus g over Fq. Let the φi ∈ C be as introduced above.
We have for every positive integer m that

PX/Fqm (T ) =
2g∏

i=1

(1− φm
i T )

and

#X(Fqm) = qm + 1−
2g∑

i=1

φm
i .

Proof. The first formula follows at once from the relation

ZX/Fqm (Tm) =
∏

ζm=1

ZX/Fq
(ζT )

where the product runs over all m-th roots of unity. We apply this with m = δ that we used in the
proof above. The second formula follows by inspection of the linear coefficient of ZX(T ) and the
theorem above. This proves the proposition.

Exercises.
(5.A) Prove that h = #Pic0(X) =

∏2g

i=1
(1− φi) = PX(1).

(5.B) Compute the number of points on the curve x3 + y3 + z3 = 0 over every finite extension of F2.

(5.C) Compute the ζ-function of the Klein curve x3y+y3z+z3x = 0 over F2. (Use the example in section 4)

(5.D) Compute the ζ-function of the hyperelliptic curve given by y2 + y = x5 + 1 over F2.
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6. Weil’s Theorem.

We will prove the analogue of the Riemann hypothesis for ζ-functions associated to curves over
finite fields. This was first proved by André Weil [35], who published his proof in 1948. This result
and the program started by Weil to generalize it, has had a profound influence on the development
of algebraic geometry in the second half of this century. It stimulated Grothendieck to develop his
powerful theory of schemes. Using these techniques, a generalization of Weil’s Theorem was proved
in 1973 by Deligne. The classical Riemann hypothesis remains unproven, however.

Let X be a curve over Fq of genus g. Let p denote the characteristic of Fq. Let φi for
i = 1, 2, . . . , 2g denote the reciprocal zeroes of the polynomial ZX(T ) introduced in Theorem 5.1.
Our proof follows Bombieri’s exposé [3] of Stepanov’s proof. The idea is to construct a rational
function f on X that vanishes to high order m at the Fq-rational points of X except possibly one
but whose number of poles can be bounded. By Cor. 3.2 we will then have that

m(#X(Fq)− 1) ≤ #{ zeroes of f } = #{ poles of f }

which implies a bound on #X(Fq). Using the functional equation we can then prove that |φi| = √
q

which is easily seen to be equivalent to the analogue of the Riemann hypothesis.
We let π: X −→ X denote the Frobenius morphism which for the function fields is just the

inclusion k(X) ←↩ k(X)q ∼= k(X). The Frobenius morphism acts on the points X(k̄) in a natural
way: it “raises the coordinates of the points to the q-th power”. By Galois theory, the fixed points
of πm make up the subset X(Fqm).

Proposition (6.1). If q is a square and q > (g + 1)4 then we have that

#X(Fq) < q + 1 + (2g + 1)
√

q.

Proof. We may assume that there is a point P in X(Fq). Otherwise the proposition is obvious.
We will study the spaces L(m(P )) for X over k̄. For a positive integer µ we let L(k(P ))pµ

denote
the space of functions fpµ

where f ∈ L(m(P )). By L(k(P ))π we denote the space of functions
f · π = f(Xq) where f ∈ L(m(P )). We first prove a lemma.

Lemma (6.2). Let n and m be two positive integers and let µ be a positive integer with npµ < q.
The natural homomorphism

L(n(P ))pµ ⊗k̄ L(m(P ))π −→ L(n(P ))pµ

L(m(P ))π

is an isomorphism.

Proof. By Prop.3.3(ii) we have that dimk̄L((ν + 1)(P )) ≤ dimk̄L(ν(P )) + 1 and we conclude that
there is a k̄-basis e1, e2, . . . , er of L(m(P )) such that ordP (e1) < ordP (e2) < . . . < ordP (er). The
homomorphism in the statement of the lemma is clearly surjective. We must show it is injective
i.e. we must show that whenever

∑r
i=1 gpµ

i (ei · π) = 0 for certain gi ∈ L(n(P )) then all the gi are 0
themselves. So assume that i0 is the smallest integer in {1, 2, . . . , r} for which gi0 6= 0. We have

ordP (gpµ

i0
(ei · π) = ordP (−

r∑

i>i0

gpµ

i (ei · π))

≥ min
i>i0

ord(gpµ

i (ei · π))

≥ −npµ + q ordP (ei0+1)
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Therefore
pµordP (gi0) ≥ −npµ + q(ordP (ei0+1)− ordP (ei0))

≥ −npµ + q > 0

and we see that gi0 vanishes at P . But gi0 being an element of L(n(P )) has no poles outside P .
Therefore it must be constant and hence 0. This proves the Lemma.

Since dimk̄L(n(P ))pµ

= dimk̄L(n(P )) and dimk̄L(m(P ))π = dimk̄L(m(P )) we obtain, as a
consequence, that

dimk̄L(n(P ))pµ

L(m(P ))π = dimk̄L(n(P ))× dimk̄L(m(P )).

We have a natural well-defined homomorphism L(n(P ))pµ

L(m(P ))π → L(n(P ))pµ ⊗ L(m(P ))π →
L(n(P ))pµ⊗L(m(P )) → L(n(P ))pµ

L(m(P )) mapping f =
∑

i gpµ

i (ei ·π) to
∑

i gi(ei ·π) because the
first arrow is the inverse of the isomorphism of the lemma, while the second arrow is the inverse of
an obvious isomorphism. Since L(n(P ))pµ

L(m(P )) ⊂ L((npµ+m)(P )) we obtain a homomorphism

θ : L(n(P ))pµ

L(m(P ))π −→ L((npµ + m)(P )).

By Prop 3.3(iv) we have that dim L(n(P )) ≥ n + 1− g and dim L(m(P )) ≥ m + 1− g. If n and m
are at least g, we have by Cor.3.7(ii) to the Riemann-Roch theorem that dim L((npµ + m)(P )) =
npµ + m + 1− g. Therefore we find that, whenever m,n ≥ g,

dim kerk̄(θ) ≥ dimk̄L(n(P ))× dimk̄L(m(P ))− dimk̄L((npµ + m)(P ))
≥ (n + 1− g)(m + 1− g)− (npµ + m + 1− g).

Suppose that f =
∑

i gpµ

i (ei · π) is a function in ker(θ) and Q ∈ X(Fq) is a point not equal to P .
We have that

f(Q) =
∑

i

gpµ

i (Q)(ei · π)(Q) =
∑

i

gpµ

i (Q)(ei)(Q) = (θf)(Q) = 0.

We conclude that f vanishes at every point of X(Fq) except P . But, since f is a pµ-th power, f has
zeroes of order at least pµ at these points. Therefore any f in ker(θ) has at least pµ(#X(Fq)− 1)
zeroes. Since

f ∈ L(n(P ))pµ

L(m(P ))π ⊂ L((npµ + mq)(P ))

such a function f has, on the other hand, at most npµ + mq poles. We conclude that if the
assumptions npµ < q and n,m ≥ g are fulfilled and if ker θ > 0 i.e. if

(n + 1− g)(m + 1− g) > (npµ + m + 1− g)

then one has that
#X(Fq) ≤ n +

mq

pµ
+ 1.

