- 1. Sia $g: \mathbf{R}^3 \longrightarrow \mathbf{R}^2$ l'applicazione data da $g\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x+y-z \\ -2x-2y+2z \end{pmatrix}$. Calcolare una base per $\ker(g)$ e una base per $\operatorname{im}(g)$.
- 2. Sia A la matrice $n \times n$ data da

$$A = \begin{pmatrix} 0 & 1 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 1 \\ 0 & 0 & 0 & 0 & \cdots & 0 \end{pmatrix}.$$

(a) Sia $f: \mathbf{R}^n \longrightarrow \mathbf{R}^n$ data dalla moltiplicazione per A. Sia $\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n$ la base canonica di \mathbf{R}^n . Far vedere che $f(\mathbf{e}_1) = 0$ e che

$$f(\mathbf{e}_i) = \mathbf{e}_{i-1};$$
 per $i = 2, 3, \dots, n$.

- (b) Per m>0, sia f^m l'applicazione $\underbrace{f\circ f\circ \cdots \circ f}_{m \text{ volte}}$ e sia $A^m=\underbrace{A\cdot A\cdots A}_{m \text{ volte}}$. Per ogni m>0, calcolare la matrice A^m e determinare il nucleo e l'immagine di f^m .
- 3. Siano $n, m \ge 1$ e

$$A = \begin{pmatrix} a_{11} & \dots & a_{n1} \\ \vdots & & \vdots \\ a_{1m} & \dots & a_{nm} \end{pmatrix}, \quad \mathbf{b} = \begin{pmatrix} b_1 \\ \vdots \\ b_m \end{pmatrix} \quad \mathbf{e} \quad A' = \begin{pmatrix} a_{11} & \dots & a_{n1} & b_1 \\ \vdots & & \vdots & \vdots \\ a_{1m} & \dots & a_{nm} & b_m \end{pmatrix}.$$

(a) Dimostrare che il sistema di equazioni lineari

$$\begin{cases} a_{11}x_1 + \dots + a_{n1}x_n = b_1 \\ \vdots & \vdots & \vdots \\ a_{1m}x_1 + \dots + a_{nm}x_n = b_m \end{cases}$$

ammette una soluzione se e solo se \mathbf{b} è contenuto nello span delle colonne di A.

- (b) (Rouché-Capelli) Dimostrare che il sistema di equazioni ammette una soluzione se e solo se il rango di A' è uguale al rango di A.
- 4. Sia $V = \left\{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} \in \mathbf{R}^4 : x_1 + x_2 x_3 = 0 \right\}$ e sia $W = \left\{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} \in V : x_2 = x_4 \right\}.$
 - (a) Osservare che $W \subset V$ (!) e determinare la dimensione di W.
 - (b) Esibire un complemento W' di W in \mathbb{R}^4 .
 - (c) Dimostrare che per ogni complemento W' si ha che $\dim(V \cap W') = 1$.