- 1. Sia R un dominio a fattorizzazione unica e sia $\pi \in R$. Dimostrare che π è un elemento primo se e solo se è irriducibile.
- 2. (a) Dimostrare che l'ideale (X,2) di $\mathbf{Z}[X]$ non è principale.
 - (b) Dimostrare che l'ideale (X, Y) di $\mathbf{R}[X, Y]$ non è principale.
- 3. Fattorizzare il polinomio $X^6 1$ in $\mathbb{C}[X]$, $\mathbb{R}[X]$, $\mathbb{Z}_3[X]$, $\mathbb{Z}_5[X]$.
- 4. Sia R un anello commutativo. Dimostrare che (0) è ideale primo di R se e solo se R è un dominio.
- 5. Siano R, R' due anelli commutativi e sia $f: R \longrightarrow R'$ un omomorfismo di anelli.
 - (a) Se \mathfrak{p} è un ideale primo di R' allora $f^{-1}(\mathfrak{p})$ è ideale primo di R.
 - (b) È vero o falso? "se \mathfrak{p} è ideale primo di R allora $f(\mathfrak{p})$ è ideale primo di R'."
 - (c) È vero o falso? "se \mathfrak{p} è ideale primo di R allora $f(\mathfrak{p})$ è ideale primo dell'anello f(R)."
- 6. Per un anello commutativo R, sia $\operatorname{Spec}(R)$ la collezione degli ideali primi di R. Per ogni ideale $I \subset R$, sia $V(I) = \{ \mathfrak{p} \in \operatorname{Spec}(R) : I \subset \mathfrak{p} \}$.
 - (a) Dimostrare che gli insiemi V(I) sono i sottoinsiemi *chiusi* di una topologia su $\operatorname{Spec}(R)$, la topologia di Zariski.
 - (b) Sia $f: R \longrightarrow R'$ un omomorfismo di anelli commutativi. Dimostrare che la mappa $F: \operatorname{Spec}(R') \longrightarrow \operatorname{Spec}(R)$ data da $F(\mathfrak{p}) = f^{-1}(\mathfrak{p})$ è una mappa continua per la topologia di Zariski.
- 7. Il polinomio reciproco di $f = \sum_{j=0}^{n} a_j X^j \in \mathbf{Q}[X]$ (con a_0, a_n diversi da 0) è il polinomio $f^* = \sum_{j=0}^{n} a_{n-j} X^j \in \mathbf{Q}[X]$. Dimostare che f è irriducibile se e solo se f^* è irriducibile.
- 8. Sia $f \in \mathbf{Z}[X]$ un polinomio monico.
 - (a) Se $\alpha \in \mathbf{Q}$ è uno zero di f, allora $\alpha \in \mathbf{Z}$.
 - (b) Supponiamo che f(2) = 13. Dimostrare che f ha al più tre zeri in \mathbf{Q} .
 - (c) Esibire un polinomio f con tre zeri razionali e che soddisfa f(2) = 13.
- 9. Dimostrare che $X^3 + Y^3 + XY^2 + X^2 + Y^2$ è irriducibile in $\mathbf{Z}[X,Y]$.
- 10. (a) Fattorizzare il polinomio $X^4 + 1$ in $\mathbf{R}[X]$.
 - (b) Fattorizzare il polinomio $X^4 + 1$ in $\mathbf{Z}[i][X]$.
 - (c) Dimostrare che $X^4 + 1$ è riducibile in $\mathbf{Z}_p[X]$ per ogni primo p, ma è irriducibile in $\mathbf{Z}[X]$. (Sugg. almeno uno fra -1, 2, -2 è quadrato in \mathbf{Z}_p^* .)
- 11. Dimostrare che il numero 16 è ottava potenza in \mathbf{Z}_p^* per ogni primo p (ma non è ottava potenza in $\mathbf{Z} \dots$) (Sugg. almeno uno fra -1, 2, -2 è quadrato in \mathbf{Z}_p^* .)