We will choose the parameters pµ, n and m as follows: pµ =
√

q, m =
√

q + 2g and n = [ g
g+1

√
q] +

g +1. Since q > (g +1)4, it is readily verified that with these choices, the assumptions are fulfilled.
This proves the Proposition.

Theorem (6.3). Let X be a curve of genus g over a finite field Fq. Assume that q is a square and
that q > (g + 1)4. Then for k large enough

#X(Fqk) = qk + O(qk/2)

where the O-symbol depends only on X over Fq.
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Proof. Use any non-zero function in Fq(X) to construct a morphism X −→ P1. The corresponding
extension of function fields Fq(X) ←↩ Fq(P1) is not necessarily Galois. Let L denote the Galois
closure of this extension. The field L is the function field of a smooth irreducible curve Y of
genus gY over Fq. Let G denote Gal(L/Fq(P1)) and let H denote the subgroup Gal(L/Fq(X)).

Let A denote the set of unramified points P ∈ Y (F̄q) whose image in P1 is rational over Fqk .
Since P1 has qk + 1 rational points over Fqk , it is immediate that

#A = #G(qk + 1)#G + O(1)

where the O-symbol is due to the finitely many ramification points of the covering Y of P1. It is
independent of the degree k.

For every unramified point P ∈ A the point π(P ) maps to the same point in P1 as P does.
Therefore there is a unique σ ∈ G such that π(P ) = σ(P ). The automorphism σ is called the
Frobenius substitution of P . For every σ ∈ G put

Aσ = {P ∈ A: π(P ) = σ(P )}.
The set A is a disjoint union of the Aσ’s. Since qk > gY for k large enough, we can argue as in the
proof of Proposition 6.2, but now with P ∈ Aσ. We now have tha map

θσ: L(n(σ−1P ))pµ

L(m(P ))π → L(n(σ−1P ))pµ

L(m(P ))σ → L((npµ + m)(σ−1P )).

We obtain easily that
#Aσ ≤ qk + 1 + (2gY + 1)qk/2

and hence
#A =

∑

σ∈G

#Aσ = (qk + 1)#G + O(qk/2).

Combining this with the formula for #A that we deduced above, we find that for each σ ∈ G

#Aσ = qk + O(qk/2).

By Galois theory we have that
⋃

σ∈H

Aσ = {P ∈ Y : the image of P in X is rational over Fqk}

Therefore ∑

σ∈H

#Aσ = #H#X(Fq) + O(1)

= #Hqk + O(qk/2)

and the result follows at once.

Theorem (6.4). (A. Weil, 1948) Let X be a curve of genus g over a finite field Fq. Then the
reciprocal roots φ ∈ C of the function ZX(T ) satisfy

|φ| = √
q.

Proof. By Proposition 5.2, it suffices to give the proof for a power of q. We will call this power
q again and choose it so large that the condition of Proposition 6.1 is satisfied: q is a square
exceeding (g + 1)4. We deduce from these propositions that for large enough k we have that

#X(Fqk) = qk + 1 + O(qk/2).
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and therefore, with the usual notation, that

2g∑

j=1

φk
j = O(qk/2).

This implies that the function f(z) =
∑2g

i=1(1− φiz)−1 has a radius of convergence at least as large
as q−1/2. Therefore we have that |φi| ≤ √

q for 1 ≤ i ≤ 2g. The theorem now follows from the
functional equation (Theorem 5.1(ii)) satisfied by ZX(T ): when φ is a reciprocal root, so is q/φ
and it follows that |φ| = √

q for all φ as required.

Corollary (6.5). Let X be a curve of genus g over Fq. Then

|qm + 1−#X(Fqm)| ≤ 2gqm/2.

Proof. This is immediate from Proposition 5.2 and Theorem 6.4.

Exercises.

(6.A) Show that a curve of genus 0 over a finite field is isomorphic to P1.

(6.B) Show that a curve of genus 1 over a finite field always has a point rational over that field.

(6.C) Prove the Riemann Hypothesis for the ζ-function ζX(s) of a curve X over a finite field: If ζX(s) = 0
then the real part of s is 1/2.

(6.D) Let X be the projective curve given by y2 +xy = x3 +x over F2. Show that its genus is 1 and compute
the zeroes of the ζ-function ζX(s).

(6.E) Let p be a prime and let χ:F∗p → {±1} be the quadratic character mod p: χ(x) = 1 whenever x is a
square in F∗p and χ(x) = −1 otherwise. By convention we put χ(0) = 0. Show that for every A, B ∈ Z
one has that |∑

x∈Fp
χ(x3 + Ax + B)| < 2

√
p.

(6.F) Let Fq be a finite extension of degree m of F2 and let Tr:Fq → F2 denote the Trace map: α 7→
α + α2 + . . . + α2m−1

. Show that for every α, β ∈ Fq one has that
∑

x∈Fq
|(−1)Tr(x3+αx+β)| < 2

√
q.

(6.G) Using the same notation as in Exercise 6.F, let f(X) ∈ Fq[X] have odd degree r. Then one has that∑
x∈Fq

|(−1)Tr(f(x))| < (r − 1)
√

q

(6.H) Using the same notation as in Exercise 6.F, consider the map θ:Fq × Fq −→ V defined by θ(α, β) =

(Tr(αx + βx−1)x∈Fq . Here V is the F2-vectorspace with basis indexed by the elements of Fq. Show

that θ is injective. View the image of θ as a code in V . Estimate its parameters (cf. [18]).
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7. The Theorem of Drinfeld and Vlădut.

Since asymptotically good Goppa-codes can be constructed using families of curves over finite
fields that have many points with respect to their genus, it was natural to try and find such curves
(cf. [17]). It was soon found, rather surprisingly, that the bounds on the number of points that
follow from Weil’s theorem are not sharp when the genus is very large. In this section we will prove
the asymptotic estimate by Drinfeld and Vlădut [7] and mention an unpublished theorem due to
Oesterlé [22] that is somewhat more precise.

Let X be a curve of genus g over Fq. We will be interested in the ratio #X(Fq)/g. Curves
for which this ratio is large can be used to construct good codes. First we will look a little bit at
curves with small genus and then we will study the behaviour of this ratio as the finite field Fq is
fixed and the genus tends to infinity. We will only consider the case F2. It is the most interesting
case for coding theory and the easiest field when one wishes to do computations.

