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1. The cubic curve.

Let k be a field, let a1, a2, a3, a4,6 ∈ k. Let E denote the projective curve given in P2 by
the homogeneous cubic equation

Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3.

The line given by the equation Z = 0 is the line at infinity. It intersects E in a unique
point namely (0 : 1 : 0). We denote this point by ∞. The goal of this note is to give a
short self-contained proof of the well-known fact that the chord and tangent proces equips
the set E(k) of non-singular k-rational points of E with a group structure whose neutral
element is the point ∞.

On the affine chart given by Y = 1, the equation of E becomes

Z + a1XZ + a3Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3.

This shows that ∞ is a non-singular point of E. It is a flex point and its tangent line is
precisely the line at infinity. All other points of E have their Z-coordinates different from
zero. They are precisely the points that of E that are on the affine chart given by Z = 1.
On this chart the equation of E becomes the usual inhomogenous Weierstrass equation

Y 2 + a1XY + a3Y = X3 + a2X
2 + a4X + a6.

We denote this affine curve by E0. The set of k-rational points E0(k) of E0 is equal to E(k)
minus the point (0 : 1 : 0). The lines given by X = αZ in P2 all pass through (0 : 1 : 0).
Their intersections with the affine chart given by Z = 1 are vertical lines given by equations
of the form X = α.

Putting f(X,Y ) = −Y 2− a1XY − a3Y +X3 + a2X
2 + a4X + a6, the relevant ring is

R = k[X,Y ]/(f(X,Y )).

It is a quadratic extension of the polynomial ring k[X]. It is a domain since the degree 2
polynomial f(X,Y ) ∈ k(X)[Y ] has no zeroes in k(X).

Let P = (α, β) be a point in E(k) different from ∞. The map g(X,Y ) 7→ g(α, β) is
a k-algebra morphism R −→ k. Its kernel is the maximal ideal mP = (X − α, Y − β).
Conversely, every maximal ideal m for which R/m ∼= k is of this form.

Proposition 1.1. Let P be a nonsingular point in E0(k) and let m be the correspdonding
maximal ideal of R. Let ` ∈ R be such that ` = 0 is an equation for the tangent line at P .
Then ` is in m2 and m/m2 is a 1-dimensional k-vector space. We have ` ∈ m3 if and only
if P is a flex point of E

Proof. Let P = (α, β). We the variables X and Y by X + α and Y + β. In terms of the
new coordinates the Weierstrass equation becomes

Y 2 + a1XY + a3Y = X3 + a2X
2 + a4X.
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So we have a6 = 0 and R/m2 = k[X,Y ]/(X2, XY, Y 2, a3Y − a4X). This shows that
` = a3Y − a4X is in m2. Since P non-singular ` is not zero and the k-dimension of m/m2

is 1.
If a3 is zero, the intersection of E0 with ` is given by the equation Y 2 = 0, so that P

cannot be a flex. So, assume a3 = 0 and replace ` by Y −λX with λ = a4/a3. Substituting
Y = λX in the cubic equation we obtain

`(a3 + ε) = X2(λ2 + a1λ− a2)−X3,

for some ε in the ideal (X,Y ). Since a3 6= 0 it follows that ` is in the cube of the ideal
(X,Y ) = mP if and only the coefficient λ2 + a1λ − a2 vanishes. This happens precisely
when P is a flex point, as required.

2. Degrees.

We adopt the notation of section 1. The ring R is free of rank 2 over k[X]. More precisely,
for every element g(X,Y ) of R there are unique polynomials a(X), b(X) ∈ k[X] for which
g(X,Y ) = a(X) + b(X)Y . We let

Y = −Y − a1X − a3

and we write g for the element g(X,Y ) of R. The map g 7→ g is a k[X]-linear involution
of R. For any element g ∈ R we define its norm by

N(g) = gg.

Proposition 2.1.
(a) The norm is a multiplicative function R −→ k[X].
(b) For g = a(X) + b(X)Y the polynomial N(g) has degree max(2degree(a(X)), 3 +

2degree(b(X))).
(c) The unit group of R∗ is equal to k∗.
(d) The degree of N(g) of an element g ∈ R− k is at least 2.

