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Let F be a number field of degree n ≥ 1 and discriminant ∆F . We write δ for the covolume√
|∆F | of OF ⊂ FR. We let Φ denote the set of ring homomorphisms φ : F ↪→ C. There

are n = [F : Q] of them. By φ we denote the complex conjugate of φ ∈ Φ. The C-algebra
FC is isomorphic to

∏
φC. Its elements are vectors with coordinates zφ ∈ C for φ ∈ Φ. We

denote them by (zφ). The image of the ring homomorphism F ↪→ FC given by x 7→ (φ(x))
is contained in the R-subalgebra of FC given by

FR = {(zφ) ∈ FC : zφ = zφ for all φ ∈ Φ}.

The R-dimension of FR is n = r1 + 2r2, where r1 denotes the number of homomorphisms
φ : F −→ C with φ(F ) ⊂ R and 2r2 is the number of homomorphisms that do not have
this property. The elements of FR that are invariant under its canonical involution form
a subalgebra. It is given by

F+
R = {(zφ) ∈ FR : zφ ∈ R for all φ ∈ Φ}.

The R-dimension of F+
R is r1 + r2.

We let F⊥R denote the orthogonal complement in F+
R of the subspace R · 1. It is an

R-subspace of dimension r1 +r2−1 and it is equal to the kernel of the trace map. In other
words we have

F⊥R = {x = (xφ) ∈ F+
R : Tr(x) =

∑
φ∈Φ

xφ = 0}.

For any x ∈ F 0
R we let π(x) denote the orthogonal projection of x on F+

R . It is given by

π(x) = x− Tr(x)

n
· 1.

Let
Log : F ∗R −→ F+

R

be the homomorphism that associates to (xφ) ∈ F ∗R the element (log |xφ|) ∈ F+
R . For

any x ∈ F ∗R, we let λ(x) denote the orthogonal projection of Log(x) ∈
∏
φ∈Φ R on F 0

R.
Explicitly we have

λ(x) = π(Log(x)) = Log(x)− Tr(Log x)

n
· 1 = Log|x/N(x)1/n|.

In this note we study the subgroup

L = Log(O∗F )

of F+
R . Any ε ∈ O∗F has norm 1. Therefore we have∑

φ∈Φ

log |φ(ε)| = 0,
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and hence we have L ⊂ F 0
R. Since OF is discrete in FR, so is L in F 0

R. In this note
we prove that L is actually a lattice in F 0

R. In other words, the quotient group F 0
R/L is

compact This is a form of Dirichlet’s Unit Theorem.

There are only finitely many non-zero principal ideals of OF with norm at most δ.
Let α1, . . . , αt ∈ OF be generators of these ideals. For each i = 1, . . . , t let Bi denote the
closed ball with center λ(αi) and radius log δ:

Bi = {z ∈ F 0
R : ||z − λ(αi)|| ≤ log δ}.

Theorem. We have

F 0
R = {y + z : y ∈ L and z ∈ Bi for some i = 1, . . . , t}.

Since each ball Bi is compact and since the composite map

t
∪
i=1

Bi ↪→ F 0
R −→ F 0

R/L

is continuous and surjective, the theorem implies that F 0
R/L is compact and we are done.

Proof of the Theorem. Let x = (xφ) be an arbitrary element of F 0
R. By ex we denote

the element (exφ) of F ∗R. The box

B = {(zφ) ∈ FR : |zφ| ≤ δ1/n for all φ ∈ Φ}.

is convex and symmetric and has has volume ≥ 2nδ. Since the trace of x is zero, the norm
of ex is 1. It follows that the volume of the box exB ⊂ FR is equal to the volume of B
and is hence at least 2nδ.

By Minkowski’s theorem there exists therefore a non-zero vector in OF ∩ exB. In
other words, there is a non-zero a ∈ OF for which

|φ(a)| ≤ exφδ1/n, for all φ ∈ Φ.

This implies that |N(a)| ≤ δ. Therefore the principal ideal generated by a is one of the
principal ideals (αi) with 1 ≤ i ≤ t that were introduced above. This means that a = εαi
for some unit ε ∈ O∗F . Now we have

x = y + z,

with y = Log(ε) = λ(ε). To show that z = x − Log(ε) is in B, we check that ||z − λ(ai)||
is at most log δ. We have z − λ(αi) = x− λ(a) and the inequalities

λ(a)φ = log| φ(a)

N(a)1/n
| ≤ log|φ(a)| ≤ xφ +

1

n
log δ, for all φ ∈ Φ.

Here we used the fact that |N(a)| ≥ 1. Since the sum over all φ of λ(a)φ and of xφ is zero,
the lemma below applies to the real numbers λ(a)φ − xφ. We get

||z − λ(ai)||2 = ||λ(a)− x||2 =
∑
φ∈Φ

(λ(a)φ − xφ)
2 ≤ n(n− 1)

n2
log2δ < log2δ,

as required.
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Lemma. Let n > 1 and M ∈ R. Suppose that x1, . . . , xn ∈ R satisfy

xi ≤M for i = 1, . . . , n and
∑n
i=1 xi ≥ 0.

Then we have
∑n
i=1 x

2
i ≤ n(n− 1)M2.

Proof. We may assume M > 0. The set S of (x1, . . . , xn) ∈ Rn that satisfy both
conditions is bounded. Let (x1, . . . , xn) ∈ S be an element for which s =

∑n
i=1 x

2
i is

maximal. Then at most one of the elements xi is negative, because if xi < 0 and xj < 0,
we replace xi by 0 and xj by xi + xj . Then the conditions are still satisfied, but since
(xi + xj)

2 > x2
i + x2

j , the sum s would be strictly larger. In addition, every xi ≥ 0 is equal
to M . Indeed, if we replace a non-negative xi < M by M , the conditions are satisfied, but
s would get larger.

So all xi are equal to M except possibly one, say x1 = tM for some t ∈ R. The
conditions say that 1 − n ≤ t ≤ 1. Since s = ((n − 1) + t2)M2 is maximal, we have
t = 1 − n and the result follows. (For n = 2 we could also have t = 1; it gives the same
estimate)
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