By Exercise 6.A the only curve, upto isomorphism, of genus 0 is P1. It has 3 points and
the bound #X(Fq) ≤ q + 1 + 2g

√
q of Weil is sharp. The curve y2 + y = x3 + x is a curve of

genus 1. It has been used in section 4 to construct a simple Goppa code. It has 5 points rational
over F2. This is best possible since the Weil-bound is 3 + 2

√
2 here. Since all curves of genus 2 are

hyperelliptic (Ex.3.C) they can have at most 6 points over F2. This is best possible as the example
y2 + y = (x2 + x)/(x3 + x + 1) shows. The Weil bound is not sharp; it is only 3 + 4

√
2 ≈ 8.65

here. For curves of genus 3 the Weil bound is approximately 11.48. However, by Exercise 3.D a
curve of genus 3 is either hyperelliptic or isomorphic to a smooth quartic curve in P2. Over F2 the
projective plane has only 7 points! So curves of genus 3 cannot have more than 7 points. This is
the best possible bound: the curve

x3y + y3z + z3x + x2y2 + x2z2 + y2z2 + x2yz + xy2z = 0

passes through all seven rational points of P2.
According to the remark in Ex.3.E a curve of genus 4 is either hyperelliptic or can be realized

as the intersection of a smooth irreducible quadric and an irreducible cubic surface in P3. One can
show that quadrics in P2 can have at most 9 points over F2. This is not sharp as we will see later,
but it is a lot better than the Weil bound which is approximately 14.31 for curves of genus 4. The
curve with affine equation

x2y3 + x3y2 + xy3 + x3y + x2y2 + x2 + y2 + 1 = 0

in P1×P1 passes through every point except (0, 0). This is best possible. It follows from Oesterlé’s
theorem below that a curve of genus 4 over F2 can have at most 8 rational points.

So we see that the bounds that follow from the Riemann hypothesis are by no means sharp
when the genus becomes somewhat large. Next we’ll investigate what happens when the genus
becomes very large. Put

A(q) = limsup
g→∞

#X(Fq)
g

.

It follows from Weil’s Theorem that
A(q) ≤ 2

√
q.

It is rather easy to improve this somewhat.
First we discuss an improvement due to Serre [24].
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Theorem (7.1). For every curve X of genus g over Fq one has that

#X(Fq) ≤ q + 1 + [2
√

q]g.

Proof. We have that #X(Fq) = q + 1−∑g
i=1(φi + φ̄i) where |φi| = √

q for 1 ≤ i ≤ g. Put

xi = [2
√

q] + 1 + φi + φ̄i for 1 ≤ i ≤ g.

By Theorem 6.4 the numbers xi are totally positive algebraic integers. Therefore their product is
at least 1. It follows from the arithmetic-geometric-mean inequality that

1
g

g∑

i=1

xi ≥ (
g∏

i=1

xi)1/g ≥ 1.

So we have that
∑

i xi ≥ g which is easily seen to imply the result.

An immediate corollary is that
A(q) ≤ [2

√
q].

A second improvement is due to Ihara [13]: Consider X also over Fq2 . We have that

#X(Fq) ≤ #X(Fq2) = q2 + 1−
g∑

i=1

(φ2
i + φ̄2

i )

= q2 + 1 + 2qg −
g∑

i=1

t2i

≤ q2 + 1 + 2qg − 1
g
(

g∑

i=1

ti)2

where ti = φi + φ̄i. The last inequality is the inequality of Cauchy-Schwartz. We conclude that

#X(Fq) ≤ q2 + 1 + 2qg − 1
g
(#X(Fq)− q − 1)2

which easily implies that

A(q) ≤
√

2q − 1
2
.

Now we come to the best known estimate due to Drinfeld and Vlădut [7]. The proof is an
extension of Ihara’s argument. It involves a consideration of all finite extensions of Fq. We will
write ad for the number of places of X of degree d. Equivalently, ad is the number of points
in X(Fq) of degree d upto Galois conjugacy. So, we have that #X(Fqm) =

∑
d|m dad.

Let Ψ(T ) =
∑∞

n=1 cnTn be a polynomial with non-negative coefficients cn for which

Ψ(t) + Ψ(t̄) + 1 ≥ 0 for all t ∈ C with |t| = 1.

By Ψd(T ) we denote the polynomial
∑

n≡0 (mod d) cnTn.
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Theorem (7.2). Let X be a curve over Fq of genus g and let Ψ(T ) be a polynomial as above. We
have ∑

d≥1

dadΨd(q−1/2) ≤ g + Ψ(q1/2) + Ψ(q−1/2).

Proof. As usual, let φj denote the reciprocal zeroes of the function ZX(T ). By the Riemann
hypothesis we have that φj =

√
qeiθj with θj ∈ R. By Theorem 5.1(i) We can order the φj in such

a way that θg+j = −θj . We have that

#X(Fqn) = qn + 1− qn/2

g∑

j=1

(einθj + e−inθj ).

So

0 ≤
g∑

j=1

(Ψ(einθj ) + Ψ(e−inθj ) + 1) = g +
∑

j,n

cn(einθj + e−inθj )

= g +
∑

n≥1

q−n/2cn(qn + 1−#X(Fqn))

= g + Ψ(q1/2) + Ψ(q−1/2)−
∑

d≥1

∑

d|n
q−n/2dadcn

and the inequality follows.
The theorem clearly implies that

(#X(Fq)− 1)Ψ(q−1/2) ≤ g + Ψ(q1/2)

and therefore that
A(q) ≤ 1

Ψ(q−1/2)
.

We must choose our polynomial Ψ(T ) =
∑∞

n=1 cnTn in order to get an estimate for A(q). The
larger we can take the cn, the better the estimate will be. However, we have that

0 ≤ 1
π

∫ 2π

0

(1 + Ψ(eiθ) + Ψ(−eiθ))(1− cosnθ)dθ = 1− cn

So cn ≤ 1 and we cannot choose all cn = 1 since they should be zero for large n. We will, instead,
choose a sequence of polynomials Ψ whose coefficients approach 1 viz:

1 + Ψ(T ) + Ψ(T−1) =
1

N + 1
(1 + T + . . . + TN )(1 + T−1 + . . . + T−N )

It is easy to see that this gives a sequence of bounds on A(q), the limit of which is

A(q) ≤ √
q − 1.

One can show that this estimate is sharp when q is a square [13,29]. The curves that meet the
bound are Shimura curves. In the case q = p2 the Shimura curves are the modular curves X0(`)
and the proof then briefly runs as follows:

For every supersingular j-invariant j in characteristic p, there exists over Fp2 an elliptic curve
with j-invariant j whose Frobenius endomorphism can be identified with an integer. Therefore all

24



the finite cyclic subgroups of its points are defined over Fp2 . Consider the modular curves X0(`) for
prime ` ≡ 11 (mod 12) over the field Fp2 . The curve X0(`) parametrizes elliptic curves together
with an isogeny of degree `. The genus of this curves is (` + 1)/12 and its degree over the j-line
is (p − 1)/2 and by the above, all the points lying over the supersingular j-invariants are rational
over Fp2 . Since there are roughly p/12 supersingular j-invariants in characteristic p, which are all
in the field Fp2 , there are, upto a slight error due to the cusps and the j-values 0 and 1728, at least
(`+1)× (p−1)/12 rational points on X0(`). We see that the ratio of the number of point on X0(`)
to its genus is approximately p− 1. It is not so difficult to check that it actually approaches p− 1
as ` tends to infinity.