Proof. Part (a) is clear. Part (b) follows from the shape of the Weierstrass equation. Any
g ∈ R is invertible if and only if N(g) is invertible in k[X]. Part (c) follows therefore from
the fact that the unit group of the ring k[X] is k∗. Part (d) follows from (b) and (c).

Any non-zero ideal I ⊂ R contains a non-zero polynomial in k[X] and has therefore
finite codimension in R. The degree deg I of I is dimkR/I.

Lemma 2.2. Let I ⊂ R a non-zero ideal and let g be a non-zero element of R. Then

deg gI = deg I + deg gR.

Proof. This follows from the exactness of the sequence

0 −→ R/I
g−→R/gI −→ R/gR −→ 0.

Clearly we have degR = 0. A direct computation shows that the ideals XR and Y R
have degrees 2 and 3 respectively.
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Proposition 2.3. Let g ∈ R be a non-zero element. Then

deg gR = degreeN(g).

Here “degree” denotes the usual degree of a polynomial in k[X].

Proof. The involution induces a ring isomorphism R/gR ∼= R/gR. This shows that
deg gR = deg gR. Since R is free of rank 2 over k[X], for any polynomial p ∈ k[X] ⊂ R we
have deg pR = 2degree p. Now apply Lemma 2.2 to I = gR. Since gg is in k[X] we get

2deg gR = deg gR+ deg gR = deg ggR = 2degree gg

as required.

For i ≥ 0 we put e2i = Xi and e2i+1 = Y Xi−1. Then e1 = 1 has degree 0 while
deg ek = k for all k ≥ 2. There are no elements of degree 1 in R.

Proposition 2.4. (Lenstra-Riemann-Roch) Let I ⊂ R be an ideal of finite codimension.
Then there is an element a ∈ I for which the ideal aR has codimension ≤ 1 in I. Moreover,
a is unique up to multiplication by k∗.

Proof. Let d = dim R/I. Then the elements e1, . . . , ed+1 are dependent in the k-vector
space R/I. Take for a any non-zero linear combination that is in I. The result now follows
from the fact that the degree of a linear combination of e1, . . . , ed+1 is at most d+ 1.

If there is an element a ∈ I for which the codimension is 0, then a actually generates I.
Therefore it has degree d and is unique up to multiplication by R∗ = k∗. For any b ∈ I
of degree d+ 1, the element b/a has degree 1, which is impossible. Therefore there are no
elements of degree d+ 1 and a is unique.

If there is no element for which the codimension is 0, then the element a for which the
codimension is 1 is unique up to multiplication by elements of k∗. Indeed, if there were
two elements a that are not k-multiples of one another, then they would both have degree
d+ 1 and a suitable k-linear combination b would be a non-zero element of degree ≤ d and
therefore generate I, contradiction.

3. Invertible ideals.

Let A be a domain. An ideal I ⊂ A is called invertible if there exists an ideal J ⊂ A
for which the product IJ is a non-zero principal ideal. Clearly non-zero principal ideals
are invertible. Two invertible ideals I and I ′ are called equivalent if there exist non-zero
elements a, a′ ∈ A for which aI = a′I ′. It is easy to see that this is an equivalence relation.
All non-zero principal ideals are equivalent to one another. Ideal multiplication turns the
set of equivalence classes into a group whose neutral element is the class of principal ideals.
This group is the class group of R. It is denoted by Cl(R).

We apply this to the ring R of the previous section. For every k-point P = (α, β) of
the curve E given by the Weierstrass equation

Y 2 + a1XY + a3Y = X3 + a2X
2 + a4X + a6,

the map g(X,Y ) 7→ g(α, β) is a k-algebra morphism R −→ k. Its kernel is the maximal
ideal mP = (X − α, Y − β). It has residue field k. Conversely, every k-algebra morphism
R −→ k is of this form.
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Proposition 3.1. For every non-singular k-point P of E, the corresponding ideal mP

satisfies mPmP = (X − α)R and is therefore invertible. Moreover, if P = P , the tangent
line of E to P is given by the equation X = α.

