1. Per ogni matrice determinare gli autovalori dell'applicazione lineare corrispondente. Determinare gli autospazi.

(a)
$$\begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 (b) $\begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 3 \end{pmatrix}$ (c) $\begin{pmatrix} 1 & -1 \\ 5 & -1 \end{pmatrix}$ (d) $\begin{pmatrix} 2 & 1 & -2 \\ 1 & 0 & 0 \\ 4 & 2 & -3 \end{pmatrix}$.

2. Sia $f: \mathbf{R}^4 \longrightarrow \mathbf{R}^4$ l'applicazione data da

$$f\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix}.$$

- (a) Calcolare delle equazioni cartesiane per ker(f) e Im(f).
- (b) Calcolare il polinomio caratteristico di f.
- (c) Per ogni autovalore di f, determinare l'autospazio corrispondente.
- 3. Sia $f: \mathbf{R}^n \longrightarrow \mathbf{R}^n$ la moltiplicazione per una certa matrice invertibile A.
 - (a) Dimostrare che gli autovalori di A sono non nulli.
 - (b) Dimostrare che se λ è autovalore di A, allora λ^{-1} è autovalore di A^{-1} .
- 4. Siano $\mathbf{v}_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$, $\mathbf{v}_2 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$, $\mathbf{v}_3 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$ e sia $f : \mathbf{R}^3 \longrightarrow \mathbf{R}^3$ l'applicazione data da $f \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} y z \\ z x \\ x y \end{pmatrix}$.
 - (a) Dimostrare che $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ è una base di \mathbf{R}^3 e che f è lineare.
 - (b) Determinare la matrice rappresentativa di f rispetto alla base canonica (nello spazio di partenza e in quello di arrivo).
 - (c) Determinare la matrice rappresentativa di f rispetto alla base $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ (nello spazio di partenza e in quello di arrivo).
- 5. Sia $A = \begin{pmatrix} -2 & 4 \\ 1 & 1 \end{pmatrix}$. Calcolare A^{1000} .
- 6. (a) Dimostrare che i vettori $\mathbf{v}_1 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ e $\mathbf{v}_2 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$ in \mathbf{R}^2 sono linearmente indipendenti.

Sia $f: \mathbf{R}^2 \longrightarrow \mathbf{R}^2$ l'applicazione lineare che scambia \mathbf{v}_1 e \mathbf{v}_2 .

- (b) Determinare la matrice rappresentativa di f rispetto alla base $\mathbf{v}_1, \mathbf{v}_2$.
- (c) Determinare la matrice rappresentativa di frispetto alla base canonica.