For finite fields Fq for which q is not a square, much less is known. Th. Zink [37] has shown
that for prime p, one has that A(p3) ≥ 2(p2 − 1)/(p + 2). Serre [24], using an infinite class field
tower of the function field of a hyperelliptic curve over Fq showed that there exists a positive
constant c ∈ R such that A(q) > c log q. For q = 2 one can show that 2/9 ≤ A(2) ≤ √

2 − 1, so
0.222 < A(2) < 0.415. These results are proved in section 9.

It is possible to do the above estimates in such a way that one obtains information for “ finite”
values of g as well. This was done by Oesterlé in 1982. We state his result without proof.

Theorem (7.3). Let X be a curve of genus g over Fq with L + 1 points rational over Fq. Then

g ≥ sup
Ψ
{LΨ(q−1/2)−Ψ(q1/2)} ≥ (L− 1)

√
qcosθ0 + q − L

q + 1− 2
√

qcosθ0

Moreover, if q ≥ 3 the second inequality is actually an equality. Here the supremum is taken over
the polynomials Ψ(T ) with non-negative coefficients satisfying Ψ(t)+Ψ(t̄)+1 ≥ 0 for t ∈ C, |t| = 1.
The value of θ0 is defined as follows: Let m be the unique integer for which

√
qm < L ≤ √

qm+1.
Put

u =
√

qm+1 − L

ÃL
√

q −√qm ∈ [0, 1)

and let θ0 denote the unique solution θ = θ0 of the equation cosm+1
2 θ + ucosm−1

2 θ = 0 in the
interval [ π

m+1 , π
m ).

See Table 8.8 for the bounds one obtains from Theorem 7.3 for small values of g in the case
q = 2.

Exercises.
(7.A) We use the notation of Theorem 7.2. Show that the choice c1 = 1/2 and cn = 0 for n > 1 leads to the

Weil bound: #X(Fq) ≤ q + 1 + 2g
√

q.
(7.B) Verify the bounds given in table 8.8.
(7.C) Show that the inequality in Theorem 7.3 is equivalent to

g − 1

L + 1
≥ Re(

1√
qeiθ0 − 1

).

Deduce that A(q) ≤ √
q − 1.

(7.D) (cf. [24]) Let q = 2. We will choose Ψ such that 1 + Ψ(t) + Ψ(t−1) = c−1(1 + d1(t + t−1) + . . . +

dm(tm + t−m))2 with di ≥ 0 and c = 1 + 2d2
1 + . . . + 2d2

m. Show that Theorem 7.1 with m = 3 and

the choice d1 = 1, d2 = 0.7 and d3 = 0.2 gives rise to the bound #X(F2) ≤ 0.826g + 5.346. Compute

which bounds it gives for 2 ≤ g ≤ 12. Compute the bound one gets with m = 5 and the choice d1 = 1,

d2 = 0.8, d3 = 0.6, d4 = 0.4 and d5 = 0.1.
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8. Class Field Theory.

Following J.-P. Serre, we use class field theory over function fields [20] to construct curves that have
many points with respect to their genus. Examples of rather high genus that meet the bounds of
Oesterlé are presented. Most of the results in this section are due to Serre who lectured on this in
October 1982 at the Collège de France [22,23,24,25]. For the cohomology theory of groups that we
will use see [4,21] and see [1,14] for a cohomological approach to class field theory of number fields
as well as function fields.

Let X be a curve over a finite field Fq. Recall that we only consider projective, absolutely
irreducible non-singular curves. Let K = Fq(X) denote the function field of X. A place of X
or K is a Gal(Fq/Fq)-conjugacy class of points in X(Fq). For every place v we let Ov denote the
completion of any of the local rings OP where P is a point “of” v. This is a discrete valuation ring.
By Kv we denote its quotient field.

The ring of adèles AK is the restricted product of the fields Kv with respect to the Ov:

AK = {(xv)v:xv ∈ Kv and xv ∈ Ov for almost all v}.

The unit group A∗
K is called the group of idèles of K. It contains K∗ as a subgroup. The quotient

group CK = A∗
K/K∗ is called the idèle class group of K. The idèles admit a natural surjective

homomorphism A∗
K −→ Div(X) induced by the valuation maps. The kernel is denoted by U .

It consists of the idéles that have trivial valuation at all places. The intersection of U and K∗

inside A∗
K is precisely equal to F∗q . Writing P for the group of principal divisors and Q for the

quotient U/F∗q it is easy to see that we have the following diagram with exact rows and columns:

0 0 0y
y

y
0 −→ F∗q −→ K∗ −→ P −→ 0y

y
y

0 −→ U −→ A∗
K −→ Div(X) −→ 0y

y
y

0 −→ Q −→ CK −→ Pic(X) −→ 0y
y

y
0 0 0

Class field theory gives a description of the idèle class group CK . It relates its open subgroups
to abelian extensions of the function field K or, equivalently, to abelian coverings of the curve X.
The main result is contained in the following theorem.

Theorem (8.1). Let X be a curve over Fq with function field K.

(i) (Artin-Reciprocity.) For every finite extension L of K with π = Gal(L/K) abelian, there are
canonical isomorphisms

Ĥq(π,CL) ∼= Ĥq−2(π,Z).

(ii) (Existence Theorem.) For every subgroup of finite index M of CK there exists a unique finite
abelian extension L for which N(CL) = M . Here N denotes the norm map from L to K.
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Proof. For the proof of this theorem we refer to standard texts on class field theory [1,4,14]

Applying Theorem 8.1(i) with q = 0 to a finite extension L over K with π = Gal(L/K) abelian,
one obtains the classical reciprocity map

CK/N(CL)
∼=−→π.

A place v of K is unramified in L if and only if the unit group O∗
v is contained in N(CL). In this case

we obtain a map Z ∼= K∗
v/O∗v −→ CK/N(CL) ∼= π. The image of 1 is called the Frobenius element

φv of v in π. It determines the splitting behavior of v in the extension L over K. For instance, v
is totally split if and only if its Frobenius element φv is trivial i.e. if and only if K∗

v/O∗
v ⊂ N(CL).

We will study some special abelian extensions of a function field K, the so-called ray class
fields . Let D be an effective divisor which is defined over Fq. So D =

∑
v nvv where the sum runs

over the places v of K, the nv are non-negative and only finitely many of them satisfy nv > 0. Let
UD = {(xv)v ∈ U :xv ≡ 1 (mod tnv

v )}; here tv denotes a uniformizing element at v. The group
UD/F∗q is a subgroup of the idèle class group CK . The abelian extensions of K corresponding to
the finite quotients of CK/UD are called ray class fields. Let L be a finite extension of K and let
M ⊂ CK be the ray class group that corresponds to it according to Theorem 8.1.(ii). There is an
effective divisor D, minimal with respect to division, such that UD/F∗q ⊂ M . This is called the
conductor of L

For D = (0) the group UD/F∗q is just U/F∗q and the quotient CK/UD is precisely the Picard
group Pic(X). For arbitrary D we have an exact sequence

0 −→ U/UD −→ CK/UD −→ Pic(X) −→ 0.