Proof. Let P = (α, β). If mP is not stable under the involution of R, then mP and
mP = mP are coprime maximal ideals. Here P denotes the points (α,−β − a1α− a3). By
the Chinese Remainder Theorem, the ideal mPmP = mP ∩ mP has codimension 2. Since
it contains the degree 2 element X − α, we have the equality mPmP = (X − α)R and we
are done.

If mP = mP = mP we translate P to the origin (0, 0). This means that we replace

X,Y ∈ R by X +α and Y +β respectively. In terms of these new coordinates, P becomes
the point (0,−a3). Since P = P we must have a3 = 0. The equation of E now becomes

Y 2 + a1XY = X3 + a2X
2 + a4X.

Since P is not singular, the coefficient a4 is not zero and hence the tangent line to P is
given by X = 0. Since the degree 2 ideal m2

P contains the function X, it is in fact generated
by it. In terms of the old coordinates this means precisely mPmP = (X − α)R. Moreover,
the tangent line at P is given by X = α.

This proves the proposition.

Lemma 3.2. Let J be an invertible R-ideal. Suppose I ⊂ I ′ ⊂ R are ideals for which
dimk I/I

′ = 1. Then also dimk IJ/I
′J = 1.

Proof. Let e ∈ I − I ′, then the kernel of the surjective morphism R −→ I/I ′ given
by λ 7→ λe is a maximal ideal m of R with residue field k. The quotient IJ/I ′J is an
R/m-vector space. Its subspaces are of the form a/I ′J for some R-ideal a between I ′J
and IJ . Since J is invertible, there exists an ideal K ⊂ R for which JK = (b) for some
non-zero b ∈ R. Multiplication by K is an injective map

{ideals between I ′J and IJ}
↓

{ideals between bI and bI ′}

Since bI/bI ′ is isomorphic to I/I ′, its k-dimension is 1. Therefore there are no ideals
properly between bI ′ and bI. It follows that there are no ideals properly between I ′J and
IJ either. This implies that the k-vector space IJ/I ′J has dimension 1, as required.

Proposition 3.3. Let I ⊂ R be invertible. Then either I is principal, or there is a unique
k-point P of E for which

ImP = aR.

for some non-zero a ∈ I that is unique up to multiplication by k∗.

Proof. By Proposition 2.3 there is an element a ∈ I such that the codimension of aR in I
is at most 1. If a generates I, we are done. Suppose that the codimension is 1. Since I is
invertible there is an ideal J for which IJ = (b) for some non-zero b ∈ R. By Lemma 3.2
the codimension of aJ in bR is 1. It follows that the (a/b)J an R-ideal is of codimension
1. It is therefore of the form mP for some k-point P . Moreover, since I is invertible, the
point P is unique.
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Corollary 3.4. The map E(k) −→ Cl(R) given by

∞ 7→ R,
P 7→ mP , for P 6=∞,

is a bijection.

Proof. Surjectivity follows from Proposition 3.3. It remains to show that the map is
injective. Since there are no elements of degree 1 in R, no ideal mP is principal and
therefore only the point∞ is being mapped to the neutral element of Cl(R). Suppose that
for two points P,Q ∈ E(k) − {∞} we have amP = bmQ for certain non-zero a, b ∈ R. It
follows that mPmQ is principal. By Lemma 3.2 its codimension is 2. So it is generated by

an element of the form X−α for some α ∈ k. Proposition 3.1 says that mPmP = (X−α).
Therefore we have mP = mQ and hence P = Q as required.

The bijection of Corollary 3.4 transports the group structure of the class group Cl(R)
to the set E(k). In this way we find that the set E(k) of non-singular k-rational points of
E becomes a group with neutral element the point ∞.

