Dirichlet

Let F be a number field of degree $n \geq 1$ and discriminant Δ_F . We write δ for the covolume $\sqrt{|\Delta_F|}$ of $O_F \subset F_{\mathbf{R}}$. We let Φ denote the set of ring homomorphisms $\phi : F \hookrightarrow \mathbf{C}$. There are $n = [F : \mathbf{Q}]$ of them. By $\overline{\phi}$ we denote the complex conjugate of $\phi \in \Phi$. The \mathbf{C} -algebra $F_{\mathbf{C}}$ is isomorphic to $\prod_{\phi} \mathbf{C}$. Its elements are vectors with coordinates $z_{\phi} \in \mathbf{C}$ for $\phi \in \Phi$. We denote them by (z_{ϕ}) . The image of the ring homomorphism $F \hookrightarrow F_{\mathbf{C}}$ given by $x \mapsto (\phi(x))$ is contained in the \mathbf{R} -subalgebra of $F_{\mathbf{C}}$ given by

$$F_{\mathbf{R}} = \{(z_{\phi}) \in F_{\mathbf{C}} : z_{\overline{\phi}} = \overline{z_{\phi}} \text{ for all } \phi \in \Phi\}.$$

The **R**-dimension of $F_{\mathbf{R}}$ is $n = r_1 + 2r_2$, where r_1 denotes the number of homomorphisms $\phi: F \longrightarrow \mathbf{C}$ with $\phi(F) \subset \mathbf{R}$ and $2r_2$ is the number of homomorphisms that do not have this property. The elements of $F_{\mathbf{R}}$ that are invariant under its canonical involution form a subalgebra. It is given by

$$F_{\mathbf{R}}^+ = \{ (z_{\phi}) \in F_{\mathbf{R}} : z_{\phi} \in \mathbf{R} \text{ for all } \phi \in \Phi \}.$$

The **R**-dimension of $F_{\mathbf{R}}^+$ is $r_1 + r_2$.

We let $F_{\mathbf{R}}^{\perp}$ denote the orthogonal complement in $F_{\mathbf{R}}^{+}$ of the subspace $\mathbf{R} \cdot \mathbf{1}$. It is an **R**-subspace of dimension $r_1 + r_2 - 1$ and it is equal to the kernel of the trace map. In other words we have

$$F_{\mathbf{R}}^{\perp} = \{ x = (x_{\phi}) \in F_{\mathbf{R}}^{+} : Tr(x) = \sum_{\phi \in \Phi} x_{\phi} = 0 \}.$$

For any $x \in F^0_{\mathbf{R}}$ we let $\pi(x)$ denote the orthogonal projection of x on $F^+_{\mathbf{R}}$. It is given by

$$\pi(x) = x - \frac{Tr(x)}{n} \cdot 1.$$

Let

$$\operatorname{Log}: F^*_{\mathbf{R}} \longrightarrow F^+_{\mathbf{R}}$$

be the homomorphism that associates to $(x_{\phi}) \in F_{\mathbf{R}}^*$ the element $(\log |x_{\phi}|) \in F_{\mathbf{R}}^+$. For any $x \in F_{\mathbf{R}}^*$, we let $\lambda(x)$ denote the orthogonal projection of $\operatorname{Log}(x) \in \prod_{\phi \in \Phi} \mathbf{R}$ on $F_{\mathbf{R}}^0$. Explicitly we have

$$\lambda(x) = \pi(\operatorname{Log}(x)) = \operatorname{Log}(x) - \frac{Tr(\operatorname{Log} x)}{n} \cdot 1 = \operatorname{Log}|x/N(x)^{1/n}|.$$

In this note we study the subgroup

$$L = \operatorname{Log}(O_F^*)$$

of $F_{\mathbf{R}}^+$. Any $\varepsilon \in O_F^*$ has norm 1. Therefore we have

$$\sum_{\phi \in \Phi} \log |\phi(\varepsilon)| = 0,$$

and hence we have $L \subset F_{\mathbf{R}}^0$. Since O_F is discrete in $F_{\mathbf{R}}$, so is L in $F_{\mathbf{R}}^0$. In this note we prove that L is actually a lattice in $F_{\mathbf{R}}^0$. In other words, the quotient group $F_{\mathbf{R}}^0/L$ is compact This is a form of Dirichlet's Unit Theorem.