For the first group we have the following explicit description:

U/UD
∼= ⊕

v in D
Fq[[tv]]∗/{x : x ≡ 1 (mod tnv

v ).

From the exact sequence

0 −→ Pic0(X) −→ Pic(X)
deg−→Z −→ 0

we see that for each degree n there is a ray class field corresponding to the cyclic quotient of order n
of Z. This is the constant field extension Fqn(X). In general the degree of the field of constants of
a finite abelian extension L of K corresponding to M ⊂ CK is equal to the index of deg(M) in Z.

Finally we mention Dirichlet characters i.e. continuous homomorphisms χ : Gal(K/K) −→
C∗. Here K denotes a separable closure of K. A character χ has a finite image and the fixed field
of kerχ is a cyclic extension L of K. We define the conductor of χ to be the conductor of L. We
recall the following result, very useful to calculate the genus of an abelian covering.

Proposition (8.2). (Führerproduktdiskriminantformel) Let X be a curve of genus gX over Fq

and let f : Y −→ X be a covering of genus gY . Suppose that the corresponding extension of
function fields has a finite abelian Galois group G. Then

2gY − 2 = deg(f)(2gX − 2) +
∑

χ

deg(condχ).

Here the product runs over the characters χ of G.
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Proof. See [35.Ch.V].

In the remainder of this section we will use class field theory to show the existence of curves
over F2 with certain properties.

Example (8.3). Consider P1 over F2. Let K denotes its function field and let P be a point of
degree 3 on P1. Consider the ray class fields of conductor P . Since Pic(P1) = Z and F∗2 = {1}, we
have an exact sequence

0 −→ F∗8 −→ CK/UP −→ Z −→ 0.

Next we pick an F2-rational point Q on P1 and we let L be the fixed field of the Frobenius element
of Q and let X be the curve corresponding to it. Clearly L has degree 23 − 1 = 7 over K. Its
genus g is easily computed using Prop.8.5: 2g− 2 = −2 · 2 + 6 · 3. Since all the points over Q on X
are rational we see that we have found a curve over F2 of genus 3 and at least 7 rational points. It
is rather easy to see that there are, in fact, precisely 7 rational points.

Example (8.4). Let (∞) be a rational point on P1 over F2 and let 0 and 1 denote the others.
Let D = 4(∞). We have an exact sequence

0 −→ F2[[t]]∗/{f : f ≡ 1 (mod t4)} −→ CK/UD −→ Z −→ 0.

It follows easily that, as an abelian group, CK/UD
∼= Z ⊕ Z/4Z ⊕ Z/2Z. Let L be the invariant

field of the two Frobenius elements of the other two points 0 and 1. It is easy to see that the degree
of L over the function field K of P1 is 2. The genus g of the curve E corresponding to L follows
from 2g − 2 = −2 · 2 + 4. By construction the points 0 and 1 are split and (∞) is ramified in E
over P1. We have found a curve over F2 of genus 1 with 5 rational points.

Example (8.5). This time we use the curve E of Example 8.3 as a basis. Its genus is 1 and it has
five F2-rational points P1, P2, . . . , P5. Its class group Pic0(E) has order 5. We will only consider
2-extensions of E. Take D = 2(P1) + 4(P2). We have that

U/UD
∼= F2[[t]]/{1 (mod t2)} ⊕ F2[[t]]/{1 (mod t4)}
∼= Z/2Z⊕ Z/4Z⊕ Z/2Z

Let L denote the fixed field of the Frobenius elements of the three other rational points P3, P4

and P5. This is a quadratic extension. The genus g of the corresponding curve is given by 2g −
2 = 0 + 6. We have found a curve over F2 of genus 4 with 8 points.

These examples show that one can find curves with many points with respect to their genus
by means of class field theory. All examples are best possible: there do not exist curves over F2 of
genus 1, 3 or 4 that have more points than the curves above. This follows from Oesterlé’s estimates
that have been explained in the previous section. Serre used this idea to find curves over F2 with
rather high genus and a large number of rational points. We present two of his examples. Others
can be found in the exercises.

Example (8.6). (Serre) Consider P1 over F2. Let P2 be the unique place of degree 2 and let P3

denote one of the two places of degree 3. Consider the full ray class field of conductor P2 +P3. Let
K denote the subfield in which the point ∞ of P1 is completely split. This field has its Galois group
over P1 isomorphic to F∗4 × F∗8 . There are two characters of conductor P2; they have degree 2.
The six characters of conductor P3 have degree 3 and the 12 remaining non-trivial characters have
conductors of degree 2+3=5. We conclude from Proposition 8.5 that

2gX − 2 = 21(2 · 0− 2) + 2 · 2 + 6 · 3 + 12 · 5
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and hence that gX = 21. Since all points on X that lie over ∞ are rational, we see that X is a
curve of genus 21 with 21 rational points. This is best possible.

Example (8.7). (Serre) Let E be the curve of genus 1 and five points from Example 8.3. Let
P1, . . . , P5 denote the rational points on E. We will consider ray class fields of conductor k(P1) and
in particular the subfields in which the other points P2, . . . , P5 are completely split. It is easy to
see that there exists such a subfield K of conductor 12(P1) and Galois group over F2(E) isomorphic
to Z/2Z⊕ Z/2Z⊕ Z/2Z. There is one character of conductor 8(P1), two of conductor 10(P1) and
the remaining four non-trivial ones have conductor 12(P1). Let X be a smooth curve with function
field K. By Proposition 8.5 we have that

2gX − 2 = 2(2 · 1− 2) + 1 · 8 + 2 · 10 + 4 · 12

and hence that gX = 39. The unique point on X over P1 is rational. Over every other point Pi

there are precisely 8 rational points. So, the curve X has genus 39 and 1+8 ·4 = 33 rational points.
This is the maximal possible number for a curve of genus 39.

We conclude this section with a table. In the first column we have the genus g. In the second
column the bound b from Theorem 7.2 is listed: every curve of genus g over F2 has at most b
points. In the third column one finds the maximal number n for which a curve of genus g over F2

with n rational points is known to exist. Most entries in the table follow from the examples or the
exercises in this section. They can also be found in [22,23,24]. The entries with an asterisk were
found by Serre more recently.

Table (8.8).

g b n g b n g b n g b n

1 5 5 7 11 10 13 15 15* 19 20 20
2 6 6 8 11 11 14 16 15 20 21 19
3 7 7 9 12 12 15 17 17 21 21 21
4 8 8 10 13 12 16 18 16 22 22 21
5 9 9 11 14 14* 17 18 17 39 33 33
6 10 10 12 15 14 18 19 18 50 40 40

Exercises.
(8.A) Let Pd be a point of degree d ≥ 2 on P1 over F2. Show that the degree of the maximal subfield of

2-power degree inside the ray class field of conductor 2(Pd) in which the three rational points are split
has degree 2d−2. Show that the corresponding curves have genus 2 and 6 rational points for d = 3,
genus 9 and 12 points for d = 4 and genus 28 and 24 points for d = 5.