In the rest of this section we check that the group operations agree with the usual
chord and tangent procedures. First of all, the point at infinity is the neutral element for
the chord and tangent composition. Second, for any point P = (α, β) in E0(k) the vertical
line through P has precisely two k-rational points of intersection with the affine cubic curve.
This follows from the fact that substituting X = α in the Weierstrass equation leads to a
quadratic equation in Y one of whose roots is α. The second point is P . Proposition 3.1
says that mPmP = (X −α)R. This agrees with the fact that P and P are opposite points
for the chord and tangent composition.

Finally, suppose that P and Q are points of E that are not at infinity and for which
P 6= Q. Then the line passing through P and Q, or the tangent line at P if P = Q, is not
vertical and has an equation of the form Y = λX + µ for certain λ, µ ∈ k. The line has
precisely three k-rational points of intersection with the affine cubic curve. This follows
from the fact that substituting Y = λX + µ in the Weierstrass equation leads to a cubic
equation in X. If P 6= Q, the X-coordinates of P and Q are distinct zeroes and there
is a unique third point of intersection R. If P = Q, we translate P to the point (0, 0).
The tangent line at P has equation a3Y = a4X with a3 6= 0. Putting λ = a4/a3 and
substituting Y by λX in the Weierstrass equation, leads to a cubic polynomial divisible
by X2. Therefore there is also a unique third point of intersection R in this case.

In order to show that the composition with chord and tangents agrees with the group
law in Cl(R) it suffices to show that

mPmQmR = (Y − λX − µ)R.

By Propositions 2.3 and 3.1 the degrees of the ideals (Y − λX −µ)R and mPmQmR are 3.
Therefore it suffices to show that the element Y −λX−µ is contained in the product of the
three maximal ideals. If P , Q and R are all distinct, this is clear by the Chinese Remainder
Theorem. If, say, P = Q but P 6= R, then Proposition 1.1. implies that Y − λX − µ is
contained in m2

P and mR and therefore in their product. Finally, if P = Q = R, we have
a flex point and Proposition 1.1 implies that Y − λX − µ is in m3

P as required.
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4. The zeta function.

Let k = Fq be a finite field and let E be an elliptic curve defined over k. This means that
E a cubic plane curve as in section 1, that is non-singular. Let R be the ring Fq[X,Y ]
modulo the Weierstrass equation. The zeta function of R is defined by

ZR(T ) =
∑
I⊂R

T deg I , ∈ Z[[T ]].

Here I runs over the non-zero ideals of R. Note that for each d there are only finitely many
ideals of degree d. We count them in the proof of the next proposition.

Proposition 4.1. We have

ZR(T ) =
1− (h− q)T + qT 2

1− qT
,

where h is the number of degree 1 ideals.

Proof. The ring R itself is the only ideal of degree 0. Let d ≥ 2. The space Ld of elements
f ∈ R of degree d has qd − qd−1 elements. Therefore there are qd−1 principal ideals of
degree d. If I is a non-principal ideal of degree d, then Proposition 3.3 implies that there
is an element f ∈ I of degree d+ 1 and a codimension 1 maximal ideal mP for which

(f) = ImP .

Moreover, the ideal mP is unique and f is unique up to units. The subspaces of the
functions that vanish in P have codimensions 1 in Ld+1 and Ld respectively. Therefore,
up to units of R, there are qd−1 possibilities for f . Since there are h possibilities for the
points P , it follows that there are (h+ 1)qd−1 ideals of degree d.

Therefore we have

ZR(T ) = 1 + hT +
∞∑
d=2

(h+ 1)qd−1T d =
1 + (h− q)T + qT 2

1− qT

as required.

The zeta function ZR(T ) is not equal to the usual zeta function ZE(T ) of the elliptic
curve E. But it is closely related. In order to explain the connection, we recall the
definition of ZE(T ). A place of E is a Galois conjugacy classes of points. The degree of a
place is the degree of the residue field of any of its points. So, places of degree 1 are simply
k-rational points. Divisors of E are finite formal sums of the form

D =
∑
P

nPP,

where P runs over the places of E and the coefficients nP ∈ Z are almost all zero. The
degree of a D is equal to

∑
P nP degP . A divisor is called effective if nP ≥ 0 for all

places P . The zeta function of E is defined by

ZE(T ) =
∏
P

1

1− T deg P
.
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Here P runs over the places of E. The zeta function ZE0(T ) of the affine curve E0 is
given by the same product, omitting the point P =∞. Writing the factors on the right as
geometric series in Z[T ]], we see that the zeta function of E is equal to the power series

ZE(T ) =
∑
D

T degD, ∈ Z[T ]].