There are only finitely many non-zero principal ideals of O_F with norm at most δ . Let $\alpha_1, \ldots, \alpha_t \in O_F$ be generators of these ideals. For each $i = 1, \ldots, t$ let B_i denote the closed ball with center $\lambda(\alpha_i)$ and radius log δ :

$$B_i = \{ z \in F^0_{\mathbf{R}} : \| z - \lambda(\alpha_i) \| \le \log \delta \}.$$

Theorem. We have

$$F_{\mathbf{R}}^{0} = \{y + z : y \in L \text{ and } z \in B_{i} \text{ for some } i = 1, \dots, t\}.$$

Since each ball B_i is compact and since the composite map

$$\bigcup_{i=1}^{t} B_i \hookrightarrow F^0_{\mathbf{R}} \longrightarrow F^0_{\mathbf{R}}/L$$

is continuous and surjective, the theorem implies that $F^0_{\mathbf{R}}/L$ is compact and we are done.

Proof of the Theorem. Let $x = (x_{\phi})$ be an arbitrary element of $F_{\mathbf{R}}^0$. By e^x we denote the element $(e^{x_{\phi}})$ of $F_{\mathbf{R}}^*$. The box

$$B = \{(z_{\phi}) \in F_{\mathbf{R}} : |z_{\phi}| \le \delta^{1/n} \text{ for all } \phi \in \Phi\}.$$

is convex and symmetric and has has volume $\geq 2^n \delta$. Since the trace of x is zero, the norm of e^x is 1. It follows that the volume of the box $e^x B \subset F_{\mathbf{R}}$ is equal to the volume of B and is hence at least $2^n \delta$.

By Minkowski's theorem there exists therefore a non-zero vector in $O_F \cap e^x B$. In other words, there is a non-zero $a \in O_F$ for which

$$|\phi(a)| \le e^{x_{\phi}} \delta^{1/n}, \quad \text{for all } \phi \in \Phi.$$

This implies that $|N(a)| \leq \delta$. Therefore the principal ideal generated by a is one of the principal ideals (α_i) with $1 \leq i \leq t$ that were introduced above. This means that $a = \varepsilon \alpha_i$ for some unit $\varepsilon \in O_F^*$. Now we have

$$x = y + z,$$

with $y = \text{Log}(\varepsilon) = \lambda(\varepsilon)$. To show that $z = x - \text{Log}(\varepsilon)$ is in *B*, we check that $||z - \lambda(a_i)||$ is at most log δ . We have $z - \lambda(\alpha_i) = x - \lambda(a)$ and the inequalities

$$\lambda(a)_{\phi} = \log \left| \frac{\phi(a)}{N(a)^{1/n}} \right| \le \log |\phi(a)| \le x_{\phi} + \frac{1}{n} \log \delta, \quad \text{for all } \phi \in \Phi.$$

Here we used the fact that $|N(a)| \ge 1$. Since the sum over all ϕ of $\lambda(a)_{\phi}$ and of x_{ϕ} is zero, the lemma below applies to the real numbers $\lambda(a)_{\phi} - x_{\phi}$. We get

$$||z - \lambda(a_i)||^2 = ||\lambda(a) - x||^2 = \sum_{\phi \in \Phi} (\lambda(a)_{\phi} - x_{\phi})^2 \le \frac{n(n-1)}{n^2} \log^2 \delta < \log^2 \delta,$$

as required.

Lemma. Let n > 1 and $M \in \mathbf{R}$. Suppose that $x_1, \ldots, x_n \in \mathbf{R}$ satisfy

 $x_i \leq M$ for $i = 1, \dots, n$ and $\sum_{i=1}^n x_i \geq 0$.

Then we have $\sum_{i=1}^{n} x_i^2 \le n(n-1)M^2$.

Proof. We may assume M > 0. The set S of $(x_1, \ldots, x_n) \in \mathbf{R}^n$ that satisfy both conditions is bounded. Let $(x_1, \ldots, x_n) \in S$ be an element for which $s = \sum_{i=1}^n x_i^2$ is maximal. Then at most one of the elements x_i is negative, because if $x_i < 0$ and $x_j < 0$, we replace x_i by 0 and x_j by $x_i + x_j$. Then the conditions are still satisfied, but since $(x_i + x_j)^2 > x_i^2 + x_j^2$, the sum s would be strictly larger. In addition, every $x_i \ge 0$ is equal to M. Indeed, if we replace a non-negative $x_i < M$ by M, the conditions are satisfied, but s would get larger.

So all x_i are equal to M except possibly one, say $x_1 = tM$ for some $t \in \mathbf{R}$. The conditions say that $1 - n \leq t \leq 1$. Since $s = ((n - 1) + t^2)M^2$ is maximal, we have t = 1 - n and the result follows. (For n = 2 we could also have t = 1; it gives the same estimate)