(8.B) Use ray class fields of conductor k(∞) of F2(P
1) to show that there exists curves over F2 of genus 5

with 9 points and of genus 17 with 17 points.
(8.C) Let E be the curve of genus 1 over F2 from Example 8.3. Study its ray class fields of conductor k(P1)

where P1 is a rational point and show that there exist curves over F2 of genus 6 or 7 with 10 points,
of genus 15 with 17 points. Study its ray class fields of 2-power degree of conductor 2(Pd) where Pd

denotes a place of degree d. Show that there exist curves over F2 of genus 19 with 20 points and of
genus 50 with 40 points.

(8.D) As Exercise 8.C with E replaced by a curve of genus 2 with 6 points. Show that there exist curves
over F2 of genus 8 with 11 points, genus 9 or 10 with 12 points, of genus 22 with 21 points and of
genus 26 with 24 points.

(8.E) As Exercise 8.C with E replaced by a curve of genus 3 with 7 points. Show that there exist curves
over F2 of genus 11 with 13 points and of genus 12 or 13 with 14 points.
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(8.F) Show there exist curves of genus g over F2 with n rational points, for the following pairs (g, n): (14,15),
(15,16), (16,16), (17,17), (18,18), (20,19) and (21,20).

(8.G) (Serre [22]) Show that there is no curve over F2 of genus 7 with 11 points. (Hint: show that such a

curve has no “new” points over small extensions of F2; use this to calculate its ζ-function and show that

it factors into two polynomials that are coprime in Z[X]; show that this contradicts the irreducibility

of the Θ-divisor on the Jacobian of X.)

9. Class Field Towers.
In this section we show how to construct infinite class field towers of function fields; see also
[4,Ch.IX]. We will use freely the main results of class field theory that have been explained in the
previous section. As an application we prove Serre’s result that A(q) > c log q for some absolute
constant c > 0. We will moreover show that A(2) ≥ 2/9.

The only way known to construct infinite class field towers is by means of a group theoretical
result that will be proved below. Let ` be a prime and let G be a finite `-group. We let d =
dim H1(G,Z/`Z) denote the number of generators of G and we let r = dim H2(G,Z/`Z) denote
the number of relations of G. Here the dimensions are Fl-dimensions. From the homology of the
exact sequence 0 −→ Z −→ Z −→ Z/`Z −→ 0 we see that

H1(G,Z)/`H1(G,Z) ∼= H1(G,Z/`Z)

and we have a surjective map
H2(G,Z/`Z) −→ H1(G,Z)[`].

This shows that r ≥ d.

Theorem (9.1). (Golod and Shafarevič, 1965) Let ` be a prime. For every finite `-group G one
has that

r >
1
4
d2.

Proof. Let I denote the augmentation ideal in the group ring Fl[G]. Since I/I2 ∼= H1(G,Z/`Z)
we see, using Nakayama’s lemma, that the minimal number of Fl[G]-generators of I is d. Let Fd

be a free Fl[G]-module of rank d admitting a surjective map Fd −→ I. From the long homology
sequence it is easy to see that the minimal number of Fl[G]-generators of the kernel of this map is
precisely r. Therefore there exists an exact sequence of Fl[G]-modules:

Fr −→ Fd −→ I −→ 0

where Fr is free of rank r. Because d is the minimal number of generators of I the map Fd −→ I
is an isomorphism modulo I. So the image of Fr must be contained in IFd. We conclude that we
have exact sequences

Fr/Ik−1Fr −→ Fd/IkFd −→ I/Ik+1 −→ 0

for every k ≥ 1. We obtain the following inequalities for 0 ≤ t < 1:

∞∑

k=1

dimFl
(Fd/IkFd)tk ≤

∞∑

k=1

dimFl
(I/Ik+1)tk +

∞∑

k=1

dimFl
(Fr/Ik−1Fr)tk.

Observe that the group ring Fl[G] is finite, so the ideal Ik = 0 for k large enough. Therefore the
sums converge for 0 ≤ t < 1. We define the “Poincaré polynomial” P (t) by

P (t) =
∞∑

k=0

dimFl
(Ik/Ik+1)tk.
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It is easy to see that for a free Fl[G]-module M of rank m one has that

∞∑

k=0

dimFl
(M/Ik+1M)tk =

mP (t)
1− t

.

Using this, the inequality above becomes

tdP (t)
1− t

≤ P (t)− 1
1− t

+
rt2P (t)
1− t

for 0 ≤ t < 1 and hence we obtain

rt2 − dt + 1 ≥ 1
P (t)

for 0 ≤ t < 1.

Since P (t) has all its coefficients positive, we have that rt2 − dt + 1 > 0 for all 0 ≤ t < 1. We
have already seen that r ≤ d and hence that 0 < d/2r < 1. Substituting this value for t gives the
required result.

Theorem 9.1 was proved by Golod and Shafarevič in 1965. They used it to solve the “class
field tower problem”. More precisely, they showed that there exist algebraic number fields that
possess infinite class field towers. Their proof applies to function fields over finite fields as well. We
will now study the function field case in more detail.

Let X be a curve over Fq and let K denote its function field. Let S denote a non-empty set of
places on X. Recall that places are Galois conjugacy classes of points. The S-Hilbert class field of K
is the maximal unramified abelian extension H(K) of K in which all places in S split completely.
This is a finite extension K1 of K = K0 and by class field theory, the Galois group Gal(K1/K0) is
isomorphic to PicS(X) = Pic(X)/B where B is the subgroup generated by the points in S. This
can be repeated: Let S′ be the set of places of H that lie over S. Let K2 = H(H(K)) be the
S′-Hilbert class field of K1 = H(K). Etcetera. In this way one obtains a sequence of fields

K = K0 ⊂ K1 ⊂ . . . ⊂ Kn ⊂ . . .

all unramified over K in which the places in S are totally split. This is the S-class field tower of K
or X. It is said to be finite if it stabilizes i.e. if for some n one has that Km = Kn for all m ≥ n,
and infinite otherwise.

Rather than class field towers we will consider `-class field towers since these are easier to
handle. For a prime ` one defines the (`, S)-class field tower of a function field K in a similar way:
The (`, S)-Hilbert class field of K is the maximal unramified abelian `-extension H`(K) of K in
which all places in S split completely. This is a finite extension K1 of K = K0 and by class field
theory, the Galois group Gal(K1/K0) is isomorphic to the `-part of PicS(X) = Pic(X)/B where
B is the subgroup generated by the points in S. As before, one can repeat this and obtain the
(`, S)-class field tower of K. It is easy to see that a field K has an infinite S-class field tower
whenever it has an infinite (`, S)-class field tower for some prime `.