Here D runs over the effective divisors of E. Similarly, the zeta function of E0 is equal to

ZE0(T ) =
∑
D

T degD, ∈ Z[T ]],

where D runs over the effective divisors of E0. In other words, D runs over effective
divisors of the form

∑
P nP degP , with n∞ = 0.

Theorem 4.2. The zeta functions ZR(T ) and ZE0(T ) are equal.

In order to prove the theorem, we extend the correspondence between and maximal
R-ideals of codimension 1 and points P ∈ E(k) to arbitrary maximal R-ideals. A point
P = (α, β) with coordinates in k corresponds to the kernel of the k-algebra morphism
R −→ k that maps X and Y to α and β respectively. Conversely, any maximal ideal m of
R is the kernel of a k-algebra homomorfism R −→ R/m ↪→ k. The point (α, β) is unique
up to conjugation by Gal(k/k). So, apart from the point ∞, places correspond bijectively
to maximal R-ideals.

The following property of the degree is useful.

Lemma 4.2. Let I, J ⊂ R be invertible ideals. Then

deg I + deg J = deg IJ.

Proof. If I is principal, this follows from Lemma 3.1. If not, we have ImP = aR for some
non-zero a ∈ I. By Lemma 3.2. aJ has codimension 1 in IJ . Therefore Lemma 3.1 implies

deg IJ = deg aJ − 1 = deg aR+ deg J − 1 = deg I + deg J.

as required.

Proposition 4.3. Every non-zero ideal I ⊂ R is a product of invertible maximal ideals
in a unique way.

Proof. Let I be an invertible R-ideal. Then I ⊂ m for some maximal ideal. Since all
points of E are non-singular, the ideal m is invertible. Let J ⊂ R be an ideal for which
Jm = aR for some non-zero a ∈ R. Then we have IJ ⊂ aR so that I ′ = IJ/a is an
invertible R-ideal. We have

I ′m = IJm/a = I.

By Lemma 4.2 the degree of I ′ is strictly smaller than deg I. Repeating this construction
with I ′ rather than I, we eventually find that I is a product of maximal R-ideals. The
uniqueness follows from the fact that all maximal ideals are invertible.
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This proves the lemma.

Proof. Proposition 4.3. implies that the correspondence between places different from ∞
and maximal ideals of R extends to a natural bijection between effective divisors of the
affine curve E0 and invertible R-ideals. Since the degree of I ⊂ R is equal to the degree
of the corresponding effective divisor, the zeta functions ZR(T ) and ZE(T ) are equal, as
required.

Let 1 − (h − q)T + qT 2 be the numerator of the zeta function of E and let π and π′

be the complex zeroes of the reciprocal polynomial T 2 − (h− q)T + q.

Proposition 4.4. For every d ≥ 1, we have

#E0(Fqd) = qd − πd − π′d.

Proof. By Proposition 5.1 we have

ZE0(T ) =
1− (h− q)T + qT 2

1− qT
.

Combining this with the product formula of Corollary 5.3 we obtain

ZE0(T ) =
(1− πT )(1− π′T )

1− qT
=

∏
P

1

1− T degP
.

Here the product runs over the places of E0. Taking the logarithmic derivative of this
identity, expanding the geometric series and comparing coefficients shows that for every
d ≥ 1 we have qd − πd − π′d =

∑
P degP where P runs over the places of E0 of degree

dividing d. Since the latter sum is equal to #E0(Fqe), the lemma follows.

5. An upper bound.

In this section we obtain an upper bound for the number of points of an elliptic curve E
over a finite field. Our method is due to S.A. Stepanov.

Let Fq denote a field of cardinality q. Let E be an elliptic curve given by a Weierstrass
equation and as before let R be the Fq-algebra generated by the functions X and Y . For
d ≥ 0 let Ld denote the Fq-vector space

Ld = {f ∈ R : deg f ≤ d}.

As explained in section 1, we have Ld = 0 for d = 0, while for d ≥ 1, the monomials ei
with i ≤ d are an Fq-basis for Ld. In particular, La has Fq-dimension d.

For d ≥ 1 the set Lq
d = {fq : f ∈ Ld} is an Fq-vector space of dimension d = dimLd.

Indeed, the map f 7→ fq is an Fq-linear bijection Ld ↔ Lq
d.
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Lemma 5.1. Let a, b ≥ 1 and let Lq
aLb denote the Fq-vector space generated by the

functions fqg where f ∈ La and g ∈ Lb. Then we have
(a) dimLq

aLb ≤ aq + b;
(b) dimLq

aLb ≤ ab;
(c) if b < q, the elements eqi ej for 1 ≤ i ≤ a and 1 ≤ j ≤ b form an Fq-basis of Lq

aLb and
we have equality in (b).

Proof. Part (a) follows from the fact that Lq
aLb ⊂ Laq+b. The inequality of part (b)

follows from the fact that the functions eqi ej with 1 ≤ i ≤ a and 1 ≤ j ≤ b generate Lq
aLb.

For (c) we observe that
deg eqi ej = qdeg ei + deg ej

So if b < q, we have deg ej < q for all j. It follows that the degrees deg eqi ej are all
distinct. So any Fq-linear combination

∑
i,j λije

q
i ej that is zero, necessarily has λij = 0

for every i, j. This proves that the functions eqi ej are independent. So they are a basis for
Lq
aLb. This proves the lemma.

From now on we assume that a, b ≥ 1 with b < q. Lemma 5.1 (c) implies that the
Fq-linear map

ϑ : Lq
aLb −→ LaL

q
b

given by
eqi ej 7→ eie

q
j , for 1 ≤ i ≤ a and 1 ≤ j ≤ b,

is well defined.
The following proposition is the key ingredient in the proof of Theorem 5.3.

Proposition 5.2. Let a, b ≥ 1 with b < q. If the map ϑ is not injective, then

#E(Fq2) ≤ aq + b+ 1.

Proof. Every function F ∈ kerϑ vanishes on E(Fq2) − {∞}. Indeed, let F =
∑
λije

q
i ej

for certain λij ∈ Fq and let P ∈ E(Fq2)− {∞}. Then

F (P )q =
∑

λije
q2

i (P )eqj(P ) =
∑

λijei(P )eqj(P ) = (
∑

λijeie
q
j)(P ) = ϑ(F )(P ) = 0,

which is zero when F ∈ kerϑ. The second equality follows from the fact that P ∈ E(Fq2)

so that fq
2

(P ) = f(P ) for every function f ∈ R.
Since ϑ is not injective, there exists a non-zero F in kerϑ. Therefore we obtain the

following estimate.

#E(Fq2)− 1 ≤ #{zeroes of F} = deg(F ) ≤ aq + b.

The rightmost inequality follows from Lemma 5.1 (a). This proves the proposition.

Theorem 5.3. Let E be an elliptic curve defined over Fq and suppose that q ≥ 5. Then
we have

#E(Fq2) ≤ q2 + 3q.
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Proof. The map ϑ defined above cannot be injective if a, b ≥ 1 have the property that

dimLq
aLb > dimLaL

q
b .

Since b < q, Lemma 5.1 (b) implies that Lq
aLb has dimension ab. Lemma 3.1 (b) cannot

be applied to LaL
q
b . In some sense this is the point of the proof. But by Lemma 3.1 (a)

we know that LaL
q
b has dimension ≤ a+ bq. Therefore the map ϑ is not injective when

ab > a+ bq.