We are mainly interested in infinite S-class field towers because of the following application:

Proposition (9.2). Let X be a curve of genus g over Fq. Let S be a set of Fq-rational points
of X. If X has an infinite S-class field tower then

A(q) ≥ #S

g − 1
.
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Proof. There is no loss in assuming that S is not empty. Consider the curves

X = X0 ←− X1 ←− X2 ←− . . .

whose function fields are the layers in the infinite S-class field tower of K. Since the points in S
are totally split in every covering X ←− Xn, we see that Xn has field of constants equal to Fq and
that it has at least dn#S points rational over Fq. Here dn denotes the degree of Xn over X. Since
Xn is unramified over X, the Hurwitz-Zeuthen formula for its genus gn becomes

2gn − 2 = dn(2g − 2).

Since the tower is infinite, we conclude that

A(q) ≥ lim
n→∞

dn#S

1 + dn(g − 1)
=

#S

g − 1

as required.

We will freely use the notation introduced in the previous section. Before deriving a criterion
for a function field K to have an infinite (`, S)-class field tower, we introduce some more notation.
Let X be a curve with function field K and let S be a finite set of places on X. By OS we denote
the subring of K consisting of the functions that have at most poles at places in S. let O∗

S denote
its unit group. The group of S-divisors DivS(X) is the subgroup of divisors with support outside S.
The kernel of the canonical map A∗

K −→ DivS(X) will be denoted by US . Finally we let PS denote
the group of principal S-divisors and we let QS = US/O∗S . We have the following diagram with
exact rows and columns:

0 0 0y
y

y
0 −→ O∗S −→ K∗ −→ PS −→ 0y

y
y

0 −→ US −→ A∗
K −→ DivS(X) −→ 0y

y
y

0 −→ QS −→ CK −→ PicS(X) −→ 0
y

y
y

0 0 0

For a finitely generated abelian group A and a prime number ` we let d`A denote the `-rank of A,
i.e. d`A is the Fl-dimension of A/`A.

Proposition (9.3). Let X be a curve over Fq and let S be a non-empty finite set of places of X.
If for a prime number ` one has that

d`PicS(X) ≥ 2 + 2
√

d`O∗
S + 1

then X has an infinite (`, S)-class field tower.
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Proof. Suppose X has a finite (`, S)-class field tower. Let L denote the union of all the layers
of the tower of function fields. The Galois group G = Gal(L/K) is a finite `-group. Its maximal
abelian quotient is the `-part of PicS(X). Therefore its number of generators d satisfies

d = d`PicS(X).

From the exact sequence 0 −→ Z −→ Z −→ Z/`Z −→ 0 we obtain the exact sequence

0 −→ H2(G,Z)/`H2(G,Z) −→ H2(G,Z/`Z) −→ H1(G,Z)[`] −→ 0

and the inequality
r − d ≤ d`H2(G,Z).

Next we compute the group H2(G,Z) = Ĥ−3(G,Z). By class field theory we have that Ĥ−3(G,Z) ∼=
Ĥ−1(G, CL). To compute the latter group we consider the diagram above with field L and the set
of places S′ of places of L over S: by the maximality of L, the `-part of PicS(Y ) is trivial and so
are its G-cohomology groups. Since L is unramified over K the G-cohomology groups of UL are
zero and we find that Ĥ−1(G,CL) ∼= Ĥ−1(G, QL) ∼= Ĥ0(G,O∗

S′). we conclude that

r − d ≤ d`H
0(G, O∗

S′) ≤ d`O
∗
S .

The result now follows easily from the theorem of Golod and Shafarevič and the fact, mentioned
above, that d = d`PicS(X).

To apply this proposition, we need to know d`O
∗
S and d`PicS(X). It is well-known that

d`O
∗
S =

{
#S, if `|q − 1;
#S − 1, otherwise.

To estimate the `-rank of PicS(X) we consider only a special case:

Proposition (9.4). Let X be a curve over Fq with function field K. Suppose that K is a cyclic
extension of degree ` of a field F . Let S′ denote the set of places of F over which the places in S
lie and let ρ denote the number of places of F that are ramified in K. Then

(i) If
ρ ≥ 3 + d`O

∗
S′/(O∗S′ ∩NUS) + 2

√
d`O∗S + 1

then K has an infinite class field tower.
(ii) If

ρ ≥
{

3 + #S′ + 2
√

#S + 1, if `|q − 1;
2 + #S′ + 2

√
#S, otherwise.

then K has an infinite class field tower.

Proof. Using class field theory we obtain the following inequalities from the diagram above:

d`PicS(X) ≥ d`Ĥ
−1(π, PicS(X)) ≥ d`Ĥ

0(π,QS)− d` − Ĥ0(π,CK)

≥ d`Ĥ
0(π, US)− d`O

∗
S′/(O∗

S′ ∩NUS)− d`Ĥ
−2(π,Z)

≥ ρ− d`O
∗
S′/(O∗

S′ ∩NUS)− 1.

The last inequality follows, because we have that US
∼= ∏

v 6∈S O∗v
∏

v∈S K∗
v where Ov is the com-

pleted local ring at v and Kv its quotient field. Therefore, by local class field theory, d`H
0(π, US) is
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equal to the number of ramified places ρ of F plus the number of inert places in S′. We will neglect
the latter contribution. A combination with proposition 9.3 yields (i). Part (ii) follows from this
together with the estimate

d`O
∗
S′/(O∗S′ ∩NUS) ≤

{
#S′ + 1, if `|q − 1;
#S′; otherwise.

This proves the Proposition.

We will use this Proposition to prove some results concerning the function A(q) that was
introduced in section 7.

Corollary (9.5). For every finite field Fq and every prime ` there exists a curve X over Fq and
a set S 6= ∅ of rational places of X such that X has an infinite (`, S)-class field tower. For every
finite field Fq one has that A(q) > 0.

Proof. Let F be Fq(T ), the function field of P1. Let K be a cylic extension of degree ` of F in
which at least 8 places are ramified one of which is an Fq-rational point P . Using class field theory,
it is a trivial matter to exhibit such an extension. Now take S′ = {P} and S equal to the unique
point over P in K. By Proposition 9.4 the field K has an infinite (`, S)-class field tower and it
follows from Proposition 9.2 that A(q) > 0.

Proposition (9.6). There exists an absolute constant c > 0 such that A(q) > c log q.

Proof. Let us first suppose that q is odd. In view of Corollary 9.5 there is no loss in assuming that
q is large. We let A and B be two subsets of Fq with the property that α − β ∈ (F∗q)

2 for every
α ∈ A and β ∈ B. Next we let X be the hyperelliptic curve given by Y 2 =

∏
α∈A(T − α). This is

a curve of genus #A/2− 1 or (#A− 1)/2. All places (T −α) of P1 with α ∈ A are ramified in the
function field K of X. For S we choose the set of places lying over the places (T − β) with β ∈ B.
Since α− β is a square for every α ∈ A and β ∈ B, the places in S are Fq-rational. Moreover, we
have, in the notation of Proposition 9.4(i), that O∗S′ ⊂ NUS and we conclude that X admits an
infinite (2, S)-class field tower when #A ≥ 3 + 2

√
#B + 1. Choosing #B as large as possible with

respect to #A i.e. #B ∼ (#A)2, we have in this case that

A(q) ≥ c
#B

#A
∼ #A

for some c > 0. When q is even there is a similar argument with quadratic Artin-Schreier extsen-
sions.

It remains to see how large A can be chosen. The following combinatorial lemma gives an
estimate for this. It should be applied with Ω = Fq and R = {(x, y) ∈ Ω × Ω : x − y ∈ (F∗q)

2}.
One has that m = (q− 1)/2. It follows easily from the lemma that one can find sets A and B with
a = #A ∼ log q and b = #B ∼ log2q. This proves the Proposition.

Lemma (9.7). Let Ω be a finite set of cardinality ω and let R ⊂ Ω× Ω. Suppose that

#{x ∈ Ω: (x, y) ∈ R} ≥ m for all x ∈ Ω.

If

b

(
ω

a

)
≤ ω

(
m

a

)

then there exist two subsets A of cardinality a and B of cardinality b such that A×B ⊂ R.
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Proof. Let T = {(A, y): A ⊂ Ω, #A = a,A × {y} ⊂ R}. Each fiber of the natural projection
T −→ Ω given by (A, y) 7→ y, contains at least

(
m
a

)
elements. Therefore #T ≥ ω

(
m
a

)
.

Now let Pa(A) denote the collection of subsets of Ω of cardinality a and consider the other
projection T −→ Pa(Ω) given by (A, y) 7→ A. Since the cardinality of Pa(Ω) is

(
ω
a

)
, we see that

there must exist a fiber with at least

#T/

(
ω

a

)
≥ ω

(
m

a

)
/

(
ω

a

)
≥ b

elements. So, it suffices to take the set A corresponding to this fiber and B = {y ∈ Ω: (A, y) ∈ R}.
This proves the Lemma.

Finally we restrict our attention to the field F2. We know that A(2) ≤ √
2− 1 ≈ 0.414. Here

we will prove a lower bound.

Theorem (9.8). One has that

A(2) ≥ 2
9
≈ 0.222.

Proof. We will give two proofs. The first one is due to Serre. In both proofs a curve X and a set S
of places are exhibited such that the function field K of X has an infinite (2, S)-class field tower.

(i) Serre starts with a curve of genus 1 with precisely two F2-rational points, e.g. Y 2 + XY =
X3 + X + 1. This curve has three points with field of definition equal to F4 and four with field of
definition F8. Let F denote the function field of E and let S′ be the set of two rational points on E.
The unit group O∗S′ is infinite and cyclic generated by ε say. For each of the points Q of degree 2
and 3 there exists a quadratic extension of conductor 2(Q) where ε is a local norm. Therefore there
exists a quadratic extension K of F of conductor

∑
Q 2(Q) in which the points in S′ are totally

split and for which ε ∈ NUS . Here S denotes the set of places over S′. Since d2O
∗
S = 3 and

O∗S′ ⊂ NUS , it follows from Prop.9.4(i) that K has an infinite (2, S)-class field tower. The genus
gX of the corresponding smooth curve X is given by Prop.8.2.:

2gX − 2 = 2(2 · 1− 2) + 3 · 4 + 4 · 6.

So gX = 19 and #S = 2#S′ = 4 and we conclude from Prop.9.2 that

A(q) ≥ 4
19− 1

=
2
9
.

(ii) This time we start with a curve E of genus 1 and 5 rational points P1, P2, . . . , P5 over F2. It
has been constructed in section 8 as a quadratic cover of P1 of conductor 4(∞) in which the other
two rational points (0) and (1) are split. We will make two quadratic extensions of the function
field of E:

F : A quadratic extension of conductor 2Q in which all points P1, P2, . . . , P5 split. Here Q is a
point of degree 5 of E. The curve Y corresponding to this field has genus 6 and 10 points
rational over F2. It has been constructed before in section 8.

F ′: This field is the composite of F2(E) and the following extension of the function field of P1:
a quadratic extension of conductor 2(0) + 2(1) in which (∞) splits. As a consequence F ′ has
conductor 2

∑4
i=1 Pi and P5, the unique place over (∞), splits.

We let X denote the curve corresponding to the function field F ′F . It admits a map of degree
two to Y . Now we apply Proposition 9.4(ii). For S′ we take the two points on Y over P5. They
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are split in the covering X −→ Y . The remaining 8 rational points on Y lie over P1, . . . , P4 and
they are all ramified. We conclude that #S = 4 and that ρ = 8. Therefore

ρ = 2 + #S′ + 2
√

#S

and we see that K = F2(X) has an infinite (2, S)-class field tower. The degrees of the conductors
of the characters of the Galois group of X over E are 10, 8 and 18 respectively. It follows from
Proposition 8.2 that the genus of X is 19. Since #S = 4 we deduce from Proposition 9.2 that
A(q) ≥ 4/(19− 1) = 2/9 as required.

Exercises.

(9.A) Let G be a finite abelian p-group with d independent generators. Show that it has precisely
(

d+1
2

)
independent relations.

(9.B) Let p be a prime. Show that the group presented as a pro-p-group as < x, y: xp = 1, [x, y] = yp > is a
finite p-group. It is a group with two independent generators x and y and two relations.

(9.C) Let p be a prime and let G be a group of order pa. Show that G has at most a independent generators
and at most

(
a+1
2

)
independent relations.

(9.D) (Mennicke) Let p be a prime and let d ≥ 3 be an integer. Let G be the pro-p-group generated by
x1, x2, . . . , xd with the following relations: [xi, xi+1] = xp

i for 1 ≤ i ≤ d and [xi, xj ] = 1 for all i and
j for which i − j 6= ±1. Here all indices should be taken modulo d. Show that G is a finite p-group
with d generators and

(
d
2

)
relations.

(9.E) Exhibit for each prime p and each d ≤ 3 a finite abelian p-group with d generators and d relations.
Show that no such group exists when d > 3. Give an example of a p-group with 4 generators and 6
relations. It is not known whether there exist finite p-groups with 4 generators and 5 relations.

(9.F) (Kostrikin) Let p be a prime and let d > 1 be an integer. Let Gd be the pro-p-group generated
by x1, x2, . . . , xd and y1, y2, . . . , yd with the following relations: xp

i = yp
i = 1 for all 1 ≤ i ≤ d,

[xi, xj ] = [yi, yj ] for all i 6= j and [xi, yj ] = 1 for all i 6= j. Show that Gd is a finite p-group with 2d
independent generators and at most 3

2
d(d + 1) independent relations. Conclude that for every prime

p one has that 1/4 ≤ limsup#G,d→∞(r/d2) ≤ 3/8. Here the limit is taken over finite p-groups G with
d generators and r relations. It has been shown by J. Wisliceny [36] that for p > 2 one actually has
that limsup#G,d→∞(r/d2) = 1/4.
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[20] Serre, J.-P.: Groupes algébriques et corps de classes, Hermann, Paris 1959.

[21] Serre, J.-P.: Corps locaux, Hermann, Paris 1968.

[22] Serre, J.-P.: Nombre de points sur une courbe sur un corps fini Fq, notes taken by M. Waldschmidt
(19 pages), octobre 1982.
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