In order to deduce a sharp estimate from Proposition 5.2, we choose a as small as possible.
Since the inequality ab > a+ bq must be satisfied, the minimal choice is a = q + 2. Once
a is chosen, we can take b = q − 1, at least for q ≥ 5. With these choices the quantity
aq + b+ 1 in Proposition 3.3 becomes (q + 2)q + q − 1 + 1 = q2 + 3q, as required.

6. Hasse’s Theorem.

In this section we prove Hasse’s Theorem. It is the analogue of the Riemann Hypothesis
for the zeta function of E. Let E be an elliptic curve over Fq. First we use Stepanov’s
method to obtain a lower bound for #E(Fq2) as follows.

Proposition 6.1. Let E be an elliptic curve over Fq and suppose that q ≥ 5. Then we
have

#E(Fq2) > q2 − 3q

Proof. Let Ω denote the set of points (x, y) of E0(Fq) for which x ∈ Fq2 . For every
x ∈ Fq2 there are at most two points (x, y) ∈ Ω. If (x, y) is one such point, then (x, y)
where y = −y − a1x− a3, is the other. We have

#Ω = 2q2 − r.

where r is the number of values of x for which y = y. We have r ≤ 3.
The automorphism σ of Fq given by σ(t) = tq

2

also acts on Ω. It maps a point

(x, y) ∈ Ω to (σ(x), σ(y)) = (xq
2

, yq
2

) = (x, yq
2

). It follows that either σ(y) = y or
σ(y) = y. Therefore have

Ω = Ω+ ∪ Ω−,

where Ω+ = {(x, y) ∈ Ω : σ(y) = y} and Ω− = {(x, y) ∈ Ω : σ(y) = y}. The intersection
Ω+ ∩ Ω− consists of the r points (x, y) for which y = y.

Clearly Ω+ is the set E(Fq2) − {∞}. Theorem 3.4 provides an estimate for its size.
In this section we use the method of section 3 to obtain an estimate of the size of the
set Ω−. Let a, b be as in the proof of Theorem 5.3. Note that the spaces La and Lb are
preserved by the automorphism of R given by f(X,Y ) 7→ f(X,−Y − a1X − a3). Consider
the Fq-linear map

ϑ′ : Lq
aLb −→ LaL

q
b

defined by
eqi ej 7→ eie

q
j .
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Every function F ∈ kerϑ′ vanishes on the set W . Indeed, let F =
∑
λije

q
i ej for certain

λij ∈ Fq and let P ∈W .

F (P )q =
∑

λije
q2

i (P )eqj(P ) =
∑

λijei(P )eqj(P ) = (
∑

λijeif
q
j )(P ) = ϑ′(F )(P ) = 0,

and hence F (P ) = 0. Therefore we can draw the same conclusion as in the previous
section. We have

#Ω− ≤ q2 + 3q.

and hence
#E(Fq2)− 1 = #Ω+,

= #Ω−#Ω− + #(Ω + ∩#Ω−),

≥ (2q2 − r)− (q2 + 3q) + r,

≥ q2 − 3q.

as required.

Theorem 6.2. (Hasse) The complex zeroes π and π′ of the polynomial T 2− (h− q)T + q
have absolute value

√
q. In particular π′ = π.

Proof. The inequalities of section 5 and Lemma 6.4 provide us with the inequalities

qd − 3qd/2 ≤ qd + 1− πd − π′d ≤ qd + 3qd/2, for even d ≥ 0.

Therefore we have
|πd + π′

d| ≤ 3qd/2, for even d ≥ 0.

Suppose |π| > √q. Since ππ′ = q, we have |π′| < √q. Then the absolute values of
both 1 + (π′/π)d and (π′/π)d go to zero as d → ∞. This is impossible. Therefore we
have |π| ≤ √q. By symmetry also |π′| ≤ √q. This implies |π| = |π′| = √q, as required.

The inequalities of Theorem 3.4 and Proposition 4.1 have only been proved for q ≥ 5.
However, when q < 5, we have qd > 5 when d is sufficiently large. This implies that we
still have the inequality for large even degrees d ≥ 6. Therefore the argument involving
d→∞ is not affected and the conclusion is the same for q < 5. This proves the theorem.
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